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A B S T R A C T

The standard approach for quantitative estimation of genetic materials with qPCR is calibration with known
concentrations for the target substance, in which estimates of the quantification cycle (Cq) are fitted to a straight-
line function of log(N0), where N0 is the initial number of target molecules. The location of Cq for the unknown
on this line then yields its N0. The most widely used definition for Cq is an absolute threshold that falls in the
early growth cycles. This usage is flawed as commonly implemented: threshold set very close to the baseline
level, which is estimated separately, from designated "baseline cycles." The absolute threshold is especially poor
for dealing with the scale variability often observed for growth profiles. Scale-independent markers, like the first
derivative maximum (FDM) and a relative threshold (Cr) avoid this problem. We describe improved methods for
estimating these and other Cq markers and their standard errors, from a nonlinear algorithm that fits growth
profiles to a 4-parameter log-logistic function plus a baseline function. By examining six multidilution, multi-
replicate qPCR data sets, we find that nonlinear expressions are often preferred statistically for the dependence
of Cq on log(N0). This means that the amplification efficiency E depends on N0, in violation of another tenet of
qPCR analysis. Neglect of calibration nonlinearity leads to biased estimates of the unknown. By logic, E estimates
from calibration fitting pertain to the earliest baseline cycles, not the early growth cycles used to estimate E from
growth profiles for single reactions. This raises concern about the use of the latter in lengthy extrapolations to
estimate N0. Finally, we observe that replicate ensemble standard deviations greatly exceed predictions, im-
plying that much better results can be achieved from qPCR through better experimental procedures, which likely
include reducing pipette volume uncertainty.

1. Introduction

The goal of quantitative polymerase chain reaction (qPCR) is, as
advertised, the quantification of small amounts of targeted genetic
material through amplification to easily detected quantities [1].
Quantification may be relative to a chosen reference substance [2,3] or
absolute. The standard approach for the latter is through calibration
procedures that compare the unknown with results for the same sub-
stance measured at a range of known concentrations appropriate for the
unknown [4–6]. Fig. 1 illustrates typical qPCR growth profiles obtained
at 5 concentrations spanning 4 orders of magnitude in template copy
number. Calibration with such data, like all classical calibration

procedures, involves identifying some property that depends mono-
tonically on the concentration, fitting measurements of that property to
a suitable response function, z= f(x), and then solving the equation,

z0= f(x0), (1)

for the unknown x0, where z0 is its measured response. Although ana-
lysts prefer linear response functions, there is no requirement for such,
and calculation of x0 and its uncertainty is a simple computational task
for any f(x) [8,9]. In qPCR the chosen calibration relationship is Cq vs.
log(N0), as illustrated in Fig. 2 for the data in Fig. 1. This choice is based
on the exponential growth equation that is assumed to hold throughout
the baseline region and into the early growth phase,
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y= y0 Ex, (2)

where E is the amplification efficiency (AE), ranging from E=1 (no
amplification) to E=2 (perfect doubling), x is the cycle number, and y
represents the fluorescence signal, or under the assumption that target
fluorescence is proportional to its amount, the number N of amplicons.
Accordingly, y0 represents this quantity in cycle 0, before amplifica-
tion. Cq is defined as the cycle, x= Cq, where growth reaches a defined
threshold intensity, yq. Thus a plot of Cq vs log(N0) is expected to be
linear with slope –1/log(E). Locating the unknown on this curve by its
Cq determines its N0.

Although this threshold definition of Cq (often designated Ct) has
been most widely used [1,10], it is clear from the plateauing behavior
in the growth profiles that Eq. (2) cannot hold throughout the growth
region. Recognizing this, most workers have taken yq as a level near
baseline, where it is hoped that Eq. (2) remains valid. However, when
the profiles have constant shape, as appears to hold in Fig. 1, the value
of yq is irrelevant, as different choices simply displace Ct by constant
amounts [7]. The same holds for other markers, like the first- and
second-derivative maxima (FDM and SDM), and Cy0 (the intercept with
the cycle axis of a line tangent to the growth curve at the FDM) [10].
The issue then becomes, which of these can be estimated most precisely
from the data and also yield a smooth dependence of Cq on log(N0). It
has been noted that Ct, with yq set near the baseline, actually gives the
poorest estimation precision, exacerbated by the practice of separately
estimating the baseline level [11,12]. Further, Ct is subject to additional
precision loss when the data vary in scale [13,14], as is evident from the
varying plateau levels usually observed for the profiles, including those
in Fig. 1. The other common markers – FDM, SDM, and Cy0 – are scale-
independent, thus free from this problem, as is also the relative
threshold Cr, which is obtained by setting yq to a designated fraction of
the plateau level [12].

The least-squares (LS) fit results in Fig. 2 show that indeed the
different markers are statistically comparable for the data in Fig. 1.
However, the linear response appears to be statistically inferior to
quadratic analysis, from which we would conclude that E is con-
centration dependent. In fact this conclusion is an incorrect con-
sequence of our use of unweighted LS to fit these data, which have
excess imprecision at high dilution (low N0) from unavoidable limita-
tions of Poisson statistics [11]. Such effects can be strong enough to
permit quantitative estimation of N0 directly from the statistical var-
iance in Cq [12,15]. When the data are refitted with appropriate
downweighting for the Poisson contributions to the Cq variance (details
below), the quadratic contribution is statistically undefined, and
E=1.916(6).

The realization that the slope in Fig. 2 is determined by E has led to
efforts to estimate E from analysis of single-reaction (SR) data, in
combination with which a single calibration constant relating y0 to N0
could permit absolute determination of the unknown N0. Most SR
methods employ Eq. (2) on data limited to the early growth region [10],
while at least two focus directly on y0 [16,17] but tacitly assume that
E=2 in the baseline region [11]. For commonly encountered growth
profiles like those in Fig. 1, E must decline from E0 (∼2) in the baseline
to 1 in the plateau, but there is little direct evidence on just how this
decline occurs in the late baseline region.1 The "mechanistic" models of
[16] and [17] predict reasonable decline of E in this region, as does the
model [18,19],
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where ymax is the limiting growth and E0 the initial AE. The second
expression is the logistic model and is obtained by neglecting y0 in the
denominator of the first; x1/2 is the half-intensity point and the FDM,
with b= ln(E0) and ymax/y0= E x

0 1/2.
When data are generated with the model of Eq. (3) (designated LRE

in [19]) and then analyzed using Eq. (2), there is an unavoidable
playoff between imprecision and bias: When enough cycles are included
to permit adequate precision, E has already declined enough to give
significantly low-biased estimates [12]. If there is real variation of E
with cycle number, there is another problem with SR methods of esti-
mating it. By simple logic [13], the calibration-based E applies to the

Fig. 1. qPCR fluorescence curves for lambda gDNA for 10-fold dilution from
188,000 copy numbers to 19, as recorded in triplicate by Rutledge and Stewart
[7]. Inset shows positions of Cq markers for one reaction at highest con-
centration. With the threshold set at 12% of the (plateau – baseline) difference,
the relative threshold Cr coincides with Cy0 within 0.1 cycle.

Fig. 2. Results of LS fits of 4 Cq markers from growth profiles in Fig. 1 to linear
relation (right) and of FDM to quadratic centered at log(N0)= 3 (top). The
quadratic coefficient in the latter is statistically significant in ad hoc fitting,
having magnitude larger that its SE. Note close agreement in slopes (giving E)
and in "Chisq" values (sums of squared residuals) for linear fits. Cq values were
obtained from log-logistic fits of 24-point regions of profiles centered near the
half-intensity points.

1 The E (E0) that appear here are apparent amplification factors, relevant for
data analysis. The true AE for the target amplicon may not equal E, especially in
the plateau region, where complications from effects like limited dye and am-
plicon reannealing can lead to a decrease in the fluorescence signal.

J. Tellinghuisen and A.-N. Spiess Biomolecular Detection and Quantification 17 (2019) 100084

2



earliest cycles: Comparing two starting concentrations, ΔCq is the
number of cycles for N in the more dilute sample to equal N0 for the
more concentrated, after which they grow together. From this, log
(E)= log(R)/ΔCq, where R is the dilution ratio. By extension a dilution
series estimates E for just the earliest cycles in the most dilute samples
to cycle 0 in the most concentrated. Thus, if E varies with cycle number,
even a correct estimate of it from early growth cycles could vary sub-
stantially from its value in the early baseline cycles.

In the present work we describe an improved algorithm for fitting
growth profile data to a log-logistic function with asymmetry parameter
[20] plus a baseline function containing 1–4 parameters; and we use it
to estimate the 4 common scale-independent Cq markers and their
standard errors. We also use its estimates of the SDM and the plateau
amplitude to facilitate a second estimation of Cr (which we label Cr,x),
by fitting just cycles up to the SDM to Eq. (2) plus a baseline function
[15]. We use these codes to compare the performance of the several
markers on six qPCR datasets having replicates at multiple dilutions
suitable for calibration fitting, and we ask whether the commonly
adopted linear relation is statistically justified. In most cases we find
that it is not, implying that E does depend on concentration, and in turn
that estimates of N0 based on linear calibration are biased. The mag-
nitude of such bias may or may not be of practical concern, depending
on circumstances. In [1] the authors found that estimates of E can vary
with instrument and reaction parameters; here we find that even for a
given instrument and fixed reaction conditions, E can vary with N0 as
well as with the choice of Cq marker. These results bear out earlier
indications [13] for the large 94× 4 Reps technical data set from [10].
Those results were obtained using the Cq estimates provided by the
authors of the methods compared in [10]; our present algorithm yields
Cq estimates that match or exceed the best of those in their statistical
performance.

One observation from our comparisons has important practical
significance: Ensemble standard deviations (SDs) for Cq typically exceed
the LS parametric standard errors (SEs) by factors of 2-5. The SEs are
based on the fit model and the random error in the profile data, and
they should correctly predict the ensemble SDs if such data error is the
only source of dispersion in the estimates [12,21]. The excess dispersion
in the ensemble estimates thus means there are other sources of ex-
perimental error, which likely include pipette volume uncertainty. It
follows that qPCR is capable of much higher precision through better
experimental procedures.

2. Mathematical background and methods

2.1. Amplification efficiency from calibration fitting

Fitting data to a straight-line response function is perhaps the most
common exercise in data analysis and needs little review. Here the fit
relation is

Cq= a+ bx= a – x/log(E), (4)

where x= log(N0). The second expression in Eq. (4) represents a non-
linear LS (NLS) fit, with the advantage of yielding the parametric
standard error (SE) directly from NLS programs that provide SEs. Al-
ternatively, the SE in E can be obtained from that in b using error
propagation [11,22],

σE= E ln(10) σb/b2. (5)

The extension of Eq. (4) to polynomials of order 2 and higher is
straightforward and remains a linear LS fit,

Cq= a+ bx+ cx2+…, (6)

However, the slope is now a function of x, involving b and all
higher-order fit parameters. On the other hand, by recentering the fit
about x0 (= selected log(N0)), we obtain a statistically equivalent fit

where b is the slope at x0 [22], so E and its SE can be obtained as a
function of x0 by just changing x0 in the expression,

Cq= a+ b(x – x0)+ c(x–x0)2+…= a – (x–x0)/log(E)+ c
(x–x0)2+…, (7)

Calibration fitting in qPCR is almost universally done with neglect
of weighting, which tacitly assumes the data have constant uncertainty.
This assumption is incorrect when the calibration data extend to N0
small enough to make Poisson uncertainty in N0 significant – typically
N0≈ 100 or smaller [13,15] – in which case weighted fitting is called
for. As is described below, one can often get reliable estimates of the Cq
variance from all other effects by analyzing the replicates at the higher
concentrations. The Poisson contribution for small N0 is approximately

= E N[(ln( )) ] ,C
2 2

0
1

q,Pois (8)

and can be added to the estimated variance from other effects to give
the total variance. The weights wi are then taken as the reciprocals of
the total variances.

2.2. The log-logistic model with asymmetry

The log-logistic model is a sigmoidal alternative to Eq. (3), and in
the 4-parameter form [20],

LL4(x)= ymax [1+ (g/x)h]−p, (9)

it can accommodate some asymmetry. With p=1, it is nearly sym-
metrical, and g≈ x1/2 (≈ xFDM). We have found that this form, in
combination with suitable baseline functions, can yield Cq values that
are statistically at least as precise as those values obtained by any of the
other methods reviewed in [10]. We achieve this performance by fitting
typically 20–30 cycles in the transition region; and we evaluate all 4
common Cq markers at a time: FDM, SDM, Cy0, and relative threshold
Cr, all of which are scale-independent.

The FDM is obtained by setting the second derivative of LL4(x)= 0
and solving for x= xFDM. Similarly, the SDM is obtained by setting the
third derivative= 0. Cy0 is defined [23] as the intercept with the cycle
axis of a straight line tangent to the growth curve at the FDM. Cr is
obtained by first estimating the plateau level ymax and then solving
LL4(Cr)= r ymax, with r a specified fraction, typically about 0.15. In
fitting data to Eq. (9), there is always at least one additional parameter
for the baseline, and we have used as many as four, giving from 5 to 8
adjustable parameters (see below).

The expression for the FDM is

xFDM= g/Z(1/h), (10)

where Z=(h+1)/(hp – 1). We can obtain the FDM and its SE directly
from the fit by replacing g with xFDM, whereupon the denominator in
Eq. (9) becomes Dp with

= + +D h
hp

x
x

1 ( 1
1

)( ) .hFDM

(11)

This substitution can be useful, because xFDM is both more precise
and easier to estimate visually than g for curves with significant
asymmetry. Cy0 is given by

= +y x Z
hpZ

C 0 (1 (1 ) ),FDM (12)

and the SDM is obtained by solving the quadratic equation in
u (=(g/xSDM)h),

Au2 + Bu+ C=0, (13)

with A=(hp–1)(hp–2), B=(h+1)(4–h–3hp), and C=(h+1)(h+2).
For asymmetrical growth profiles, there are actually two different

modes on which the fits can converge: with h > 0 and h < 0.
Correspondingly, the roles of the parameters for baseline and plateau
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are reversed, with ymax becoming negative; and p changes from>1 to
0< p < 1. The two modes converge for p=1 but are not equivalent
otherwise, typically showing a factor of ∼2 difference in fit variance.
We examine both modes below. Note that there are no parameters in
this model for predicting E0 in the baseline region, and in fact the
calculated values of E(x), from LL4(x+1)/LL4(x), are not physically
reasonable outside of the growth region. Thus, estimating E0 with the
LL4 model in SR analysis requires some prescription for choosing the
appropriate x at which to assess this ratio. We do not pursue this matter
further in this work.

As mentioned earlier, we have found that the Cq markers are ob-
tained with optimal precision by limiting the fit to just 20–30 cycles
centered on the growth region. We designate the fit region by first lo-
cating the approximate SDM (SDMprx) from second differences, as done
by Boggy and Woolf [16], and then specifying a start cycle
x1= SDMprx – Δ1 and end cycle x2= SDMprx+Δ2. By trial and error,
we find best results with Δ1=8–12 and Δ2= 12–16, depending on
dataset.2 The Cq estimates do depend somewhat on x1 and x2, and in
cases where the true SDM falls near a half-cycle, SDMprx can vary with
reaction in a set of replicates, giving excess Cq variance from the var-
iation in cycle range. To reduce such effects, we can use code versions
that permit specifying absolute x1 and x2, which would normally be
employed after discovering results that show varying ranges among
replicates. With all replicates analyzed with the same x1 and x2, the
precision is not strongly sensitive to these values, with variance typi-
cally changing by only a few percent when x1 and x2 are changed by
± 1.

By using the LL4 estimates of ymax and SDM, we are able to estimate
Cr a second way: fit just cycles up to the (rounded) SDM to the ex-
ponential growth law of Eq. (2) plus a suitable baseline function (dis-
cussed below). This threshold, which we label Cr,x, is a 1-step relative
version of the FPLM method [10,24] and was used previously to esti-
mate absolute copy number from the Cq variance [15].

2.3. Baseline functions

It is common practice to estimate the baseline from a selected range
of early cycles and then subtract it from the profile to yield the growth
curve. As compared with simultaneous estimation of baseline and
growth parameters from a single nonlinear LS fit, this 2-step procedure
is statistically inferior, yielding biased Cq estimates that on average
amount to a 3-fold increase in Cq variance [12]. The 1-step NLS fit is
easy to implement, with

y(x)= bas(x)+ LL4(x), (14)

being the fit model for the LL4 growth curve. The choice of function for
bas(x) can depend on the range of early cycles included in the fit. We
have commonly used linear and quadratic functions of x, in which we
judge the need for parameters beyond the minimal single constant by
their statistical significance in the fit: Any parameter having SE greater
than its magnitude is statistically undefined in ad hoc fitting [25]. For
data like those in the 94× 4 Reps dataset from [10] that exhibit "sa-
turation" baseline behavior, we have used the exponential plateau
function [10,15],

bas(x)= a – q exp(–ρx), (15)

sometimes with an added linear term. Saturation behavior manifests as
a rise in the first few cycles, so if these are omitted from the fit range, a
linear or quadratic bas(x) may perform as well.

2.4. Weighted least squares

In linear LS it is rigorously true (but not widely appreciated) that
minimum-variance parameter estimates are obtained if and only if the
data are weighted inversely as their variances. The same is normally
assumed to hold in nonlinear LS but cannot be proved, in part because
many NLS estimators do not even have finite variance. Still, Monte
Carlo simulations for common nonlinear models have supported in-
verse-variance weighting [21,26]. This issue arises in the LS fitting of
qPCR data in two situations already mentioned: the analysis of reaction
profile data by whole-curve fitting, and the fitting of Cq vs log(N0) for
calibration [13].

Considering first the fitting of growth profile data to sigmoidal
models, most such data are collected on instruments that monitor
fluorescence. A major source of random error or noise in optical data
has long been referred to as "flicker" [27], describing the fluctuations in
the light source. The result is noise proportional to signal; for example,
1% fluctuation in the intensity of the light source produces 1% fluc-
tuation in the detected signal (σy,p= σpy). However, as the signal de-
creases, the limiting noise becomes a constant related to the properties
of the detection instrumentation. The sources are considered in-
dependent, so their variances add, giving a simple relation that holds
well for a number of different experimental techniques [28,29]:

σy2= σ02+ (σpy)2. (16)

The main effects of neglecting weights are reduced precision of
estimation and incorrect parametric SEs; however, the magnitude of
such losses may be tolerable when the weights vary by less than a factor
of 10 over the data set [8,30]. This, for example, appears to be the case
for the 94×4 Reps data from [10], where the baseline intensity level is
about half that in the plateau region. However, it does not hold for most
qPCR data we have analyzed, and is borderline for those in Fig. 1,
where plateau levels are about 3 times baseline levels.

The conditions requiring weighting in calibration fitting of Cq vs log
(N0) were discussed in Section 2.1. When the range of N0 includes va-
lues small enough to add Poisson scatter to the results, the increased
variance dictates a reduced weight for the relevant N0 values. The
Poisson variance contribution is predictable and was given in Eq. (8).

In assessing the quality of LS fits, an important metric is χ2 [13],
defined as the sum of weighted squared residuals, Σ wiδi2, where δi is
the difference between observed and calculated yi. If the data variances
σyi2 are known and the wi are taken as their inverses, the expected value
of χ2 is the number of statistical degrees of freedom ν= n–p, where n is
the number of fitted values and p the number of adjustable parameters.
Accordingly the expected value for the reduced χ2 (RCS, χ2/ν) is 1. The
standard deviation (SD) of the RCS is (2/ν)1/2, so that, e.g., the 90%
range is 0.39–1.83 for ν=10, narrowing to 0.66–1.39 for ν=40 [25].
Too-high values of RCS result from some combination of optimistic
assessment of the data error and a poor fit model, while too-low mean
pessimistic data errors. In unweighted fitting the data are tacitly as-
sumed to have constant variance and the wi are taken as 1; RCS then
becomes an estimate of the data variance σy2. When comparing fit
models, smaller χ2 indicates a better fit.

2.5. Computations

We have used the KaleidaGraph program (Synergy Software) for
examining data and running preliminary analyses, also for preparing
the illustrations in this work. For processing the multireplicate data sets
efficiently, we have devised FORTRAN (Microsoft) codes that are si-
milar in structure to the NLS routine provided long ago by Bevington
(program 11-5, CURFIT) [25]. The different Cq markers are evaluated
as detailed above, and their SEs are obtained by error propagation [22].
The NLS fits require initial values for the parameters but are not very
sensitive to these, making it possible to achieve successful convergence

2 This specification can as well be tied to the approximate FDM from first
differences, in which case Δ1 and Δ2 increase and decrease by ∼2 cycles, re-
spectively, giving a range that is approximately symmetric about the FDM.
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for all but at most a few experiments in a multireplicate data set in a
first attempt, with success on problem experiments in a second pass.

User-friendly versions of these programs are planned for later dis-
tribution; similar codes in R are already available [20], and modifica-
tions that permit most of the computations described here can be ob-
tained at https://github.com/anspiess/qPCR-algorithms.

3. Results and discussion

3.1. Performance tests

Fig. 3 illustrates the two convergence modes for the LL4 model on
one of the reactions in the 94× 4 Reps dataset from [10]. Note the
negative values for ymax and h in alt mode and the reversed role for a
from baseline to plateau level. For this example, the slope b is statisti-
cally insignificant in normal mode and the quadratic coefficient is in-
significant in alt mode. The significantly smaller Chisq (χ2) value in alt
mode is characteristic of all reactions in this dataset.3 As has been noted
above, unweighted NLS suffices for these fits, because the data noise
varies by only a factor of ∼2 from baseline to plateau. (Other reasons
are discussed below.) The close agreement in the two estimates of the
FDM holds in general for all Cq markers except the SDM, where there is
systematic difference of about 0.2 (alt mode higher). This effect and the
different χ2 values presumably relate to differences in how the asym-
metry is handled in the early growth region vs the approach to plateau
in the two modes.

In [13] (Table 1 and Fig. 3) were compared the precisions of esti-
mation of Cq for each of the 4 concentrations in this dataset for the 7
methods reviewed in [10]. The minimum-variance results came from
the Miner method [31] for 3 of the 4 concentrations, with Cy0 slightly
bettering it for the most dilute samples. The closest to Miner was 5PSM
[20], in which the LL4 model was employed but with a single baseline
parameter and fitting all cycles. As we have noted, the present version
of this model gives ensemble precisions equaling or bettering the best in
[10]. Cy0 and Cr gave generally smaller ensemble SDs across the con-
centration range than FDM and SDM, with the two modes being com-
parable in all cases. Fig. 4 compares the Cy0 ensemble SDs with the
smallest from [10] and with Cr,x estimates obtained in [15] using Eq.
(15) for the saturation baseline. Also shown in Fig. 4 are the rms
averages of the SEs predicted by the individual fits for Cy0 in alt mode

and for the Cr,xmodel. The point of this comparison is to emphasize that
the ensemble SDs display excess dispersion from effects other than data
noise. If the latter were the only source of variability, we would expect
the ensemble SDs to agree with the parametric SEs [21]. As already
noted, the excess dispersion at small N0 is from Poisson scatter. At large
N0 Poisson scatter is negligible, and we have suggested that pipette
delivery volume error is the main source of excess dispersion [12,15].
Reasons for the much smaller predicted SE for the Cr,x model are dis-
cussed just below. The better fit quality for LL4 in alt mode is re-
sponsible for its predicted SEs being ∼25% smaller than those for
normal mode.

The observation that the ensemble SDs significantly exceed the
parametric SEs means that the LL4 model used to estimate the Cq
markers is likely adequate for this task, thanks to the excess dispersion
from sources other than data noise. However, neither the LL4 model nor
a similar 4-parameter version of Eq. (3) accurately represents the fitted
data, as is clear from the pronounced systematic component in the fit
residuals (see graphic and Supplemental Fig. S-5 in [12]). The improved
fit quality in alt mode reduces but does not eliminate these effects. On
the other hand, systematic residual trends practically vanish for the Cr,x
model, because only a few cycles in the growth region are included in
the fits. This leads to an estimated σy a factor of 3 smaller than that from
the LL4 fits, and this is a major contributor to the smaller parametric SE
for this model in Fig. 4. Poisson dispersion for small N0 is an un-
avoidable mathematical reality; however, the excess dispersion at large
N0 in these data is presumably reducible through better experimental
techniques, in which case better fit models will be needed to take ad-
vantage of the improved precision in whole-curve fitting. The low rms
SE for Cr,x represents the best that can be hoped for optimal experi-
mental data; its factor-of-4 improvement over the ensemble SDs at large
N0 represents a 42 efficiency improvement, meaning one reaction would
be the statistical equivalent of 16 replicates.

As we have noted, one source of excess dispersion is correctable
through data analysis alone, namely the effect of scale variability on the
absolute threshold Ct. Fig. 5 compares the ensemble SDs for Ct and Cr,x,
with yq and r chosen to make the average Cqs about the same. For the
largest two N0s, the variance ratios are 2 and 5; these would have been
even larger had we used the standard practice of separately estimating
the baseline and subtracting before assessing Ct [12]. The large differ-
ences stem directly from the pronounced scale variability for these data
[13,14].

Fig. 6 shows calibration fit results for this dataset. The weights for
all markers at each concentration were the same as used to produce
Fig. 5 in [13], so the low Chisq values (cf ν ≈ 370) are another in-
dicator of the higher precision of the present Cq estimates. The results
resemble those in Fig. 4 from [13] in showing a statistically insignif-
icant cubic coefficient for Cr. This parameter was also insignificant for
FDM, was barely so for Cy0, and significant by about 2 σ for SDM.
Results for Cq from alt mode were very similar, with Chisq smaller by as
much as ∼25 for SDM, higher by ∼5 for FDM. Fig. 7 shows that the E
estimates from the quadratic fits are statistically consistent for all
markers. The increase in E with concentration is solid, but at the highest
concentration, all Es exceed the physical limit of 2.0 by more than 1 σ.

3.2. Weighted fitting

The need for weighted LS arises in two situations, already noted: In
the estimation of Cq by fitting whole-curve data when the scatter in the
plateau region greatly exceeds that in the baseline region; and in cali-
bration fitting when the Cq range includes N0 values small enough
(< 100) that Poisson scatter contributes significantly to the Cq var-
iance. Using the data behind Figs. 1 and 2, we show how to derive the
needed weights.

Fig. 8 illustrates the estimation of the variance in the baseline and
plateau regions for the curves shown in Fig. 1. The approach is to use
the scatter about a smooth approximation of the data in regions where

Fig. 3. NLS fits of first reaction at highest concentration in 94× 4 Reps dataset
[10] to LL4+ bas(x)= a+ bx+ cx2, in normal (upper) and alternate (alt)
modes. The quantity D in the denominator of LL4 is as defined in Eq (11). Chisq
is the sum of squared residuals for these unweighted fits.

3 This behavior is not general. An examination of representative data from the
profiles shown in Fig. 1 and from two additional datasets discussed further
below showed χ2 for alt mode higher in all 16 cases, by factors from 1.2-4.4.
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they vary little in magnitude. For that approximation, here we use
polynomials of 4th order fitted by unweighted LS. From the discussion
near the end of Section 2.4, the estimated variance is Chisq/ν, with

ν= n – 5, giving estimated σy2= 173 and 1845, respectively, for the
baseline and plateau regions from the included fit results. Note that all
polynomial parameters are statistically significant here for the baseline
fit (B), since all SEs are less than the parameter magnitudes; however,
this is not true for the plateau data, and the indicated reduction of the
fit order decreases that variance estimate to 1554.

Fig. 9 shows the fit of the 15 baseline and 15 plateau variance es-
timates from these data to Eq. (16). This is a weighted fit, since variance
estimates have error proportional to (2/ν)1/2, i.e., σ(σy2)= (2/ν)1/2 σy2.
The resulting χ2 is statistically reasonable −38 as compared with
ν=28. The data here are not sufficient to confirm that Eq. (16) is better
than other variance functions (VF); however, this function works well
in many situations and VFs are anyway not needed with great precision
to yield near-optimal fit results when they are subsequently used in
weighting. An alternative to the fit shown in Fig. 9 is the fit of ln(σy2) to
ln (a2+ (by)2), in which the weighting is simpler [28]: σ(ln(σy2))= (2/
ν)1/2. Since ν varies with estimate here, weighted fitting is still required.

Using this VF to compute weights (inverse variances), we fitted the
15 profiles to Eq. (14), obtaining results for the 5 Cq markers sum-
marized in Table 1. To do the calibration analysis of Fig. 2 properly, we
need to include weights for Cq to compensate for the decreasing pre-
cision of these with decreasing N0 from Poisson scatter. Variances es-
timated from just 3 values are inherently very uncertain: (2/ν)1/2= 1,
meaning 100% relative SD. However, using the estimates collectively,
we obtain adequate results by assuming the Cq variance is the sum of
the predictable Poisson contribution and a constant, as shown in
Fig. 10. When weights computed from these variance functions are used
in the calibration fits of Fig. 2, there is no statistically significant
nonlinearity for any of these Cq markers; and they yield virtually
identical E: 1.918 for Cr, 1.916 for the others.

3.3. Other multireplicate datasets

In addition to the two datasets already discussed, from [7] and [10],
we have analyzed data from Rutledge and Cote [5] (20 replicates at
each of 6 concentrations), Guescini et al. [23] (12 reps at 7 con-
centrations), Lievens, et al. [32] (18×5), and Karlen et al. [33] (FN,
15× 4+12). Of these, the Rutledge and Cote data showed only mar-
ginally significant quadratic coefficients for just two of the 5 Cq mar-
kers, leading to an increase in E from 1.90(1) to 1.93(1) from the most
to least concentrated samples. Linear fits gave Es spanning the narrow

Table 1
Cq values obtained for 3×5 data from Rutledge and Stewart [7] by fitting to the LL4 model with a linear baseline function (Eq. (14)). Cycles in the indicated range
(c1–c2) were fitted, with values inverse-variance weighted using the variance function from Fig. 9.a

N0 c1–c2 RCSb FDM SDM Crc Cy0 Cr,xc,d

188,000 7–30 0.826 18.408 (22) 16.420 (28) 15.549 (23) 15.457 (20) 15.442 (30)
7–30 1.325 18.447 (28) 16.493 (37) 15.525 (30) 15.482 (25) 15.373 (38)
7–30 0.96 18.444 (24) 16.497 (31) 15.518 (25) 15.481 (21) 15.402 (38)

18,800 10–33 1.359 22.014 (28) 20.052 (37) 19.066 (31) 19.030 (25) 18.972 (41)
11–34 1.013 21.983 (24) 20.025 (31) 19.056 (27) 19.014 (23) 18.984 (27)
11–34 1.16 21.972 (26) 20.011 (34) 19.112 (29) 19.039 (25) 18.934 (27)

1880 15–38 0.845 25.408 (22) 23.441 (29) 22.515 (25) 22.454 (22) 22.437 (29)
14–37 1.028 25.553 (24) 23.587 (31) 22.609 (27) 22.570 (22) 22.544 (27)
15–38 0.752 25.470 (20) 23.528 (27) 22.562 (23) 22.523 (20) 22.422 (27)

188 18–41 1.741 29.196 (31) 27.232 (40) 26.306 (35) 26.247 (28) 26.211 (21)
18–41 1.501 29.073 (29) 27.109 (38) 26.160 (34) 26.111 (28) 26.097 (23)
19–42 1.41 29.376 (28) 27.376 (37) 26.506 (32) 26.415 (28) 26.471 (37)

18.8 21–44 1.252 32.407 (27) 30.455 (35) 29.558 (31) 29.491 (25) 29.514 (28)
21–44 1.558 31.987 (31) 30.040 (40) 29.165 (36) 29.090 (29) 29.028 (26)
22–45 1.14 32.530 (25) 30.585 (34) 29.687 (30) 29.622 (25) 29.558 (19)

a Figures in parentheses are parametric standard errors, in terms of final displayed digits; e.g., 18.408 (22) means SE= 0.022.
b Reduced chi-square.
c Obtained for yq=0.12 ymax.
d Obtained fitting cycles 5-c2 to Eq. (2) plus a linear baseline, with c2= 15, 19, 23, 26, 29 for the 5 concentrations, respectively.

Fig. 4. Standard deviations/errors for each of 4 concentrations in the 94× 4
Reps data [10]. Ensemble SDs at top from present estimates of Cy0, compared
with best from [10] and Cr,x estimates from [15]. At bottom are the rms (root-
mean-square) averages of the parametric SEs from the individual fits, for Cy0
using LL4 model in alt mode, and for Cr,x. Connecting lines are just for display
purposes.

Fig. 5. Ensemble variances for absolute and relative threshold in the 94× 4
Reps data. For Ct, yq=700; for Cr,x, r=0.18. Estimates for both were obtained
by fitting to Eq. (2) plus the bas(x) function of Eq. (15). Error bars represent one
SD. The average Ct values slightly exceed those for Cr,x, by from 0.07 to 0.30.
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range 1.902(3) to 1.916(3). As discussed below (and see online Sup-
plement for more detail), the other three datasets showed statistically
significant nonlinearity in calibration fits. The data themselves, some of
which are no longer downloadable from the journal web sites, can be
obtained at www.dr-spiess.de.

For the other three datasets, at least some Cqmarkers gave statistical
significance for all 5 parameters in a fit to a quartic polynomial, and the
Lievens data did so for all 5 markers. However, drawing reliable con-
clusions about the derivatives (hence E) from such high-order fits is
risky, as the fit functions typically diverge from the fitted points rapidly
outside their range. Also, the polynomial representation is just a means
to an end, and typically other 4- and 5-parameter functions can give
comparably small χ2 and yet yield substantially different AEs.
Quantifying such "model error" requires examining other functions in
trial-and-error fashion, a possibly demanding task. Here our purpose is
less the precise determination of E than seeing whether it varies with N0
and how that might affect calibration results. Restricting our

consideration to just cubic (4-parameter) and lower-order polynomials,
we find that the Guescini and Karlen data require quadratic calibration,
while the Lievens data justify cubic representation.

Baseline and plateau variance estimates for the Lievens data [32]
indicated a significant weighting range (∼500), but in fact subsequent
calibration fitting of the Cqs showed little difference for the weighted
and unweighted estimates obtained by fitting with Eq. (14). This result
is another manifestation of the effects discussed in connection with
Fig. 4, namely that proper weighting doesn't help much when the en-
semble statistics are dominated by factors other than the random noise
in the profile data. A survey of the Cq estimates led to the exclusion of 8
reactions from further computations (see Supplement). The Cq variance
analysis analogous to that in Fig. 10 is shown in Fig. 11. Here the
samples decrease in concentration by factors of 5 from 105 templates in
the most concentrated to 160 in the least. However, at low N0 the Cq
variances for all markers were higher than predicted, so we added a
correction factor for N0 in the fit model, yielding values ranging from
0.37 for SDM to 0.61 for Cr,x. These values imply that N0 in the most
dilute sample is 59–98, in rough agreement with the results from a si-
milar analysis in [15]. To obtain a common variance function for all Cq
markers, we set the correction factor at its average (0.42) and refitted,
obtaining an average for the constant A=0.0005. This VF was then
used to weight the Cqs in the calibration fitting, yielding the cubic-
based E results illustrated in Fig. 12. Although the case for N0-depen-
dence in E is solid, the several Cq markers give AEs that often differ by
more than their combined SEs. This statistical inconsistency can be
taken as a rough indicator of model uncertainty, since the fit quality
(χ2) does not vary strongly.

The ranges of data error in the growth curves for the Guescini [23]
and Karlen FN data [33] were about 30 and 100, respectively, or en-
ough to warrant weighting in the fits to extract Cq. However, here again
visual surveys of the Cq estimates showed patterned variation that
greatly exceeded the differences between weighted and unweighted
estimates, indicating that the ensemble Cq variances are dominated by
effects other than data noise (see Supplement). Indeed, for the Karlen
data, the highest Cq variances occurred for the most concentrated

Fig. 6. Calibration fits of Cq estimates
for 94×4 Reps data, weighted using a
common set of inverse ensemble var-
iances. At top are linear, quadratic, and
cubic fits of the Cr estimates to poly-
nomials in (x –1.5), showing that the
cubic coefficient (d) is not statistically
defined but that the quadratic one (c)
is. For comparison, the quadratic fits of
Cy0, FDM, and SDM are included,
confirming that c is statistically sig-
nificant in every case and showing that
all E estimates are statistically con-
sistent at x=1.5.

Fig. 7. Amplification efficiency as a function of concentration, from quadratic
fit results in Fig. 6. Error bars (1-σ) are shown for just Cy0 but are nearly
identical for all 4 markers.
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Fig. 8. Estimating data variance from polynomial fit-
ting, for 4th dilution in 3× 5 data from [7], in plateau
(A) and baseline (B) regions. The estimated variances
are Chisq/(n–5), with n=14 in the plateau region and
22 in the baseline region. Fit results are shown for only
the lowest curve in each panel; Chisq values for the
other curves (open and solid points, respectively) are
27,000 and 14,700 (A) and 1056 and 4080 (B). Note
that none of the parameters in A is statistically sig-
nificant; in fact these data are well represented by a
quadratic function, with little increase in Chisq but an
increase of 2 in ν, giving ∼20% smaller estimated
variances.

Fig. 9. Fit of estimated variances for 3×5 data from [7] to Eq. (16). From
these results, the second term dominates the variance even in the baseline re-
gion.

Fig. 10. Cq variance estimates from replicate values in Table 1, displayed in
logarithmic form, and results from fitting values for each marker to ln
( +A Cq

2
,Pois), where the Poisson variance is given by Eq. (8), with E taken as

1.915. Error bars are shown for Cr only but are the same for all, σ=1. Values of
A range from 0.00015 for Cy0 to 0.0011 for SDM.

Fig. 11. Cq variance estimates from Lievens data [32], displayed and fitted as in
Fig. 10, with E taken as 1.86 and N0= 160 for the lowest concentration. Error
bars shown for Cr,x are representative of the others.

Fig. 12. Dependence of AE on N0 from cubic calibration fits of Cq estimates for
data from [32]. Error bars shown for FDM are comparable for all. χ2 in the
calibration fits ranged from 87 for Cy0 to 112 for SDM (90 Cq values).
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samples, where Poisson scatter is negligible. Thus these data were
weighted in the calibration fits using just ensemble variances in place of
the approach of Figs. 10 and 11 (which was used for the Guescini Cqs).
In both cases a single average Cq variance function was used for all
markers, to permit comparison of their fit qualities through their χ2

values.
As already indicated, both datasets support quadratic calibration

fits, giving slopes linear in log(N0) (but nonlinear AEs, thanks to their
inverse slope exponential dependence). The extreme E estimates are
illustrated in the form of error bands in Fig. 13. In both cases the SDM
estimates (and only these) actually support constant E, though for the
Guescini data, this is because of the anomalously poor quality of the
calibration fit (χ2= 500). In contrast, the Cr fits give lowest or near-
lowest χ2 values and show clear dependence of E on N0.

For these 4 datasets, the precision comparisons resemble those in
Fig. 4, with the greatest disparity between rms parametric SEs and
ensemble SDs for the Karlen data (ratio ∼10) and the least for Rutledge
and Cote (∼2). The SEs are compared in Fig. 14, which shows that Cr,x
is lowest except for the Lievens data, where Cy0 is slightly lower. We
are reluctant to interpret these data any further, as some have clearly
been baselined and may also have been smoothed. For statistical
comparisons like those we are attempting here to be valid, fully "raw"
data are needed [12,34].

3.4. E is not constant; so what?

The consequences of nonconstant E depend on whether and how
this E is used. Thus, if calibration data are fitted to a linear response
(assuming constant E) instead of a quadratic, E is not needed explicitly
and the resulting bias is likely to be minor as long as the unknown is in
the range of the calibration data. For example, with Cr calibration of the
Guescini data (Fig. 13), the greatest in-range bias from linear calibra-
tion (which gives E=1.913) is only –0.04 in log(N0) for the unknown,
which is about half the magnitude of the SE for a single measurement,
and which translates into a 9% undershoot in the estimate of N0. Since

replicates reduce the SE roughly as n–1/2, this bias does become mar-
ginally significant for 4 replicates.4 Alternatively, if E is used to esti-
mate N0 for an unknown relative to a single known (as is the hope
behind SR methods), the error increases with the difference ΔCq for the
reference and unknown. For example a 5% error in E gives a factor
1.05ΔCq (or its reciprocal), which is 2 (or 1/2) for |ΔCq|= 14. (The error
is smaller if 5% is the maximum error in variable E, as for the Guescini
data in Fig. 13). (See Supplement for a fuller discussion of this matter.)

The significant dependence of estimated E on choice of Cq marker
for the last three datasets considered here means that their growth
curves are changing shape systematically with N0. When such changes
occur smoothly, there is little effect on calibration results, an exception
being the SDM for the Guescini data, which gave anomalously large χ2.
For best estimates of the "true" E, the threshold Cr,x might be least
sensitive to such N0-dependent shape changes. Note that even though
this method yields low-biased SR estimates of E [12], its Cq estimates
remain valid for calibration fitting. Note further that the whole-curve-
based threshold marker Cr gave comparable χ2 in calibration fitting and
Es that were statistically consistent with those from Cr,x.

4. Conclusion

A nonlinear LS algorithm for fitting qPCR growth profiles to a 4-
parameter log-logistic function [20] has been modified to incorporate
multiparameter baseline functions and permit fitting selected cycle
ranges, with output of 5 common scale-independent Cq markers and
their SEs. Statistical comparisons for the very large 94×4 Reps dataset
show that the Cq estimates from this routine are comparable to the best
obtainable by other methods. The provision for limiting the fitting to
selected cycle ranges means that whole-curve models can be used even
on data with anomalous profiles, like the “hook” behavior sometimes
seen in the plateau region [35].

The dependence of Cq on log(N0) shows statistically significant
nonlinear behavior for 4 of 6 multireplicate datasets, which means that
the AE is not constant for these. When such data are used in calibration,
neglect of this nonlinearity leads to bias in the estimates of N0; how-
ever, this bias is likely to be tolerably small in most applications. On the
other hand when linear-based E estimates are used in lengthy extra-
polations from a reference sample, the bias can become significant. This
could be important when E is estimated from single-reaction data, be-
cause such estimates (1) focus on the early growth cycles, and (2) ty-
pically are low-biased. Even without the bias, such estimates are per-
force constant and may not well approximate E in the earliest baseline

Fig. 13. 1-σ confidence bands for extreme estimates of E as functions of log(N0)
for data from [23] (lower) and [33] (upper). For the former (84 reactions), χ2

values for FDM, SDM, Cr, Cy0, and Cr,x were, respectively, 100, 500, 109, 183,
and 109; in the same order the χ2 values for the latter (72 reactions) were 80,
79, 62, 66, and 71.

Fig. 14. rms parametric SE values for the different Cq markers, averaged over
all concentrations in each dataset. These SEs generally vary little with con-
centration.

4 The SE for the unknown includes contributions from the calibration curve,
but here that is small compared with a single measurement of the unknown,
thanks to the large number of replicates. In general, optimal calibration is
achieved with about equal numbers of knowns and unknowns, requiring both to
be increased together to best increase precision.
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cycles, for which Cq calibration is relevant.
In Cq calibration fitting, weighting is important anytime the data

include dilutions where Poisson scatter is significant, and may be
needed when other sources of anomalous scatter can be identified in the
Cq data. Individual reaction growth curves generally show much more
scatter in the plateau region than in the baseline cycles, again in-
dicating the need for weighting when fitting to whole-curve models.
However, we find that such weighting makes little difference in the
quality of the Cq estimates, as evidenced from their subsequent cali-
bration fitting. This means that the dispersion in Cq estimates is
dominated by factors other than data noise. We have suggested that for
concentrations where Poisson scatter is negligible, pipette volume un-
certainty may be the main such factor [12,13,15] – a notion that has
also received attention in more recent work by de Ronde et al. [36]. The
good news: qPCR is capable of much better precision with experimental
procedures that reduce such operational uncertainties. A cautionary
note is in order here. We have attributed the variance discrepancy to
excess ensemble variance, which assumes that the fitted data are truly
raw. There are indications that some qPCR data have been smoothed
before being reported. Such smoothing can lead to falsely precise
parametric SEs, making the latter the source of the variance dis-
crepancy [12,34]. There is no easy way to get reliable statistics by fit-
ting smoothed data, so qPCR instrument makers should ensure that the
raw data are accessible, and users should use these data in any fitting.

Which Cq marker is "best"? Using χ2 from the calibration fitting as
the goodness metric, the best performer varies with dataset, as shown in
Fig. 15, where the values for each dataset have been normalized to the
average for that dataset. SDM is somewhat poorer than the others, even
when the anomalously high χ2 for the Guescini data is excluded. Cy0 is
best, with mean= 0.87 and low dispersion, σ=0.05. (However, the
low σ is also a statistical quirk, as without the high SDM value, Cy0
would be high for the Guescini data.) Cr,x is close behind Cy0, at
0.90(18); and Cr and FDM are in statistical agreement – 0.94(27) and
0.95(23). In short, with quality routines for estimating them, there is
little difference in performance among the compared Cq markers, with
slightly poorer results for SDM.

The results shown in Fig. 15 are based on actual performance on the
replicate datasets. A possibly more telling answer to the "best Cq"
question is given by the SE comparisons in Fig. 14, because these re-
present what could be achieved without extraneous experimental
sources of variability. As we have noted earlier, all but Cr,x are affected
by limitations in the whole-curve model, as manifested in systematic
trends in the LS fit residuals. Cr,x is much less sensitive to such effects,
because only the first few growth cycles are included in the fitting. This
restricted cycle range also means that weights will probably never be
needed in these fits, while they are often warranted in whole-curve
fitting and will make a difference there when data noise is the only
source of variance. It is for these reasons that we chose Cr,x in our
method of estimating N0 from Cq variance [15].
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