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M yocardial infarction (MI) remains an enormous
problem confronting society, representing a leading

cause of cardiovascular mortality and a prevalent cause of
heart failure. Cardiovascular magnetic resonance (CMR) is
emerging as a versatile tool to catalyze our understanding of
this entity. At the population level, CMR epidemiology data
from the Imaging Cardiac Evaluation to Locate Areas of
Necrosis and Detect MI study1 of older community-dwelling
people reveal an enormous burden of MI, demonstrating that
that most MIs are not detected clinically (Figure), perhaps
related to variation in the symptoms that patients may
experience.2 These striking data that used the late gadolinium
enhancement (LGE) CMR technique initially described by Kim
and colleagues3 underscore the need for continued vigilance
and further investigation into the prevention of MI, the
detection of MI, and the specific mechanisms of injury. While
the current emphasis on “door to balloon times” with prompt
percutaneous intervention to restore myocardial blood flow
has decreased short-term mortality to the 2% to 5% range,4

other relevant outcomes such as in-hospital heart failure5 and
30-day rehospitalization6 remain prevalent. Collectively, these
observations suggest further opportunities to maximize
myocardial salvage, and a need to improve our understanding
of how therapies can prevent and/or minimize myocardial
damage. Such knowledge may translate into even better
outcomes. Investigators require robust tools for these
endeavors.

At the preclinical and basic science levels, application of
CMR to animal models of disease permit detailed investiga-
tions into the pathophysiology of MI. Cine imaging with CMR
permits accurate measures of left ventricular mass, volumes,
and ejection fraction. With the addition of intravenous
gadolinium–based contrast agents that are inherently extra-
cellular for viable cells, LGE identifies irreversibly injured
tissue by visualizing the contrast that passively diffuses into
(1) necrotic myocytes that cannot maintain their membrane
integrity or (2) the replacement fibrosis into which the MI
invariably transitions during the chronic phase. Notably, the
LGE technique is perhaps the most rigorously validated
technique to detect and quantify acute and chronic MI.3,7,8 In
fact, CMR with LGE is the only imaging technique for MI that
is validated in an international, multicenter, double-blinded,
randomized trial.7 These CMR techniques render straight-
forward the quantitation of MI mass relative to global left
ventricular mass.

But this parameter of “percent of left ventricular mass that
is infarcted” is not the desired metric to measure myocardial
salvage needed to test the efficacy of a proposed experimen-
tal intervention. For this purpose, the preferred metric is the
MI size divided by the denominator of jeopardized myocardium
supplied by the culprit coronary artery, which reflects the
“area at risk (AAR).” One can therefore define the proportion
of myocardial salvage mathematically as 1–MI/AAR. Assess-
ing myocardial salvage instead of “percent of left ventricular
mass that is infarcted” promises greater statistical power and
fewer animal experiments to demonstrate efficacy of a
proposed intervention. Yet, the AAR is more challenging to
measure than myocardial mass because it requires distin-
guishing unaffected myocardium from injured myocardium
that remains viable.

In this issue of JAHA: Journal of the American Heart
Association, Grieve et al publish a novel and elegant “whole
heart” 3-dimensional method to measure MI size and AAR
ex vivo in rodents.9 Analogous to microspheres, they use iron
oxide microparticles to mark perfused myocardium that
excludes the AAR. The signal loss from T2* decay introduced
by the iron oxide microparticles causes black dots in perfused
myocardium evident on CMR gradient echo images. These
dots effectively depict the delivery of iron microparticles by
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perfusion in vivo, whereas the AAR specifically lacks these
particles. Within the AAR, gadolinium contrast causes bright-
ening of the infarct itself because gadolinium contrast enters
the necrotic myocytes, increasing the local volume of distri-
bution for this contrast agent that is visible on LGE images.
Viable cells exclude gadolinium contrast, showing the viable
myocardium with the AAR. The video provided by Grieve et al
showing progressive cut-away images through the heart in 3
dimensions is impressive and nicely displays their technique.

Their technique provides unambiguous delineation of the
AAR that is primarily based on the absence of perfusion, which
has advantages over other techniques. While T2 or T1
parametric mapping for myocardial edema10—that is, the
tissue response to the impaired perfusion—is useful to
delineate the AAR for large animals and humans, such
parametric mapping is more difficult to translate in rodents
with exceedingly high heart rates where fundamentally
different pulse sequences are required. Moreover, the AAR
that may be apparent initially with in vivo T2 or T1 parametric
mapping might be transient and ultimately disappear ex vivo.

Imaging the AAR provides a tool for investigators studying
the impact of therapy to alter the course of an evolving MI.
For example, the concept of myocardial regeneration with the
use of stem cell therapy for the treatment of MI has drawn
much attention. However, promising initial studies in animal
models of MI11 have failed to demonstrate convincing efficacy
in recent human clinical trials.12,13 We note that many of
these studies in both animals and humans used myocardial
function (regional wall motion or global left ventricular
ejection fraction) or infarction size as the primary outcome.
As investigators continue to refine stem cell therapy proto-
cols, perhaps the ability to measure infarct size relative to
AAR may provide an improved understanding of the effects of

these novel therapies. One would expect that the principles
outlined in the methodology reported by Grieve et al would
extend to large animal models as well.

The iron oxide microparticle AAR technique also introduces
several avenues of investigation beyond myocardial salvage
therapeutics. For example, one can explore how diffuse
myocardial fibrosis14 influences myocardial salvage strate-
gies. Or, one could further validate the usefulness of changes
in myocardial T1 or T2 that has not been universally accepted
as a bona fide measure of myocardial edema.15,16 Finally, one
could also explore the time course of evolving myocardial T1
or T2 changes occurring with variable degrees of ischemia and
reperfusion.

The work by Grieve et al builds on the prior advances in
imaging MI. By specifically imaging the AAR, which is the
preferred denominator for quantifying myocardial salvage, the
iron oxide microparticle AAR technique can catalyze investi-
gations into acute MI therapeutics and develop a deeper
understanding of its mechanisms of disease.
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