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Abstract

Background: Aneurysmal subarachnoid haemorrhage (aSAH) is a devastating event with a frequently disabling
outcome. Our aim was to develop a prognostic model to predict an ordinal clinical outcome at two months in
patients with aSAH.

Methods: We studied patients enrolled in the International Subarachnoid Aneurysm Trial (ISAT), a randomized
multicentre trial to compare coiling and clipping in aSAH patients.
Several models were explored to estimate a patient’s outcome according to the modified Rankin Scale (mRS) at two
months after aSAH. Our final model was validated internally with bootstrapping techniques.

Results: The study population comprised of 2,128 patients of whom 159 patients died within 2 months (8%).
Multivariable proportional odds analysis identified World Federation of Neurosurgical Societies (WFNS) grade as the
most important predictor, followed by age, sex, lumen size of the aneurysm, Fisher grade, vasospasm on
angiography, and treatment modality. The model discriminated moderately between those with poor and good
mRS scores (c statistic = 0.65), with minor optimism according to bootstrap re-sampling (optimism corrected c
statistic = 0.64).

Conclusion: We presented a calibrated and internally validated ordinal prognostic model to predict two month
mRS in aSAH patients who survived the early stage up till a treatment decision. Although generalizability of the
model is limited due to the selected population in which it was developed, this model could eventually be used
to support clinical decision making after external validation.

Trial Registration: International Standard Randomised Controlled Trial, Number ISRCTN49866681.

Background
Prediction research typically aims to predict outcome of
individual patients after the onset of a certain disease,
using prognostic models. These models, preferably based
on data directly available at hospital admission, are essen-
tial to support clinical decision making, and to facilitate
reliable comparison of outcomes between different
patient series and variation in results over time. Further-
more, prognostic models have an important role in ran-
domized controlled trials (RCT), for stratification [1] and

statistical analyses that explicitly consider prognostic
information, such as covariate adjustment [2,3], and may
provide realistic and evidence-based expectations to
relatives.
The majority of published prognostic models predicts

a binary outcome, such as case-fatality using binary
logistic regression [4-7]. Also, outcomes at ordinal scales
are often considered as a dichotomized variable. How-
ever, there are several objections against collapsing an
ordinal outcome scale into a binary one. First, the cut
off for dichotomisation is arbitrary and may vary over
studies in a single medical field [4,5,7]. Secondly, from a
statistical perspective dichotomisation is a waste of
information and reduces statistical power for the
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analysis of treatment effects or other covariates of inter-
est [8,9]. Furthermore, from a clinical point of view
dichotomisation may lead to less useful models. For
example, for a patient with a minor stroke a model pre-
dicting survival versus mortality is of limited value since
the risk is low, while a prediction of complete recovery
versus some remaining symptoms may be very useful.
For a patient with a severe stroke, this will be the other
way around.
An alternative for dichotomisation is application of a

statistical approach that uses the full ordinal outcome
scale. This leads to efficient use of the data and clini-
cally relevant predictions. Several of these approaches
for modelling ordinal response variables have been pro-
posed, including proportional odds (PO) logistic regres-
sion, multinomial (or polytomous) logistic regression, or
simple linear regression [10]. Each of these methods has
its pros and cons.
Our aim was to develop an ordinal prognostic model

to predict clinical outcome at two months in patients
with aneurysmal subarachnoid haemorrhage (aSAH),
based on clinical features and neuro-imaging which are
regularly readily available on admission to a neurologi-
cal or neurosurgical unit. SAH is a devastating event,
causing substantial mortality. In 85% of the patients,
the SAH is caused by rupture of an aneurysm (aSAH)
[11,12]. Of those who survive the first month, approxi-
mately one third remains dependent with respect to
daily activities during the remaining lifetime [11]. Also
amongst patients who regain independency, quality of
life remains reduced [13]. A frequently used outcome
measurement is the modified Rankin Scale (mRS) [14].
This is an ordered scale for measuring motor function
and runs from 0 (no symptoms at all) to 6 (dead)
(table 1).

Methods
Patients
Data were collected prospectively by the Medical
Research Council funded International Subarachnoid
Aneurysm Trial (ISAT) (International Standard Rando-
mised Controlled Trial, Number ISRCTN49866681). All
centres obtained local ethics or institutional review board
consent before enrolling patients (see Appendix 1). Able
patients provided written informed consent. However,
some ethics committees allowed assent from relatives to
enable patients who could not give their own written
consent to be enrolled in the trial. Full details of ISAT
are available elsewhere [15]. The aim of the trial was to
determine whether treatment using endovascular coiling
reduced the risk of patients being dependent or dead at
one year by 25 percent (as defined by modified Rankin
Scale grade 3-6) when compared with neurosurgical
treatment (clipping) for that cohort of patients.

Predictors and outcome
We considered all patient characteristics that could be
obtained easily and reliably within the first hours after
hospital admission and that were also present in the
ISAT database. These included age, gender, previous
occurrence of SAH, CT scan Fisher grading, World Fed-
eration of Neurosurgical Societies (WFNS) grading,
number of intracranial aneurysms, location of the aneur-
ysm, maximum lumen size of the aneurysm, vasospasm
on angiography, and intended treatment at randomiza-
tion. Fisher grading of blood visible on a plain CT scan
runs from grade 1 (“no blood visible”) up to grade 4
(“intraventricular or intraparenchymal blood”). WFNS
scale runs from grade 1 (“Glasgow Coma Scale (GCS)
15 and no motor deficit”) to grade 5 (“GCS 3-6 with or
without motor deficit”). One additional grade was cre-
ated in ISAT for those in whom WFNS could not be
assessed; ‘grade 6’. The number of aneurysms was
dichotomized into one or more than one intracranial
aneurysms. Four aneurysm locations were distinguished:
Anterior Cerebral Artery (ACA), Internal Carotid Artery
(ICA), Middle Cerebral Artery (MCA), and Posterior
Circulation (PC). The maximum lumen size of the
aneurysm was expressed in millimetres. Vasospasm was
examined on angiography and dichotomized into
‘absent’ or ‘present’. Treatment was either neurosurgical
clipping or endovascular coiling; we used treatment as
allocated by the randomization procedure. The outcome
measure in our study was the modified Rankin Scale
(mRS) at two months (table 1) [14].

Model
We started the development of the model discarding
patients without information on outcome. The few miss-
ing values in predictors were imputed by means of sin-
gle imputation (SI, in R language: aregImpute, n.
impute = 1, type = ‘pmm’).
A simple approach to analyze an ordinal outcome,

such as the mRS, is to dichotomize the outcome variable

Table 1 Definition of the modified Rankin scale

Grade Description

0 No symptoms at all

1 No significant disability despite symptoms; able to carry out all
usual duties and activities

2 Slight disability; unable to carry out all previous activities, but
able to look after own affairs without assistance

3 Moderate disability; requiring some help, but able to walk
without assistance

4 Moderately severe disability; unable to walk without assistance
and unable to attend to own bodily needs without assistance

5 Severe disability; bedridden, incontinent and requiring constant
nursing care and attention

6 Dead
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by one of several possible cut off points, e.g. 01 vs.
23456 [5], 012 vs. 3456 [4,15], 0123 vs. 456 [7], and
012345 vs. 6 (case-fatality) [6]. We applied binary logis-
tic regression to develop models for these dichotomized
responses. Next, we addressed the two main aspects of
our ordinal outcome; the fact that it contains order and
separate categories. A simple solution for modelling
order, while neglecting the categorised nature of our
outcome, is to apply linear regression using ordinary
least squares. For the opposite - modelling categories,
while neglecting order - we used multinomial regression.
A more sophisticated approach is to use a proportional
odds (PO) model. Such a model takes both order and
separate categories into account. The PO logistic model
is a rather straightforward extension of binary logistic
regression [16]. A common set of regression coefficients
is assumed across all levels of the outcome, and inter-
cepts are estimated for each level. The advantage of the
PO model is its parsimony in dealing with an ordered
outcome. The price we pay is the assumption of propor-
tionality of the odds. This assumption is equivalent to
saying that any cut-point on the outcome scale would
lead to the same (binary) logistic regression coefficient
[10].
We inspected proportionality by studying the univari-

ate odds ratios for each cut off for each predictor. We
plotted the score residuals of binary logistic models for
each potential predictor separately. The trend of the
score components against the levels of the outcome
scale should be flat if the proportional odds assumption
holds [17]. When the PO assumption is not fulfilled for
all potential predictors, we could also investigate a
further alternative model: the partial PO model [18].
The association between predictors and outcome is

expressed as odds ratios (OR). Predictors have statisti-
cally significant effects when the 95% confidence interval
does not include the value one.
A multivariable PO model was developed containing

predictors that met Akaike’s Information Criterion
(AIC) in a backward stepwise procedure [19]. AIC com-
pares models based on how well they fit the data, but
penalizes for the complexity of the model. AIC requires
that the increase in model c2 when entering a new pre-
dictor has to be larger than two times the degrees of
freedom: c2 >2 df. When considering a predictor with 1
df, such as gender, this implies that c2 has to exceed 2,
equivalent to p < 0.157. When considering a predictor
with 2 df, c2 >4, or p < 0.135; and in case of 4 df, c2 >8,
or p < 0.092 [10].

Performance
The performance of the final PO model was assessed
with respect to calibration and discrimination. Calibra-
tion is the ability of the model to produce unbiased

estimates of the probability of the outcome. Calibration
was tested with a goodness of fit test, which assesses
agreement between predicted and observed risks over
the full range of predicted probabilities. Discrimination
is the model’s ability to separate patients with different
outcomes. To quantify the discrimination, we used the c
statistic. A model with a c statistic of 0.5 has no discri-
minative power at all, for example a coin flip. A c statis-
tic of 1.0 reflects perfect discrimination.

Model validation
The performance of a prediction model is generally
worse in new patients then initially expected. This ‘opti-
mism’ of the original model can be studied with internal
validation techniques [10]. Internal validity of the mod-
els was assessed with standard bootstrapping proce-
dures. Bootstrapping involves drawing samples of
patients with replacement from the development popu-
lation. Each sample can be considered as if one is
repeating the data collection with the same number of
patients and under identical circumstances as the origi-
nal. Regression models were estimated in 300 bootstrap
samples. Each of these 300 models was evaluated on the
original sample. The average difference in the c statistic
was determined to indicate the optimism in the initially
estimated discriminative ability [10]. A shrinkage factor
was estimated from the bootstrap validation procedure
and we shrunk the regression coefficients to provide
better predictions for future patients [10].
All statistical analyses were performed using R soft-

ware, version 2.8.1 (R Foundation for Statistical Com-
puting, Vienna, Austria).

Results
A total of 2,143 patients were recruited to the ISAT trial
by 43 neurosurgical centres, mainly in Europe. We
excluded 15 patients with missing information on the
two month mRS. Fisher grade of 14 patients was not
available and in one patient no information on vasos-
pasm was available. We statistically imputed these miss-
ing values, leaving 2,128 patients for analysis, of whom
347 were in mRS grade 0 (16%), 583 in mRS grade
1 (27%), 528 in mRS grade 2 (25%), 296 in mRS
grade 3 (14%), 80 in mRS grade 4 (4%), 135 in mRS
grade 5 (6%) at the two month assessment, and of
whom 159 (8%) died before the two month assessment.
Univariate analyses in the binary models for different

cut offs, the PO model, and the linear regression model
are presented in table 2. The ORs for each cut off were
reasonably similar except for previous SAH (fu_prev-
haem) and Fisher grade 2 (Fisher = 2). This violation of
the PO assumption is also noted by statistically signifi-
cant deviations from the horizontal line in figure 1. The
linear regression coefficients were surprisingly close to
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the ORs from the PO model. The multinomial model
yielded 108 coefficients, apart from 6 intercepts (not
shown). In a partial PO model 6 intercepts were fitted, 6
coefficients for previous SAH, 18 coefficients for Fisher
grade, and one for each of the other predictors (not
shown).
For the sake of interpretability and clinical usefulness,

we chose to accept the violation of the PO assumption
in the PO model. Age and WFNS grade were the most
important predictors in the multivariable PO model
(table 3). Other statistically significant predictors were
sex, lumen size, Fisher grade, vasospasm, and treatment
modality.
The goodness of fit test yielded a p-value smaller then

0.05 for all levels of mRS, suggesting that the model
poorly fitted the data in which it was developed. In our
final model the PO assumption was violated only for
Fisher grade 2 (figure 2). The c statistic of the final

model was 0.65 (optimism-corrected: 0.64). Details of
the model are described in Appendix 2.

Discussion
We developed and validated a prognostic proportional
odds model to predict the risk of two month modified
Rankin Scale in individual patients after aneurysmal sub-
arachnoid haemorrhage. Predictions were based on
characteristics that were collected in a large clinical trial
and that are regularly readily available on admission to a
neurological or neurosurgical unit. The c statistic was
modest, indicating a mediocre ability to predict clinical
outcome at the two month assessment.
The dependence of our proportional odds model on

the assumption of proportionality should not be over-
stressed. The potential inaccuracy caused by mild viola-
tion of the PO assumption is likely less severe than
would be the case in arbitrary dichotomisation of an
ordinal outcome. Dichotomisation involves more loss of
information [20]. Probably one would prefer a “wrong,
but useful” model, despite possibly violating some
underlying model assumptions [21]. Moreover, the PO
model predicts the probability of being in each mRS
level for each individual patient. This makes the model
useful for all patients, regardless of severity.
Besides the PO model we explored several other mod-

els. The ordinary least squares model seemed to perform
quite well (see table 3). Although the categorical nature
of the outcome variable is neglected, the model seems
to perform reasonable and may yield estimates of
regression coefficients that are quite similar to the PO
model. This model might suffice to gain insight in
which predictors play an important role in this clinical
question. On the contrary, the multinomial model and -
to a lesser extent - the partial PO models suffer from
highly limited interpretability and therefore usability. A
plethora of coefficients is produced by these models. If
one is very specifically interested in one outcome grade,
the model might be of some use. In most cases, we con-
sider a more pragmatic approach however preferable.
There are many more potentially useful modelling tech-
niques for ordinal outcomes [22,23]. One such techni-
que is the continuation ratio (CR) model, which has
been said to be likely to fit ordinal responses when sub-
jects have to ‘pass through’ one category to get to the
next. For a worked example see a tutorial by Harrell
et al. [17].
Several limitations of our analyses should be acknowl-

edged. This study used data from one large trial on a
selected population of patients in equipoise regarding
treatment with either endovascular coiling or neurosur-
gical clipping, which limits generalizability. Nonetheless,
according to a recently published paper, the ISAT popu-
lation proved to be quite similar to the population

Table 2 Univariate associations for different cut offs for
mRS (odds ratios), the univariate PO estimate (odds
ratios), and linear regression (linear regression
coefficient)

1 2 3 5 PO linear

age [10 years] 1.19 1.38 1.48 1.49 1.26 1.28

lumensize [mm] 1.05 1.06 1.08 1.10 1.05 1.06

Sex

Male 0.67 0.71 0.83 0.86 0.69 0.75

previous SAH

Yes 1.19 1.01 0.61 0.55 1.04 0.93

Fisher grade

1 1 1 1 1 1 1

2 0.93 1.39 2.29 2.01 0.99 1.09

3 1.29 2.51 4.45 4.32 1.50 1.67

4 2.03 4.47 7.72 7.31 2.49 2.72

WFNS grade

1 1 1 1 1 1 1

2 1.94 2.47 2.60 2.40 2.08 1.99

3 3.34 4.46 3.67 2.64 3.51 3.18

4 6.74 7.85 12.55 7.84 8.38 7.99

5 6.06 10.83 16.26 12.00 12.43 11.25

(not assessable) 6 5.35 9.92 13.14 9.55 9.97 9.37

number of IA

>1 1.11 1.21 1.30 1.17 1.15 1.15

location

ICA 1 1 1 1 1 1

ACA 0.86 0.83 1.04 0.90 0.86 0.90

MCA 0.80 0.95 1.01 0.97 0.84 0.88

PC 0.89 0.83 1.74 1.39 0.97 1.06

vasospasm

present 1.69 1.65 1.49 1.71 1.67 1.60

intended treatment

Coil 0.69 0.60 0.81 0.88 0.68 0.73

Risselada et al. BMC Medical Research Methodology 2010, 10:86
http://www.biomedcentral.com/1471-2288/10/86

Page 4 of 8



admitted with an aSAH to neurosurgical units in the
United Kingdom [24]. The model may perform well in
the development sample, but poorly when applied to
other groups of patients, for example, a less strictly
selected one. Validation of a prognostic model in inde-
pendent patient series is considered an essential next
step [25]. However since large samples of systematically
collected data on aSAH are sparse, assessment of exter-
nal validity is difficult. For now the generalizability and
overall validity of our model remains to be established.
This will be a topic of future research.
Although our model represents knowledge obtained

from 2,128 SAH patients, predictions for individual
aSAH patients are always subject to uncertainty. The
model makes certain structural assumptions and statisti-
cal interaction terms were not included. Hence, it is
possible that specific patterns of risk factors are inade-
quately reflected in the model predictions. Therefore,
predictions should be regarded with care and not
directly be applied for treatment limiting decisions.
The modest performance of the presented model

might potentially be improved by including neuro-

imaging biomarkers other than lumen size, location,
Fisher grade on plain CT scan, and vasospasm on angio-
graphy. Biomarkers regarding anatomy and morphology
might be considered, as well as aneurysm characteristics
obtained from three and four dimensional angiography
[26,27]. Performance may also be improved by inclusion
of subsequent information obtained after admission,
including temporal course, neuro-imaging at later time
points, eventual rebleeding of the aneurysm, delayed
ischemic deficit, and other parameters such as hydroce-
phalus. The objective of the present study, however, was
to investigate prognostic models that predict two month
mRS with predictors available at admission.
For scientific purposes, we chose to present the final

ordinal model as a formula. To increase usability of the
model in clinical practice, it could eventually also be
presented as a score chart, giving points for the pre-
sence of each predictor. The predicted probabilities for
each mRS level corresponding to a certain score can
subsequently be read from a score plot. Another possibi-
lity is to present the model in an Excel sheet or e.g. as a
PDA application.

Figure 1 Residual plots (score.binary) of univariate associations of potential predictors to examine deviations from the PO
assumption.
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Conclusion
We presented a calibrated and internally validated ordi-
nal prognostic model for predicting two month outcome
after aSAH. Although generalizability of the model is
limited due to the selected population in which it was
developed, this model could eventually be used to sup-
port clinical decision making after external validation in
a clinical setting.

Appendix 1
International Subarachnoid Aneurysm Trial,
ISRCTN49866681
Ethics/IRB committees for the contributing centres

for ISAT
UK:
Oxford (Centre 01) - Local Oxford Research Ethics

Committee: COREC 94.039
Edinburgh (Centre 02) - LREC Western General,

Lothian Health Board: 1702/93/5/42
Nottingham (Centre 04) - Queens Medical Centre

LREC: IMH/LE July 95
Cardiff (Centre 05) - LREC Heath Park, Cardiff: 96/

1470
Atkinson Morley (Centre 06) - LREC St George’s

Healthcare Trust: 96/33/7

Newcastle (Centre 07) - Newcastle & North Tyneside
Health Authority: 96/173
Bristol (Centre 08) - Frenchay Healthcare Trust

Ethics Committee: 96/70
Hurstwood Park (Centre 11) - East Unit REC, Mid

Sussex NHS Trust: 04/97
Manchester RI (Centre 12) - Manchester Health

Authority REC (Central): CM/97/068
Manchester, Salford (Centre 13) - Salford & Trafford

REC: 97/074
King’s, London (Centre 14) - King’s College Hospital

REC: 1997/0198
Birmingham (Centre 18)- Queen Elizabeth Hospital

REC: 1998
Plymouth (Centre 21) - Plymouth REC, South West

Devon Health Authority: 1127
Glasgow (Centre 22) - Southern General Hospital

REC: EC/99/S/9
Queens Square (Centre 23) - NHNN Joint Medical

Ethics: 98/N109
Liverpool (Centre 29) - South Sefton REC: EC.70.99.

M
Cambridge (Centre 30)- Cambridge REC: 2000
Sheffield (Centre 32) - South Sheffield REC: SS99-

164
Hull (Centre 33)- LREC Hull Royal Infirmary: 2000
Belfast (Centre 34) - Queens University Belfast REC:

140-00-MREC-98-5-73
Royal London (Centre 41) - East London & City HA,

ELCHA REC: P/00/252/M
Oldchurch (Centre 42) - LREC (Barking & Havering):

64 (SC)
Germany:
Freiburg (Centre 10) - Albert Ludwigs Universität

Freiburg: 207/96
Mainz (Centre 20) - Universitatsklinik Mainz: Aug 98
Dresden (Centre 24) - Ethik Kommission Universi-

tatsklinik Carl Gustav Carus: EK10199
Würzburg (Centre 27) - Ethik Kommission der Med-

izinischen Fakultät der Universität Würzburg: 53/99
Augsburg (Centre 28) - Krankenhaus Zweckverband

Augsburg: Jan/99
Hamburg (Centre 44) - Ethik Kommission der arzte-

kammer Hamburg: M-247/2000
Switzerland:
Lausanne (Centre 25) - Commission d’Ethique de la

Recherche de la Faculté de Medicine: F/15/99
France:
Paris (Centre 35) Amiens (Centre 36) Lille (Centre

37) Montpellier (Centre 39)
Rennes (Centre 40) Sainte Anne (Centre 45) -

Comité Consultatif de protection des personnes dans la
recherche biomedicale éthique: 17 May 2000
Sweden:

Table 3 Final PO and linear models – shrunken estimates
of OR and regression coefficients

PO Linear

OR CImin
a CImax

a coefficient CImin
a CImax

a

age [10 years] 1.18 1.10 1.26 1.20 1.13 1.27

lumensize [mm] 1.04 1.01 1.07 1.04 1.02 1.07

Sex

Male 0.78 0.66 0.91 0.85 0.73 0.98

Fisher grade

1 1 1

2 1.00 0.69 1.43 1.07 0.77 1.49

3 1.28 0.91 1.79 1.37 1.01 1.86

4 1.50 1.06 2.13 1.56 1.13 2.14

WFNS grade

1 1 1

2 1.74 1.44 2.10 1.68 1.42 1.98

3 2.43 1.75 3.39 2.27 1.69 3.04

4 6.04 3.90 9.37 5.70 3.89 8.35

5 7.90 3.43 18.17 7.56 3.72 15.35

(not assessable) 6 7.70 3.91 15.16 7.00 3.92 12.50

vasospasm

present 1.36 1.13 1.64 1.30 1.10 1.54

intended treatment

Coil 0.69 0.60 0.81 0.75 0.65 0.85

OR = odds ratio; CImin = lower limit of the 95% confidence interval; CImax =
upper limit of the 95% confidence interval. a 95% CI was calculated based on
the standard error of the estimates of the coefficients in the full model to
avoid underestimation of uncertainty.
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Gothenburg (Centre 09) - Gothenburg University
Hospital: 285-94
Uppsala (Centre 19) - Uppsala Universitet: 97446
Finland:
Turku (Centre 16) - Joint Commission on Ethics of

Turku University Central Hospital: 8/1997
Denmark:
Odense (Centre 26) - Scientific Ethics Committee of

Vejle & Funen: 19990050
Czech Republic
Prague (Centre 46) - Charles University Etika

Komise: Dec 2001
Canada:
Montreal (Centre 15) - CHUM Pavillion Notre Dame

Ethics: 09/1997
Toronto (Centre 17) - Toronto Hospital Medical

Research Directorate: 97/HO62
USA:
Baltimore (Centre 31) - Joint Committee on Clinical

Investigation: 99-06-18-08
Australia:

Perth (Centre 03) - Royal Perth Hospital Ethics Com-
mittee: 05/06/004/F57

Appendix 2
Details of the Prognostic Model
The probability of an outcome (mRS level) within two
months is calculated according to the logistic formula: 1/
(1 + exp-LP). The linear predictor (LP) takes the form of
LP = intercept + regression coefficients × predictor values.
LP for mRS = 0.250 [mRS ≥ 1] - 1.15 [mRS ≥ 2] - 2.25

[mRS ≥ 3] - 3.08 [mRS≥4] - 3.39 [mRS ≥ 5] - 4.11 [mRS
≥ 6] + 0.164 × age - 0.255 × [male] - 0.00445 × [Fisher
grade II] + 0.245 × [Fisher grade III] + 0.404 ×
[Fisher grade IV] + 0.555 × [WFNS grade 2] + 0.889 ×
[WFNS grade 3] + 1.80 × [WFNS grade 4] + 2.07 ×
[WFNS grade 5] + 2.04 × [WFNS grade 6, ‘not assessa-
ble’] + 0.0404 × lumen size of aneurysm + 0.307 ×
[vasospasm present]- 0.367 [coil].
Coding of the predictors was as follows: age in dec-

ades, lumen size in millimetres; all other predictors, 1 if
true and 0 if false.

Figure 2 Residual plots (score.binary) of predictors in the selected multivariable model to examine deviations from the PO
assumption.
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