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The effect of coronal prosthetic
alignment changes on socket reaction
moments, spatiotemporal parameters,
and perception of alignment during gait
in individuals with transtibial amputation

Hiroshi Hashimoto1,2, Toshiki Kobayashi3, Fan Gao4, Masataka Kataoka1 and
Kuniharu Okuda1

Abstract

Introduction: The alignment of a prosthesis is clinically determined based on observations by clinicians and the sub-

jective perception of amputees during gait. However, this process has been reported to be unreliable. Socket reaction

moment has been reported to be significantly impacted by alignment changes, but the impact of these alignment changes

on other gait parameters is unclear. The aim of this study was to investigate the effects of coronal alignment changes of a

transtibial prosthesis on socket reaction moment, spatiotemporal parameters, and perceptions of alignment during gait in

amputees.

Methods: Nine individuals with transtibial amputation participated in this study. Socket reaction moment and spatio-

temporal parameters (step time, step length, step width, single limb support time, cadence, and gait speed) were

measured under nine coronal alignment conditions (angulation: �3�, �6�, translation: �5 mm, �10 mm, and baseline)

using a three-dimensional motion capture system (Vicon) and an embedded load-cell system (EuropaTM). In addition,

subjective perceptions of alignment were examined.

Results: Coronal alignment changes of the transtibial prostheses demonstrated significant changes in socket reaction

moment; however, no significant changes were found with spatiotemporal parameters or the amputee’s perception.

Conclusion: Measurement of socket reaction moment, along with the embedded load-cell system, may be a better

metric for tuning the coronal alignment of transtibial prostheses compared to spatiotemporal parameters and amputee’s

perceptions.

Keywords

Amputee, load cell, prosthesis, prosthetist, walk

Date received: 27 August 2017; accepted: 24 July 2018

Introduction

The alignment of a transtibial prosthesis is defined as a
spatial relationship between a socket and a prosthetic
foot.1 This alignment impacts gait symmetry, comfort,
stability, and pressure distribution inside the prosthetic
sockets.2–5 In clinical settings, the final prosthetic align-
ment is more frequently determined by the amputee’s
subjective perceptions and the prosthetist’s observa-
tions.6 However, the reliability of this subjective per-
ception of amputees is limited. Boone et al.7 analyzed
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the amputee’s perceptions of socket alignment perturb-
ations and concluded that their perception was less reli-
able for determining alignment except in the coronal
plane. In addition, Zahedi et al.2 suggested that a pros-
thetist may not be able to reproduce the prosthetic
alignment accurately for a single person with transtibial
amputation. These studies have demonstrated that cur-
rent clinical practice of establishing prosthetic align-
ment, based on amputee’s subjective perceptions and
the prosthetist’s observations, may not be reliable and
sensitive enough to distinguish appropriate alignment
changes.

To address these limitations, several approaches
have been reported to measure the forces and moments
using load cells embedded in transtibial prostheses
during gait.8,9 Boone et al.10 measured the socket reac-
tion moment (SRM) with force transducers embedded
under the transtibial prosthetic sockets and pointed out
that the SRM was systematically influenced by pros-
thetic alignment changes. They suggested that pros-
thetic alignment could be evaluated objectively with
SRM in a clinical setting. Kobayashi et al.11 investi-
gated the effect of malalignment on both SRM and
cadence and found that the SRM was significantly
affected, but cadence was not. However, the align-
ment’s effects on the amputee’s subjective perception
and spatiotemporal parameters such as step time and
step length have not been adequately investigated.
Furthermore, gait analysis studies of pre and post pros-
thetic alignment changes have primarily been per-
formed in the sagittal plane, and there is a paucity of
research examining the coronal plane.12 Therefore,
additional research investigating coronal plane vari-
ables may prove to be useful in determining appropri-
ate alignment changes.

Therefore, to address these gaps in the literature, the
aim of this study was to investigate the effect of coronal

prosthetic alignment changes on SRM, spatiotemporal
parameters, and the perception of alignment changes
during gait in individuals with transtibial amputation.

Methods

Participants

Nine individuals with transtibial amputation partici-
pated in this study (8 males, 1 female, age 52.0� 13.6
years old, height 170� 10 cm, body mass 71.0�
13.3 kg) (Table 1). The average duration of their pros-
theses usage was 13.2� 3.3 years. Five individuals had
amputations due to trauma, two due to diabetes, and
two due to tumor. Inclusion criteria were as follows:
(1) unilateral transtibial amputation, (2) living in local
community after the rehabilitation period, (3) no con-
founding orthopedic or neurological diseases, (4) ability
to walk without a walking aid, (5) age over 20 years,
and (6) ability to understand the aim of this study.
Written informed consents were obtained from all
the participants. This study was approved by the
Institutional Review Board of the Graduate School of
Comprehensive Rehabilitation, Osaka Prefecture
University (No. 2017-107).

Gait analysis

To measure the spatiotemporal parameters including
step time, step length, step width, single-limb support
time, cadence, and gait speed, a three-dimensional
motion capture system (Vicon, Oxford Metrics, UK)
was used. Fourteen-millimeter reflective markers were
used to define body segments based on the Plug-in Gait
marker set (Vicon, Oxford Metrics, UK). The walkway
used for the data capture was 15m long and was
equipped with eight infrared motion capture cameras

Table 1. Demographic information of the participants.

ID Gender Age

Height

(cm)

Body

mass

(kg)

Cause of

amputation

Amputation

side

Length of

residual

limb (cm)

Duration of

amputation

(years)

Distance from

the end of the

socket to the

floor (cm) Prosthetic foot

1 M 45 188 90 Trauma Right 14 10 25 Vari-Flex

2 M 41 180 74 Trauma Left 11 14 28 LP Vari-Flex

3 M 57 172 63 Tumor Right 18 48 23 LP Vari-Flex

4 M 74 160 52 Diabetes Left 12 7 20 FlexFoot Balance

5 M 67 170 61 Diabetes Left 11 11 26 Aspire

6 M 67 164 57 Trauma Left 10 22 27 LP Vari-Flex

7 F 40 153 89 Tumor Left 9 5 22 Aspire

8 M 42 172 84 Trauma Right 19 32 21 LP Vari-Flex

9 M 35 177 70 Trauma Left 15 5 25 LP Vari-Flex
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and two force plates (AMTI, USA) collecting data at
100 and 1000Hz, respectively. The trajectory and kin-
etic data were synchronized using Vicon Nexus soft-
ware (version 1.8.5). In addition, an embedded load-
cell system was placed in the prosthesis (EuropaTM,
Orthocare Innovations, USA) and was used to measure
SRM.10 Even though both the motion capture system
and the embedded load cell were used to collect data
simultaneously, they were not synchronized.

A prosthetist with more than 25 years of experience
assembled and adjusted all the experimental prostheses.
A slide adapter (4R103, Ottobock, Germany) and
EuropaTM were placed under the participants’ pros-
thetic sockets to construct each experimental prosthesis
(Figure 1). Before the experiments, the most acceptable
alignment of the prostheses was determined based on
the prosthetist’s observations and subjective opinions
from the participants. This alignment was defined as
‘‘baseline.’’

The gait parameters of participants were measured
under nine conditions of prosthetic alignment in the cor-
onal plane. These conditions included angulation
changes (3� of adduction and abduction, 6� of adduction
and abduction), translation changes (5 mm lateral and
medial translation, 10 mm lateral and medial transla-
tion), and baseline. The ranges of these alignment
changes were determined according to a preceding
study,10 and the available ranges imposed by the com-
ponents were used in the study. These prosthetic com-
ponents are commonly available and widely used in
clinical settings. The ranges of 6� of adduction and
abduction and 10 mm lateral and medial translation
are within the adjustment ranges of the prosthetic

components that we used in the present study. All the
alignment changes were carried out using the adjustment
mechanism of the 4R103, which allows angulation align-
ment changes by a pyramid mechanism and translation
alignment changes by a slide mechanism (Figure 1). The
angulation changes were confirmed using a digital level
gauge (DP200Hi, STS Co. Ltd, Japan). The translation
changes were confirmed using a ruler.

The participants were instructed to walk in a straight
line at their self-selected gait speed. At first, they
walked with the baseline alignment on the walkway,
and data were collected. Subsequently, the participants
were asked to walk under each selected alignment con-
dition in a randomized order for data collection. A
subject (ID4) walked only under five conditions (base-
line, 6� of adduction and abduction, and 10 mm lateral
and medial translation) in a randomized order owing to
restriction of time. For each condition, a trial walk of
15m was carried out only one time to confirm whether
the participants could walk safely without fatigue just
before each measurement. The participants were not
aware of the type, direction, and amount of the align-
ment change (i.e. angulation or translation, adduction
or abduction, medial or lateral translation, 3� or 6�,
and 5 or 10mm). During the data collection, no shoes
or footwear were used to avoid their influence on the
participant’s gait.13 Furthermore, having the partici-
pants walk without footwear mimicked their daily life
of walking without shoes in their home.

After walking in each alignment condition, oral
interviews were conducted with the participants about
their perception of the alignment changes (‘‘What do
you feel about this alignment setting of the prosthesis

Figure 1. An experimental prosthesis used in this study: (a) sagittal view and (b) coronal view.
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compared to the baseline setting? If you feel any
changes, can you describe them?’’). Therefore, percep-
tion was defined as an amputees’ feeling of the align-
ment during gait in this study. The answers were noted
and classified into three categories: perceived correctly,
perceived incorrectly, and uncertain. The responses
were then recorded by the investigator. For example,
if the participant responded that ‘‘I feel like I am falling
to the prosthetic side’’ when the socket was laterally
translated or abducted, it was classified as ‘‘perceived
correctly.’’

Data analysis

The Vicon Nexus software (version 1.8.5) was used to
calculate spatiotemporal parameters (step time,
step length, single-limb support time, cadence, and
gait speed). In addition, step width was calculated as
the distance between the heel markers of both legs in
the coronal plane during stance. Three gait cycles
were extracted from the middle part of each walking
trial, and each variable was calculated and averaged
across these gait cycles. The data of the coronal
SRM were averaged over five gait cycles from the
middle part of each walking trial and then divided by
the body mass of each participant. The stance phase
time was normalized to 100% under each alignment
condition. Subsequently, the mean coronal SRM in
stance phase was calculated and plotted across partici-
pants. The varus moment was defined as negative
values of the coronal SRM. The maximum varus
moment under angulation and translation alignment
changes was extracted under each alignment condition.

For statistical analysis, a linear mixed model was
used to analyze the gait parameters after confirming
their normality with the Shapiro–Wilk test. A linear
mixed model was used because one of the participants
was tested under five alignment conditions (resulting in
missing data points), whereas others were tested under
nine alignment conditions. Gait parameters including
maximum varus moment and spatiotemporal param-
eters, such as step time, step length, step width, single
limb support time, cadence, and gait speed, were ana-
lyzed under each alignment condition. Paired T-tests
with Bonferroni corrections were used for post hoc test-
ing for multiple comparisons. Correlations between the
alignment conditions and spatiotemporal parameters
and between the alignment conditions and SRM were
analyzed using Pearson’s correlation coefficient. The
Chi-square test was used to analyze if there were any
differences in the subjective perceptions among the dif-
ferent alignment conditions. The significant level was
set at P-value< 0.05 for each analysis. SPSS v.19.0
(IBM Corp. Armonk, USA) was used for the statistical
analysis.

Results

Spatiotemporal parameters

Spatiotemporal parameters did not demonstrate signifi-
cant changes caused by the different alignment condi-
tions (Table 2). However, significant correlations were
found between step width and alignment changes
(r¼�0.96, P< 0.05 for angulation alignment changes
and r¼�0.93, P< 0.05 for translation alignment
changes). Adduction or medial translation of the
socket appeared to be related to the increases in step
width. The difference in step width between 6� of
adduction and abduction was larger than the difference
between 10-mm medial and lateral translation (i.e. 169–
112mm¼ 57 and 156–132mm¼ 24mm, respectively;
Table 2).

Socket reaction moment

The coronal socket reaction moment (SRM) was sig-
nificantly (P< 0.001) affected by both angulation and
translation alignment changes (Figures 2(a) and 3(a)).
The SRM corresponding to each angulation and trans-
lation change is shown in Figure 4. The results of post
hoc analyses for angulation and translation alignment
changes are shown in Figures 2(b) and 3(b), respect-
ively. Significant correlations were found between the
maximum varus moment and the alignment changes
(r¼� 0.96, P< 0.001 for angulation alignment changes
and r¼�0.99, P< 0.01 for translation alignment
changes). The slope of the graph of SRM under the
angulation alignment changes [�0.056 (Figure 2(b))]
was steeper than that under the translation alignment
changes [�0.035 (Figure 3(b))]. Therefore, the angula-
tion alignment changes resulted in more changes in the
coronal SRM than the translation alignment changes.

Subjective perceptions

Outcomes of the amputee’s subjective perceptions are
summarized in Table 3. Each number in Table 3 indi-
cates the number of responses in perception of coronal
alignment changes among the participants. Chi square
test did not reveal any significant differences.

Discussion

This study investigated the effect of coronal prosthetic
alignment changes on the SRM, spatiotemporal param-
eters, and perception of alignment during gait in individ-
uals with transtibial amputation. The results of this
study demonstrated that coronal alignment changes sig-
nificantly impacted SRM, but spatiotemporal param-
eters and amputee’s subjective perceptions were not

4 Journal of Rehabilitation and Assistive Technologies Engineering
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affected. Therefore, these findings suggested that the
embedded load-cell system placed in the transtibial pros-
thesis may be potentially useful in assisting in the fine-
tuning of the alignment in the coronal plane.

With coronal alignment changes, there were no sig-
nificant differences in spatiotemporal parameters. Thus,
the observation of these parameters may not necessarily
contribute to establishing the ideal coronal alignment of
transtibial prostheses. Pinzur et al.14 suggested that no
subjects could walk adequately with 15� malalignment.
If the angulation changes were more than 6�, some of
these spatiotemporal parameters may have been
affected. In clinical settings, it would be rare to evaluate
prosthetic gait with a malalignment of more than 6� as
long as the bench and static alignments are set in a
proper manner. The participants had long-term experi-
ence (5� 48 years) of walking with prostheses. During
this time, they most likely have had ample opportunity
to walk as symmetrically as possible under malaligned
conditions. This prosthetic malalignment could lead to
compensatory motion, such as lateral trunk bending
during gait. One of the possible causes of lateral trunk
bending at mid-stance toward the prosthetic side is
because of an excessive outset of the prosthetic foot.15

Some compensatory motions may occur to maintain bal-
ance in gait. Further investigation would be needed to
clarify the effects of alignment changes on compensatory
movements in amputee’s gait.

Although no significant changes in the spatiotem-
poral parameters were found among the alignment
conditions, step width demonstrated significant correl-
ations with the coronal socket alignment changes. The
step width for normal walking in able-bodied individ-
uals is reported to be in the range of 50–130mm.16 The
step width for the baseline alignment in this study was
136mm. Under 3� and 6� abduction, the step width was

within the range (114mm and 112mm, respectively).
A wider step width may increase lateral displacement
of COM and metabolic cost.17,18 Additional studies
with a larger sample size are needed to clarify how
step width is related to overall gait efficiency and per-
formance in amputees with transtibial prosthesis.

Since the gait speed and cadence were not signifi-
cantly affected by the alignment changes, the changes
in the coronal SRM appeared to be most likely caused
by alignment changes. SRM under each condition
showed the same systematic trends in correspondence
to alignment changes as other studies.10,19 This out-
come indicated that SRM may be useful to evaluate
different prosthetic alignment conditions in the coronal
plane under a constant gait speed. The mechanism of
the prosthetic foot displacement in the coronal plane is
different between translation and angulation alignment
changes. Based on the illustration in Figure 5, the hori-
zontal displacement was 25.3� 2.60mm for the 6�

angulation and 12.7� 1.30 for the 3� angulation,
which was larger than that for 10-mm translation.
This explains why the 6� angulation alignment changes
affected the SRM more than the 10-mm translation
alignment changes. A review study on transtibial pros-
thetic alignment pointed out that the pressure distribu-
tion in a prosthetic socket may be more sensitive to the
angulation changes than to the translation changes
because of the alteration in the effective limb length.3

However, the vertical displacement by the 6� angula-
tion alignment changes was 1.3� 0.1mm and by the 3�

angulation alignment changes was 0.33� 0.0mm.
Therefore, the change in the effective limb length
caused by the angulation changes appeared to be very
small (Figure 5).

There was no significant effect by the alignment
changes on the subjective perception of amputees.

Table 3. Perception of coronal angulation and translation alignment changes.

Perception

Angulation Significance: N.S.

6� adduction 3� adduction 3� abduction 6� abduction

Perceived correctly 4 4 6 6

Perceived incorrectly 2 0 1 1

Uncertain 3 5 2 2

Translation

10-mm medial

translation

5-mm medial

translation

5-mm lateral

translation

10-mm lateral

translation

Perceived correctly 3 3 6 4

Perceived incorrectly 2 1 1 2

Uncertain 4 5 2 3

N.S., no significant differences.

Note: Each number indicates the number of responses in perception of coronal alignment changes among the participants.
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Figure 4. Mean SRM under each alignment condition. The shaded area indicates standard deviations during stance (per % stance).

SRM: socket reaction moment.
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This implies that the subjective perceptions may not
precisely reflect alignment changes. Boone et al.7 used
a software similar to the visual analog scale to quantify
the perception of prosthetic alignment and suggested
that the amputees might be able to perceive coronal
angle alignment changes. In this study, only a simple
question was asked. The participants expressed their
perception verbally and not quantitatively. The process
to classify the participants’ verbal expression into one
of the three categories was performed subjectively.
Therefore, errors could have been made both in percep-
tion and expression by the participants and in interpret-
ation by the investigator.

There were some limitations to the present study. It
was performed using a small sample size (with nine
participants). The baseline alignment was determined
according to the current clinical practice and it was
not quantified. There were some demographic biases
(i.e. only one female, no participants in 20 s, and the
cause of amputations). The cause of amputation of the
participants varied from trauma to diabetes. This vari-
ation might contribute to the variability of sensory abil-
ities among the participants in detecting alignment
changes. Finally, the results show immediate effects
and long-term effects are still unknown.

Conclusion

This study focused on the effect of coronal alignment
changes on SRM, spatiotemporal parameters, and sub-
jective perceptions. The coronal alignment changes,
both angulation and translation, significantly affected
SRM (i.e. maximum varus moment), but they did not
affect spatiotemporal parameters or subjective percep-
tion. This implies that the embedded load cell in the
transtibial prosthesis could potentially contribute to
the evaluation of prosthetic alignment in the coronal
plane. Further studies are needed to explore optimal
alignment using the embedded load cell in transtibial
prostheses.

Declaration of conflicting interest

The author(s) declared the following potential conflicts of
interest with respect to the research, authorship, and/or pub-
lication of this article: HH is an employee of Pacific Supply

Co., Ltd that distributes EuropaTM in Japan. TK was an
employee of Orthocare Innovations, the manufacturer of
EuropaTM.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

Figure 5. An illustration explaining the horizontal and vertical displacement of the prosthetic foot under angulation alignment

changes.

Hashimoto et al. 9



Guarantor

HH

Contributorship

HH researched literature, conceived the study, and recruited
the participants. TK was involved in literature review, proto-
col development, and data analysis. FG was involved in data

analysis. MK and KO were involved in protocol develop-
ment, gaining ethical approval, apparatus management, and
data analysis. HH wrote the first draft of the manuscript. All
authors reviewed and edited the manuscript and approved the

final version of the manuscript.

Acknowledgements

We appreciate the technical advice and support of Satoshi
Okahara of Osaka General Medical Center, Japan, Wayne

Daly of Seattle Orthotics and Prosthetics, USA, and K. Bo
Foreman of The University of Utah, USA.

References

1. Kobayashi T, Orendurff MS, Zhang M, et al. Effect of

alignment changes on sagittal and coronal socket reaction
moment interactions in transtibial prostheses. J Biomech
2013; 46: 1343–1350.

2. Zahedi MS, Spence WD, Solomonidis SE, et al. Alignment
of lower-limb prostheses. J Rehabil Res Dev 1986; 23:
2–19.

3. Davenport P, Noroozi S, Sewell P, et al. Systematic review

of studies examining transtibial prosthetic socket pressures
with changes in device alignment. J Med Biol Eng 2017; 37:
1–17.

4. Andres RO and Stimmel SK. Prosthetic alignment effects
on gait symmetry: A case study. Clin Biomech 1990; 5:
88–96.

5. Isakov E, Mizrahi J, Susak Z, et al. Influence of prosthesis
alignment on the standing balance of below-knee ampu-
tees. Clin Biomech 1994; 9: 258–262.

6. Hanak R and Berger N. Lower-Limb Prosthetics prosthet-

ists’ supplement. New York: New York University Post-
Graduate Medical School, 1990.

7. Boone DA, Kobayashi T, Chou TG, et al. Perception

of socket alignment perturbations in amputees with

transtibial prostheses. J Rehabil Res Dev 2012; 49:
843–854.

8. Neumann ES, Brink J, Yalamanchili K, et al. Use of a

load cell and force-moment analysis to examine transti-
bial prosthesis foot rollover kinetics for anterior–
posterior alignment perturbations. J Prosthetics Orthot
2012; 24: 160–174.

9. Morimoto S. Ambulatory gait measuring system. J Soc
Biomech Japan 1990; 14: 81–99.

10. Boone DA, Kobayashi T, Chou TG, et al. Influence of

malalignment on socket reaction moments during gait in
amputees with transtibial prostheses. Gait Posture 2013;
37: 620–626.

11. Kobayashi T, Arabian AK, Orendurff MS, et al. Effect of
alignment changes on socket reaction moments while
walking in transtibial prostheses with energy storage

and return feet. Clin Biomech 2014; 29: 47–56.
12. Jonkergouw N, Prins MR, Buis AWP, et al. The effect of

alignment changes on unilateral transtibial amputee’s
gait: A systematic review. PLoS One 2016; 11: e0167466.

13. Major MJ, Scham J and Orendurff M. The effects of
common footwear on stance-phase mechanical properties
of the prosthetic foot-shoe system. Prosthet Orthot Int

2018; 42: 198–207.
14. Pinzur MS, Cox W, Kaiser J, et al. The effect of pros-

thetic alignment on relative limb loading in persons with

trans-tibial amputation: A preliminary report. J Rehabil
Res Dev 1995; 32: 373–377.

15. Kapp SL. Visual analysis of prosthetic gait. In: Smith
DG, Michael JW and Bowker JH (eds) Atlas of amputa-

tions and limb deficiencies. Rosemont: American
Academy of Orthopaedic Surgeons, 2004, pp.385–394.

16. Whittle MW. Gait analysis: An introduction, 4th ed.

Edinburgh: Butterworth-Heinemann/Elsevier, 2007.
17. Donelan JM, Kram R and Kuo AD. Mechanical and

metabolic determinants of the preferred step width in

human walking. Proc Biol Sci 2001; 268: 1985–1992.
18. Kuo AD. Stabilization of lateral motion in passive

dynamic walking. Int J Rob Res 1999; 18: 917–930.

19. Kobayashi T, Orendurff MS, Arabian AK, et al. Effect of
prosthetic alignment changes on socket reaction moment
impulse during walking in transtibial amputees.
J Biomech 2014; 47: 1315–1323.

10 Journal of Rehabilitation and Assistive Technologies Engineering


