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Abstract: Pyrazolo[3,4-b]pyridines are a group of heterocyclic compounds presenting two possible
tautomeric forms: the 1H- and 2H-isomers. More than 300,000 1H-pyrazolo[3,4-b]pyridines have been
described which are included in more than 5500 references (2400 patents) up to date. This review will
cover the analysis of the diversity of the substituents present at positions N1, C3, C4, C5, and C6, the
synthetic methods used for their synthesis, starting from both a preformed pyrazole or pyridine, and
the biomedical applications of such compounds.
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1. Introduction

Pyrazolo[3,4-b]pyridines are one of the bicyclic heterocyclic compounds which are
members of the family of pyrazolopyridines formed by five congeners (the [3,4-b], [3,4-c],
[4,3-c], [4,3-b], and [1,5-a]), which are the possible fusions of a pyrazole and a pyridine
ring [1]. They can present two isomeric structures: 1H-pyrazolo[3,4-b]pyridines (1) and
2H-pyrazolo[3,4-b]pyridines (2) (Figure 1). The first monosubstituted 1H-pyrazolo[3,4-
b]pyridine (R3 = Ph) was synthesized by Ortoleva in 1908 upon treatment of diphenyl-
hydrazone and pyridine with iodine [2]. Only three years later, Bulow synthesized three
N-phenyl-3-methyl substituted derivatives 1 (R1 = Ph, R3 = Me), starting from 1-phenyl-3-
methyl-5-amino-pyrazole which was treated with 1,3-diketones in glacial AcOH, following
a widely used strategy [3].
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1. Introduction 
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members of the family of pyrazolopyridines formed by five congeners (the [3,4-b], [3,4-c], 
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2H-pyrazolo[3,4-b]pyridines (2) (Figure 1). The first monosubstituted 1H-pyrazolo[3,4-
b]pyridine (R3 = Ph) was synthesized by Ortoleva in 1908 upon treatment of diphenylhy-
drazone and pyridine with iodine [2]. Only three years later, Bulow synthesized three N-
phenyl-3-methyl substituted derivatives 1 (R1 = Ph, R3 = Me), starting from 1-phenyl-3-
methyl-5-amino-pyrazole which was treated with 1,3-diketones in glacial AcOH, follow-
ing a widely used strategy [3]. 
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Figure 1. Structure of 1H- and 2H-pyrazolo[3,4-b]pyridines (1 and 2) and diversity centers present 
on them. 

Since then, structures 1 and 2 have attracted the interest of medicinal chemists due 
to the close similitude with the purine bases adenine and guanine, an interest that is 
clearly illustrated by the more than 300,000 structures 1 (5,000 references, including nearly 
2,400 patents) and around 83,000 structures 2 (nearly 2,700 references, including 1,500 pa-
tents) included in SciFinder [4] and 180 reviews, including some on the synthesis of such 
structures [5–8]. These compounds present up to five diversity centers that allow a wide 
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Figure 1. Structure of 1H- and 2H-pyrazolo[3,4-b]pyridines (1 and 2) and diversity centers present
on them.

Since then, structures 1 and 2 have attracted the interest of medicinal chemists due
to the close similitude with the purine bases adenine and guanine, an interest that is
clearly illustrated by the more than 300,000 structures 1 (5000 references, including nearly
2400 patents) and around 83,000 structures 2 (nearly 2700 references, including 1500 patents)
included in SciFinder [4] and 180 reviews, including some on the synthesis of such struc-
tures [5–8]. These compounds present up to five diversity centers that allow a wide range of
possible combinations of substituents capable of addressing different biological activities.

Our group, like others, was attracted by the versatility of such compounds and used
them as scaffolds for the synthesis of tyrosine kinase inhibitors (TKI). The analysis of the
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different reviews accessible in the literature showed that, to the best of our knowledge,
there is no review covering both the synthetic methods used for their synthesis and the
biological activities achieved with these structures.

Consequently, we decided to carry out a review of the literature covering the structural,
synthetic, and biological aspects of pyrazolo[3,4-b]pyridines, but previously, we analyzed
the information available, taking some preliminary decisions:

(a) The review will cover only those compounds that present a fully unsaturated pyridine
ring, not taking into account other degrees of unsaturation. Nevertheless, the presence
of hydroxy groups at C4 or C6 will be covered, and consequently, the corresponding
pyridone tautomers will be included due to the greater stability of the 4-oxo or
6-oxo derivatives.

(b) In the case of pyrazolo[3,4-b]pyridines not substituted at the nitrogen atoms of the
pyrazole ring, two tautomeric forms are possible: the 1H- (1, R1 = H) and the 2H-
pyrazolo[3,4-b]pyridine (2, R2 = H) (Figure 2). Although such tautomerism could
complicate the diversity analysis of such compounds, the AM1 calculations of Alkorta
and Elguero clearly showed the greater stability of the 1H-tautomer by a difference of
37.03 kJ/mol (almost 9 kcal/mol) [9].
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razole-3-amines, which pointed out that the only way to majorly observe the 2H-tautomer 
is to have the pyrazole ring fused to a non-aromatic ring [12]. Thus, the N1 substituted 
isomers 1 present aromatic circulation in both rings, thanks to the double bond that can 
be drawn in the fusion of both rings while N2 substituted structures 2 only allow a pe-
ripheric circulation due to the positions of the double bonds in the pyrazole ring. There-
fore, the different aromatic circulation has a high impact on the relative stability of the 
isomers. 

Convergently, the total number of the 2-substituted derivatives 2 is drastically re-
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Figure 2. Tautomeric 1H-pyrazolo[3,4-b]pyridine (1) and 2H-pyrazolo[3,4-b]pyridine (2).

Although the number of pyrazolopyridines 2 seems to be around 83,000, most of
them are compounds with R2 = H. When the search is repeated with the elimination of
tautomerism, only about 4900 2H-pyrazolo[3,4-b]pyridines 2 (R2 = H) remain, included in
only 130 references. In many cases, the 2-NH tautomer is only favored when the pyridine
ring is not fully dehydrogenated, thus being a tetrahydropyridone [10,11]. Such behavior is
in agreement with our experimental results and DFT calculations for C4–C5 fused pyrazole-
3-amines, which pointed out that the only way to majorly observe the 2H-tautomer is
to have the pyrazole ring fused to a non-aromatic ring [12]. Thus, the N1 substituted
isomers 1 present aromatic circulation in both rings, thanks to the double bond that can be
drawn in the fusion of both rings while N2 substituted structures 2 only allow a peripheric
circulation due to the positions of the double bonds in the pyrazole ring. Therefore, the
different aromatic circulation has a high impact on the relative stability of the isomers.

Convergently, the total number of the 2-substituted derivatives 2 is drastically reduced
to around 19,000, which includes R2 = Me (18.28%, 110 references) [13], R2 = Ph (8.58%,
213 references) [14], and R2 = heterocycle (56.86%, 35 references) [15]. In most cases, the
regiospecificity is achieved by starting from an adequately substituted pyrazole.

Moreover, a search carried out at DrugBank (https://www.drugbank.ca/, accessed on
8 March 2022), a database containing information on drugs and drug targets, has revealed
that there are 14 1H-pyrazolo[3,4-b]pyridines 1 in different phases of research: 7 are classi-
fied as Experimental (having shown biological activity), 5 are classified as Investigational
(included in some of the approval phases), and 2 have already been approved. On the
contrary, there is not a single 2H-pyrazolo[3,4-b]pyridine 2 in any of these stages.

(c) To the best of our knowledge, there are only five specific reviews on pyrazolopy-
ridines prior to this review. Three of them are devoted to the synthesis of such
compounds [6–8], the most recent being from 2012 [6]. The other two cover biological
aspects, either from a general perspective (a review from 1985, [16]) or a very specific
point of view (kinase inhibitors, 2013 [17]). Furthermore, 5591 references cover the
300,000 1H-pyrazolo[3,4-b]pyridines included in SciFinder, but 3005 of them (almost
54%) are from 2012 or later (1413 being patents).

https://www.drugbank.ca/
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Consequently, taking into account the preceding considerations, the rather low number
of 2H-pyrazolo[3,4-b]pyridines 2, and the low impact of such isomers in drugs under
development, we decided to focus the present review only on the structural, synthetic, and
biological aspects of 1H-pyrazolo[3,4-b]pyridines 1, paying special attention to the period
from 2012 to 2022.

2. Structural Features of 1H-Pyrazolo[3,4-b]pyridines: Substitution Patterns

The first aspect addressed in this review is the analysis of the diversity already covered
at the different substitution positions present in the Markush formula of 1 by the molecules
included in SciFinder. Such information is not directly accessible from SciFinder or other
computerized databases due to the huge number of structures 1 included (more than
300,000), so analysis with specialized software is not possible. Consequently, we have
explored the substitution patterns at N1, C3, C4, C5, and C6 one by one in order to obtain a
picture of the diversity covered.

2.1. Substitution Pattern at N1

The analysis of the diversity at N1 included in Table 1 shows that almost one-third
of the more than 300,000 compounds 1 have a methyl group at N1 followed by those
presenting other alkyl groups (around 23%) or a phenyl group (15%). The number of
unsubstituted pyrazoles is around 20%. Such distribution agrees with the synthetic methods
used for the synthesis of compounds 1 from a pyrazole ring that requires to be substituted
to avoid the formation of two regioisomers (see Section 3).

Table 1. Substitution pattern at N1 of 1H-pyrazolo[3,4-b]pyridines 1 1.

R1 Structures 1 (%) Number of References Selected References

H 19.70 2520 [18,19]
Me 31.78 986 [20,21]

Alkyl 23.27 823 [22,23]
Cycloalkyl 0.70 47 [24,25]

Ph 15.17 1077 [26,27]
Heterocycle 2.33 284 [27,28]

Other 7.05 - -
1 The selected references included in Tables 1–5 have been selected using two criteria: (1) if possible, to select
recent representative examples from the literature, and (2) when available, to select a paper published in a journal
rather than a patent.

2.2. Substitution Pattern at C3

The diversity analysis included in Table 2 clearly shows that more than three-quarters
of the diversity is covered by the substituents hydrogen and methyl. Other substituents,
such as phenyl, cycloalkyl, and heterocyclic rings, on one side, or an amino group and a
hydroxy group as the carbonyl tautomer on the other side, only have minor contributions.
Such a ratio is directly connected with the more employed synthetic methodologies used
for the construction of these heterocycles although the importance of amino and carbonyl
groups in the biological activities of pyrazolopyridines cannot be dismissed.

Table 2. Substitution pattern at C3 of 1H-pyrazolo[3,4-b]pyridines 1.

R3 Structures 1 (%) Number of References Selected References

H 30.83 2049 [19,28]
Me 46.77 1395 [29,30]

Cycloalkyl 4.01 98 [31,32]
Ph 2.12 540 [27,33]

Heterocycle 4.88 1138 [32,33]
NH2 4.69 727 [18,34]
OH 2.17 239 [35,36]

Other 4.52 - -
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2.3. Substitution Pattern at C4, C5, and C6

The chemical diversity present at C4, C5, and C6 (Tables 3–5) is usually interconnected
because it depends on the building block used for the construction of the pyridine ring
that usually is an α,β-unsaturated ketone, or a 1,3-dicarbonyl compound. The percentages
of the R4 substituents are in agreement with such a synthetic approach, that being mainly
a hydrogen atom, methyl, phenyl, or heterocyclic ring. The hydroxy group as the keto
tautomer shows the use of ester groups during the formation of the pyridine ring that
finally ends as a pyridone. A different origin has the amido group present at C4 that usually
comes from the manipulation of a cyano or ester group present at such a position and not
from the direct formation of the pyridine ring.

Table 3. Substitution pattern at C4 of 1H-pyrazolo[3,4-b]pyridines 1.

R4 Structures 1 (%) Number of References Selected References

H 37.33 3003 [37,38]
Me 6.59 389 [18,27]
Ph 2.29 660 [10,39]

Heterocycle 2.42 355 [27,40]
OH 0.89 312 [41,42]

N-substituent 4.54 980 [43,44]
CONHR 38.30 148 [29,45]

Other 7.63 - -

In the case of C5, the most usual substituent is a hydrogen atom because, in most
of the cases, the starting α,β-unsaturated ketone, or a 1,3-dicarbonyl compound has no
substituent at α-position of the corresponding compound. Only in a small percentage of
cases is there a substituent at such a position. Once more, the presence of amide groups at
C5 is remarkably high, a group that usually comes from the manipulation of a cyano group
conveniently introduced at such a position.

Table 4. Substitution pattern at C5 of 1H-pyrazolo[3,4-b]pyridines 1.

R5 Structures 1 (%) Number of References Selected References

H 58.61 2753 [26,34]
Me 0.84 87 [46,47]
Ph 0.66 211 [19,48]

Heterocycle 3.18 349 [49,50]
N-substituent 4.90 231 [51,52]

Halogen 1.34 583 [18,19]
CONHR 12.13 430 [53,54]

Other 18.34 - -

Finally, as for the diversity at C6, the distribution of substituents agrees with the main
use of α,β-unsaturated ketones where the end substituent of the system is a hydrogen atom,
a methyl, phenyl, or heterocyclic ring.

Table 5. Substitution pattern at C6 of 1H-pyrazolo[3,4-b]pyridines 1.

R6 Structures 1 (%) Number of References Selected References

H 35.10 3270 [19,55]
Me 20.15 679 [18,27]
Ph 12.44 509 [33,56]

Heterocycle 8.65 300 [57,58]
OH 1.52 334 [59,60]

N-substituent 3.22 565 [61,62]
Carbonyl group 1.27 92 [63,64]

Other 17.64 - -
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Once the diversity of the substituents at the various positions of the 1H-pyrazolo[3,4-
b]pyridines has been analyzed, a more visual comparison of the diversities covered at
positions N1, C3, C4, C5, and C6 of structures 1 included in SciFinder is possible, as shown
in Figure 3.
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1H-pyrazolo[3,4-b]pyridines 1.

Although the one-by-one analysis of the substituents present at the different positions
of the pyrazolopyridine system gives a good picture of the diversity already covered, it
would certainly be more interesting to have an idea of the more common di- and trisubsti-
tution patterns. Therefore, a search of the most common combinations of substituents at C3,
C4, and C5 was carried out with the following results: 46.83% of the compounds described
correspond to a 4,6-disubstituted pattern, 22.04% to 5-monosubstituted compounds, 7.76%
to 3,4,5-trisubstituted structures, and 3.37% to unsubstituted pyrazolopyridines.

To see the correlation between such preferred substitution patterns at the pyridine
ring and the corresponding substituents at N1 and C3, we have prepared Figures 4 and 5,
which correspond to the most abundant 4,6-disubstituted and 5-monosubstituted patterns.

In the case of the 4,6-disubstituted 1H-pyrazolo[3,4-b]pyridines, the most common
substituent at position C3 is a methyl group (66.06%) followed by a hydrogen atom (23.69%).
Correspondingly, for R3 = H, the most abundant R1 is a methyl group (14.07%) and an
alkyl group (64.66%), while for R3 = Me the most abundant R1 is a methyl group (43.20%),
an alkyl group (23.89%), or a phenyl group (25.74%). These results correlate with the
use of a 1-substituted 3-methyl-1H-pyrazole or a 1-substituted 1H-pyrazole as starting
material to afford the 3-methyl (R3 = Me) and 3-unsubstituted (R3 = H) 4,6-disubstituted
1H-pyrazolo[3,4-b]pyridines 1, respectively.

On the other hand, the situation with the substituents being more abundant at position
C3 of the 5-monosubstituted 1H-pyrazolo[3,4-b]pyridines is more equilibrated, as the hy-
drogen atom (35.20%) and methyl group (37.20%) are virtually tied. Moreover, the presence
of R1 = H reaches higher values than in the case of the 4,6-disubstituted pyrazolopyridines:
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21.82% when R3 = H and 19.47% when R3 = Me. Once more, the preferred substituents at
R1 are the methyl group (55.37%) when R3 = Me and the alkyl group (44.96%) when R3 = H.
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3. Synthetic Approaches to 1H-Pyrazolo[3,4-b]pyridines

1H-Pyrazolo[3,4-b]pyridines 1 are bicyclic heterocyclic systems, and therefore, there
are many different strategies to achieve such a structure. This review, however, will focus
on two major strategies: the formation of a pyridine ring into an existing pyrazole ring 3
and the formation of the pyrazole ring into a preexisting pyridine ring 4 (Scheme 1).
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Therefore, it is possible to make a first classification of the synthetic methods depend-
ing on which of the two strategies shown in Scheme 1 is being used.

3.1. Pyridine Formation onto a Preexisting Pyrazole Ring

Those reactions are characterized by using different pyrazole derivatives to syn-
thesize the pyridine ring. Most of the reactions that can be found in the literature use
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3-aminopyrazole as the starting material, which generally acts as a 1,3-NCC-dinucleophile,
reacting therefore with a 1,3-CCC-biselectrophile. The different reactions will be classified
according to the nature of the 1,3-CCC-biselectrophile used.

3.1.1. 1,3-Dicarbonyl Compounds and Derivatives as 1,3-CCC-Biselectrophiles

Dicarbonyl compounds 5 have two electrophilic positions (the carbonyl groups) and
a nucleophilic one (the α position in between the two carbonylic groups). Since the
compound reacts as a 1,3-CCC-biselectrophile, the two carbonyl groups are the ones
involved in the reaction. There is a strong debate on the mechanism for this type of reaction
and two different proposals arise from literature as commented below (Scheme 2).
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from 5-aminopyrazole 6 as the 1,3-NCC-dinucleophile and a dicarbonyl compound 5 as the 1,3-
CCC-biselectrophile.

5-Aminopyrazole 6 has two different reactive points that can act as a nucleophile: the
amino group (-NH2) and the sp2 carbon at its β position. The reaction starts with the nucle-
ophilic attack of one of those nucleophiles onto one of the two carbonyl groups followed by
dehydration. Unfortunately, there is no consensus regarding which of the two nucleophiles
reacts in the first place. The first attack is followed by the second nucleophile reacting with
the unreacted carbonyl group, leading to the formation of a 6-member ring 7a or 7b (de-
pending on the initial attack) which, after dehydration, forms the pyrazolo[3,4-b]pyridine
system 1. This mechanism is the one taking place for the majority of dicarbonyl compounds
and derivatives, adapting it to the nature of each reactant.

The vast majority of the reactions reported in literature follow the same conditions
(Scheme 3). AcOH is commonly used as a solvent, and the reaction is carried out at reflux
temperature or microwave (MW) irradiation, with reaction times that may vary depending
on the substituents present [65,66]. It is also possible to carry out this reaction using water
as a solvent at 90 ◦C for 16 h [67] or using MeOH and HCl at room temperature for 16 h [68].
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As it can be seen from the reaction mechanism, if the 1,3-dicarbonyl compound is
nonsymmetrical, two regioisomers can be formed [66]. The proportions among the products
will depend on the relative electrophilicity of the two carbonyl groups. If the two are very
similar, the proportions are going to be near 50%, but if they are very different, it is possible
to carry out the reaction having regioselectivity higher than 80%.

As mentioned, there is no consensus on the order of the attack of the two nucleophiles,
and it is even possible to find authors performing very similar reactions but claiming oppo-
site results, obtaining yields higher than 60% in both cases. On the one hand, Ghaedi et al.
performed the reaction using ethyl 2,4-dioxo-4-phenylbutanoate derivatives as starting
materials, achieving final molecules with yields ranging from 60 to 90%. The resulting
1H-pyrazolo[3,4-b]pyridines present a COOEt group at the R6 position [63]. On the other
hand, Ibrahim et al. used ethyl acetoacetate derivatives as starting materials, compounds
that present one carbonyl group with higher electrophilicity than the other, as it so happens,
with 2,4-dioxo-4-phenylbutanoate derivatives. The reaction was carried out using the same
conditions above, but the results ended up being the opposite. The molecules described by
Ibrahim, with yields ranging from 62 to 76%, seem to have the hydroxy group at the R4

position, and not at the R6 as described by Ghaedi [42]. This example shows how difficult
it can be to determine not only the mechanism, but also the structure of the molecules ob-
tained. Since there are no big differences between the NMR spectra of the two regioisomers,
it might be difficult to determine which one is present unless both are available.

To clarify the mechanism and avoid the presence of both regioisomers, Emelina et al.
used 1,1,1-trifluoropentane-2,4-dione (8) and its derivatives to differentiate the two carbonyl
groups present in the initial reactant (Scheme 4) [66].
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trifluoropentane-2,4-dione (8) and its derivatives as starting materials.

They concluded that, since the carbonyl group having the CF3 group is more elec-
trophilic, it should be the one reacting in the first place. The results show that, once the
pyridine ring gets formed, the CF3 stays at the R4 position, meaning that the amino group
from the 5-aminopyrazole 6 reacts in second place. To assign the position of the CF3 group,
they used 1H-NMR and 13C-NMR to look after the long-range coupling constants between
the fluorine atoms from the CF3 group and the H and C atoms from the R3 group [66].

This type of reaction can be performed with a wide range of 1,3-CCC-biselectrophiles,
such as the ones included in Table 6.

All of the 1,3-CCC-biselectrophiles listed in Table 6 are open-chain compounds; how-
ever, some six-membered cyclic 1,3-CCC-biselectrophiles that get opened during the reac-
tion have also been used to construct the 1H-pyrazolo[3,4-b]pyridine skeleton (Figure 6).

Molecules 2022, 27, x FOR PEER REVIEW 10 of 38 
 

 

All of the 1,3-CCC-biselectrophiles listed in Table 6 are open-chain compounds; how-
ever, some six-membered cyclic 1,3-CCC-biselectrophiles that get opened during the re-
action have also been used to construct the 1H-pyrazolo[3,4-b]pyridine skeleton (Figure 
6). 

O

O
RR’’

R’ O

OH

R O
8 9  

Figure 6. The general structure of the six-membered cyclic 1,3-CCC-biselectrophiles used to con-
struct 1H-pyrazolo[3,4-b]pyridines. 

In the case of 2,3-dihydro-4H-pyran-4-ones 8, the reaction works in a very similar 
way as the other 1,3-dicarbonyl compounds, but with 4-hydroxy-2H-pyran-2-ones 9, the 
reaction involves a decarboxylation, as depicted in Scheme 5. 

 
Scheme 5. Synthesis of 1H-pyrazolo[3,4-b]pyridines from 4-hydroxy-2H-pyran-2-ones 9. 

The conditions for those reactions vary depending on the author, Jouha et al., that 
used molecule 9 as the initial reactant, carrying out the reaction under microwave irradi-
ation at 180 °C for 3 h using BuOH the solvent and TsOH as the catalyst. The final product 
presented methyl groups at positions R3, R4, and R6; therefore, no regioselectivity issues 
were present, and the final product was obtained with a 98% yield [69]. Ianoshenko et al. 
published three different papers about this matter, proposing two different reaction con-
ditions. On one hand, they tested the same conditions used for the 1,3-dicarbonyl reac-
tants, using AcOH at reflux temperature for 1 h, obtaining yields up to 98%. On the other 
hand, they used DMF, TMSCl at 100 °C for 1 h, obtaining yields up to 93% [70–72]. 

In none of the cases were regioselectivity problems reported; this could be due to 
either a mistake in analyzing the results or the higher selectivity of this subtype of reac-
tions over the traditional 1,3-dicarbonyl condensations described above. 

3.1.2. Michael Acceptors Used as 1,3-CCC-Biselectrophiles 
α,β-Unsaturated ketones 10 have also been used as 1,3-CCC-biselectrophiles in the 

formation of 1H-pyrazolo[3,4-b]pyridines 1 by reacting them with 5-aminopyrazole 6. Mi-
chael acceptors react similarly to 1,3-dicarbonyl compounds (Scheme 6). 

 
Scheme 6. Synthesis of 1H-pyrazolo[3,4-b]pyridines using α,β-unsaturated ketones 10 and 5-ami-
nopyrazole 6 as initial reactants. 

Figure 6. The general structure of the six-membered cyclic 1,3-CCC-biselectrophiles used to construct
1H-pyrazolo[3,4-b]pyridines.



Molecules 2022, 27, 2237 9 of 36

Table 6. Different examples of 1,3-CCC-biselectrophiles used to synthesize 1H-pyrazolo[3,4-b]pyridines.

1,3-CCC-Biselectrophiles Reference
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In the case of 2,3-dihydro-4H-pyran-4-ones 8, the reaction works in a very similar
way as the other 1,3-dicarbonyl compounds, but with 4-hydroxy-2H-pyran-2-ones 9, the
reaction involves a decarboxylation, as depicted in Scheme 5.
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The conditions for those reactions vary depending on the author, Jouha et al., that used
molecule 9 as the initial reactant, carrying out the reaction under microwave irradiation at
180 ◦C for 3 h using BuOH the solvent and TsOH as the catalyst. The final product presented
methyl groups at positions R3, R4, and R6; therefore, no regioselectivity issues were present,
and the final product was obtained with a 98% yield [69]. Ianoshenko et al. published three
different papers about this matter, proposing two different reaction conditions. On one
hand, they tested the same conditions used for the 1,3-dicarbonyl reactants, using AcOH at
reflux temperature for 1 h, obtaining yields up to 98%. On the other hand, they used DMF,
TMSCl at 100 ◦C for 1 h, obtaining yields up to 93% [70–72].

In none of the cases were regioselectivity problems reported; this could be due to
either a mistake in analyzing the results or the higher selectivity of this subtype of reactions
over the traditional 1,3-dicarbonyl condensations described above.
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3.1.2. Michael Acceptors Used as 1,3-CCC-Biselectrophiles

α,β-Unsaturated ketones 10 have also been used as 1,3-CCC-biselectrophiles in the
formation of 1H-pyrazolo[3,4-b]pyridines 1 by reacting them with 5-aminopyrazole 6.
Michael acceptors react similarly to 1,3-dicarbonyl compounds (Scheme 6).
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The sp2 carbon in β to the amino group is the one believed to be the most nucleophile
and, therefore, is the one that seems to attack in the first place, performing a Michael
addition. Unfortunately, there is no complete agreement on that matter. Accordingly, the
amino group (NH2) would react in the second place, attacking the carbonyl group of the
Michael acceptor, and leaving a hydroxyl group. After the elimination of water and spon-
taneous oxidation, the pyrazolo[3,4-b]pyridine would be formed. This last spontaneous
oxidation step takes place in more than one of the mechanisms proposed in the literature.
It is not clear how the oxidation proceeds, but some hypotheses have been made. Among
them, the most plausible is oxidation due to the atmospheric oxygen. Alternatively, some
authors propose a disproportion of the molecule, but in this case, a 50:50 mixture of the
oxidized and reduced products would be obtained, a result not clearly described in any of
the manuscripts.

Such a reaction is carried out under both acidic and basic conditions. Stepaniuk et al.
compared different reaction conditions, selecting either acetic acid at reflux for 12 h or
HCl/1,4-dioxane in EtOH at 100 ◦C for 18 h, with yields ranging from 44 to 99% [73].
Han et al. performed the reaction using 1.0 M NaOH in glycol as a solvent at 120 ◦C for
5–12 min, affording in all cases yields above 90% [74]. Many authors have used Lewis acids
as catalysts, CuCl2, ZrCl4, or ZnCl2 [75–77], instead of Brønsted–Lowry acids. Shi et al.
performed this reaction without a catalyst by using the ionic liquid [bmim]Br as a solvent,
keeping the yields between 80 and 96% [78].

Since this reaction is the result of the attack of two nucleophilic centers on two elec-
trophilic centers, it is also possible to achieve two different regioisomers. Stepaniuk et al.
performed an analysis of the effect of the reaction conditions on the final regioisomer ratios.
They concluded that the regioselectivity of the reaction was very sensitive to small changes,
not only on the conditions, but also on the structure of the initial reactants [73].

3.1.3. Diethyl 2-(Ethoxymethylene)malonate as 1,3-CCC-Biselectrophile
(Gould–Jacobs Reaction)

The Gould–Jacobs reaction is often used for the synthesis of quinolines or 4-hydroxyq-
uinoline derivatives using aniline and diethyl 2-(ethoxymethylene)malonate 11 as starting
materials. 1H-Pyrazolo[3,4-b]pyridines can be obtained by using 3-aminopyrazole 6 (or
its derivatives) instead of aniline. The product obtained, in the majority of the cases, is a
4-chloro substituted 1H-pyrazolo[3,4-b]pyridine 1 [79–83].

The mechanism proposed in the literature for the formation of 1H-pyrazolo[3,4-
b]pyridines 1 by the Gould–Jacobs reaction is depicted in Scheme 7.

In this case, the amino group of the 3-aminopyrazole 6 would react in the first place,
attacking the enol ether group present in 11, causing the elimination of ethanol. The
subsequent nucleophilic attack on one of the two ester groups present eliminates ethanol
as well. Finally, the carbonyl group present in the 6-membered ring reacts with POCl3,
forming the corresponding 4-chloro-1H-pyrazolo[3,4-b]pyridines 1. Since the 1,3-CCC-
biselectrophile is symmetrical, there are no regioselectivity problems.



Molecules 2022, 27, 2237 11 of 36

Molecules 2022, 27, x FOR PEER REVIEW 11 of 38 
 

 

The sp2 carbon in β to the amino group is the one believed to be the most nucleophile 
and, therefore, is the one that seems to attack in the first place, performing a Michael ad-
dition. Unfortunately, there is no complete agreement on that matter. Accordingly, the 
amino group (NH2) would react in the second place, attacking the carbonyl group of the 
Michael acceptor, and leaving a hydroxyl group. After the elimination of water and spon-
taneous oxidation, the pyrazolo[3,4-b]pyridine would be formed. This last spontaneous 
oxidation step takes place in more than one of the mechanisms proposed in the literature. 
It is not clear how the oxidation proceeds, but some hypotheses have been made. Among 
them, the most plausible is oxidation due to the atmospheric oxygen. Alternatively, some 
authors propose a disproportion of the molecule, but in this case, a 50:50 mixture of the 
oxidized and reduced products would be obtained, a result not clearly described in any 
of the manuscripts. 

Such a reaction is carried out under both acidic and basic conditions. Stepaniuk et al. 
compared different reaction conditions, selecting either acetic acid at reflux for 12 h or 
HCl/1,4-dioxane in EtOH at 100 °C for 18 h, with yields ranging from 44 to 99% [73]. Han 
et al. performed the reaction using 1.0 M NaOH in glycol as a solvent at 120 °C for 5–12 
min, affording in all cases yields above 90% [74]. Many authors have used Lewis acids as 
catalysts, CuCl2, ZrCl4, or ZnCl2 [75–77], instead of Brønsted–Lowry acids. Shi et al. per-
formed this reaction without a catalyst by using the ionic liquid [bmim]Br as a solvent, 
keeping the yields between 80 and 96% [78]. 

Since this reaction is the result of the attack of two nucleophilic centers on two elec-
trophilic centers, it is also possible to achieve two different regioisomers. Stepaniuk et al. 
performed an analysis of the effect of the reaction conditions on the final regioisomer ra-
tios. They concluded that the regioselectivity of the reaction was very sensitive to small 
changes, not only on the conditions, but also on the structure of the initial reactants [73]. 

3.1.3. Diethyl 2-(ethoxymethylene)malonate as 1,3-CCC-Biselectrophile (Gould–Jacobs 
Reaction) 

The Gould–Jacobs reaction is often used for the synthesis of quinolines or 4-hy-
droxyquinoline derivatives using aniline and diethyl 2-(ethoxymethylene)malonate 11 as 
starting materials. 1H-Pyrazolo[3,4-b]pyridines can be obtained by using 3-aminopyra-
zole 6 (or its derivatives) instead of aniline. The product obtained, in the majority of the 
cases, is a 4-chloro substituted 1H-pyrazolo[3,4-b]pyridine 1 [79–83]. 

The mechanism proposed in the literature for the formation of 1H-pyrazolo[3,4-
b]pyridines 1 by the Gould–Jacobs reaction is depicted in Scheme 7. 

 
Scheme 7. Gould-Jacobs reaction mechanism for the synthesis of 4-chloro 1H-pyrazolo[3,4-b]pyri-
dines 1 from diethyl 2-(ethoxymethylene)malonate 11. 
Scheme 7. Gould-Jacobs reaction mechanism for the synthesis of 4-chloro 1H-pyrazolo[3,4-
b]pyridines 1 from diethyl 2-(ethoxymethylene)malonate 11.

The reaction conditions used for such protocols are often very similar. The reaction
can be performed by using ethanol as solvent at reflux temperature, followed by the
treatment with POCl3 [79,82]. Since diethyl 2-(ethoxymethylene)malonate 11 is liquid
at room temperature, it is possible to perform the reaction without any solvent, using
100–110 ◦C for times between 1.5 and 12 h [80,81,83,84]. Rimland et al. performed the
reaction without any solvent at 160 ◦C for 5 h using SOCl2 instead of POCl3 in the last
step [83].

As the electrophile used for the reaction is always the same, the variations in the
structure of the final product come from the substituents present in the pyrazole reagent (R1

and R3). In all cases, the final product is 4-chloro substituted 1H-pyrazolo[3,4-b]pyridine 1,
except for Pan et al., which obtained the 4-hydroxy substituted compound because the
POCl3 was not included [84].

The Gould–Jacobs reaction is a simple way to achieve 4-chloro-1H-pyrazolo[3,4-
b]pyridines, but it is not very versatile due to the limitations in the nature of the sub-
stituents accessible. Nevertheless, it is an interesting strategy for further derivatization of
the 1H-pyrazolo[3,4-b]pyridines formed.

3.1.4. In Situ Formation of the 1,3-CCC-Biselectrophiles or the 1,3-NCC-Dinucleophiles

One way to overcome regioselectivity problems is to generate in situ the 1,3-CCC-
biselectrophile by using an aldehyde 12, a carbonyl compound 13 bearing at least an
α-hydrogen atom, and a conveniently substituted pyrazole 6. Many authors have described
the use of such a three-component reaction in very high yields without reporting regios-
electivity issues, agreeing, in all cases, on how the mechanism is taking place (Scheme 8)
and which isomer is being formed [40,64,85–90].

The reaction starts with the formation of the 1,3-CCC-biselectrophile by a carbonyl
condensation between the α-carbon of the carbonyl compound 13 (usually a ketone) and
the aldehyde 12, followed by the elimination of water. Once the electrophile is formed, the
mechanism is similar to the one described in Scheme 6, including a Michael addition of the
5-aminopyrazole 6 to the in-situ-formed α,β-unsaturated compound, followed by a closing
of the pyridine ring with the subsequent elimination of water and final oxidation to yield
the 1H-pyrazolo[3,4-b]pyridine scaffold 1. Ezzrati et al. performed this reaction in both the
presence and absence of air. When the reaction was carried out in the absence of air at 50 ◦C
during 40–60 min, the final molecule contained a dihydropyridine instead of a pyridine ring.
They were able to convert such a compound to the desired pyrazolopyridine by dissolving
the intermediate in ethanol at reflux for 10–30 min in the presence of air [85]. Such a result
leads to the conclusion that air may be necessary to carry out the oxidation reaction.
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This protocol is frequently carried out with a catalyst. Shi et al. used L-proline to
help the carbonyl condensation by forming an imine between the amino group of the
L-proline and the aldehyde. The reaction is carried out using EtOH as solvent at 80 ◦C
for 30–60 min [89]. Acids or bases are commonly used as catalysts as well—to assist with
deprotonation in case of a base, or to increase electrophilicity if an acid is used. El-borai et al.
used acetic acid (or a mixture of acetic acid and triethylamine) to catalyze the reaction,
using high temperatures (150 to 160 ◦C). The reaction takes 15 to 20 min to complete, with
yields ranging from 65 to 88% when only acetic acid is present, and from 86 to 98% when a
combination of both catalysts is used. It is important to mention that the initial reactants
were not the same and thus the different yields could be due to other elements besides the
present catalysts [64].

To make the reaction greener, some authors have used ionic liquids as both solvents
and catalysts [40,87,90]. Jadhav et al. used [Et3NH][HSO4] as the ionic liquid, demonstrat-
ing that it can be recycled up to five times without losing its capability of performing the
reaction. This is a very interesting approach in terms of waste reduction, lower tempera-
tures (60 ◦C), higher yields (90–96%), and safer reaction conditions [40]. The reaction has
also been carried out without a catalyst by Ezzrati and Rahmati et al., using ethanol and
water as solvents, respectively, or even without any solvent or catalyst by Quiroga et al.
under microwave irradiation at 200 ◦C during 9 min [85,86,88].

There are some examples of the 1,3-NCC-dinucleophile being generated in situ.
Hamama et al. and Marzouk et al. used 3-pyrazolones that reacted with ammonia to
generate the 3-aminopyrazole ring [91,92].

3.2. Pyrazole Formation onto a Preexisting Pyridine Ring

As previously commented, pyrazolo[3,4-b]pyridines can be also synthesized starting
from a pyridine derivative and closing the pyrazole ring. Those reactions are usually carried
out using hydrazine 17 (or substituted hydrazine) and a pyridine ring 14–16 containing a
good leaving group at position C2 and an electrophilic group at position C3 (Scheme 9).

The leaving group most widely used in these reactions is a chlorine atom, while the
electrophilic group is chosen among carbonyl groups (aldehyde, ketone, or ester groups) or
a cyano group. Depending on the electrophilic group, the final compounds 18–20 present as
the R3 substituent a hydrogen atom, an alkyl or aryl group, a carbonyl group, or an amino
group, respectively. The other diversity centers included in the final pyrazolo[3,4-b]pyridine
must be present in the initial pyridine (R4, R5, and R6) and the hydrazine (R1).
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Scheme 9. Formation of 1H-pyrazolo[3,4-b]pyridines 18–20 starting from a preexisting pyridine ring
(14–16) and hydrazine (or substituted hydrazine) 17.

The mechanism is very similar for the three different options. In all the cases, the
reaction starts with the nucleophilic attack of the hydrazine 17 to both electrophilic positions
of the corresponding pyridine ring 14–16: the chloro substituted carbon and the electrophilic
group at position C3. After this step, the corresponding intermediate evolves to the final
1H-pyrazolo[3,4-b]pyridines 18–20, either by tautomerization (in the case of a C3 nitrile or
ester group) or by elimination of water (in the case of aldehydes or ketones). It is important
to mention that it is not clear in which tautomeric form is present the carbonyl group at
position C3 since some authors draw the keto form and others draw the enol form.

Since the reactions are very similar regardless of the groups present at C3 of the
pyridine ring, the reaction conditions are also very similar. As an example, Scheme 10
shows the conditions mostly used for the reaction:
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Scheme 10. Typical reaction conditions used for the synthesis of 1H-pyrazolo[3,4-b]pyridines starting
from a preformed pyridine ring.

Most authors use hydrazine hydrate as the initial reactant, using ethanol as solvent
at reflux temperature; the reaction time needed ranges from 2 h to more than 15 h [93–96].
Arafa and Hussein performed the reaction at 50 ◦C using a sonicator, allowing them to
obtain the product in 15 min [97]. Since hydrazine hydrate is liquid at room temperature,
some authors perform the reaction without a solvent, with the reaction times going from
3 to 10 h [98–101].

There is too much variation among the reaction conditions used to compare the
two methods and properly discuss a decrease in the reaction time by eliminating the
solvent. Mali et al. performed the reaction without solvent at reflux temperature and
under microwave irradiation, thus reducing the reaction time from 7–10 h to 1.5–2 h [101].
Orlikova et al. also performed the reaction without solvent but at 150 ◦C, and using ethanol
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as a solvent at reflux temperature; in both cases, the reaction times were very similar: 2 h
without solvent and 2–3 h using ethanol.

Other solvents can be used to perform the reaction, like DMF, either at reflux tem-
perature or around 100 ◦C [102,103]; BuOH at reflux temperature [104]; or ethylene glycol
at 165 ◦C [105,106]. It is also possible to find authors who have used acids or bases to
favor the reaction. Thus Al-kaabi and Elgemeie used Et3N, and the reaction was com-
plete after 3 h [107], and Teixeira et al. and Selvi et al. used TsOH at reflux (3 h) and
microwave-assisted heating (4–13 min, 320 W), respectively [38,108].

As can be seen, there is not a standardized method for carrying out this type of reaction.
Table 7 includes the different pyridine reactants that have been used.

Table 7. Pyridine reactants used for the synthesis of 1H-pyrazolo[3,4-b]pyridines.

Initial Pyridine Reference
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3.3. Other Reactions

The above classification has been made to systematize the reactions used to synthesize
1H-pyrazolo[3,4-b]pyridines 1. Even though most of the references that can be found in the
literature can be classified in that way, there is a pool of reactions that do not fit into any of
the categories mentioned [91,109–116].

4. Biomedical Applications of 1H-Pyrazolo[3,4-b]pyridines

1H-Pyrazolo[3,4-b]pyridines 1 have been extensively used as a scaffold for the synthe-
sis of small molecules looking for therapeutic properties to treat different diseases. From
all the molecules containing a pyrazolo[3,4-b]pyridine core (more than 300,000 reported
molecules), 156,660 molecules have been synthesized for therapeutic purposes.

According to the literature, the most relevant, important part of the overall biomedical
applications’ bioactivity indicators for 1H-pyrazolo[3,4-b]pyridines are antitumor agents
(22,675 molecules), anti-inflammatory agents (19,416 molecules), and nervous system agents
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(14,203 molecules). More concretely, they account for 38% of the biomedical applications
(Figure 7).
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Figure 7. Bioactivity indicators of the potential therapeutic uses of 1H-pyrazolo[3,4-b]pyridines.

In the following part of this review, we focus on these three main biomedical applica-
tions because they represent more than a third of the overall bioactivity indicators, as well
as the different pattern substitutions of the pyrazolo[3,4-b]pyridine scaffold selected for
each disease, giving more importance to the major ones.

4.1. Antitumor Agents

The use of 1H-pyrazolo[3,4-b]pyridines 1 as a scaffold for antitumor agents corre-
sponds to 15% of the biomedical applications. In most of them, the selected substituents
are at R3 and R5 (8112 molecules, 36% of this group of compounds), followed by disub-
stitution at R3 and R4 (1375 molecules), monosubstitution at R3 (1208 molecules), and
other substitution patterns, which include around 1000 molecules each. An analysis of the
type of substituents present in the most abundant group has shown that 5897 structures
(almost 26% of the structures reported with anticancer activity) present a combination of
substituents in which R1 = R4 = R6 = H, and R3 and R5 are heterocyclic rings.

1H-Pyrazolo[3,4-b]pyridines derivatives 21, 22, and 23 (Figure 8) have been described
as potent inhibitors of hGSK-3α (IC50 = 56 ± 6 nM, 18 ± 2 nM, and 11 ± 2 nM, respec-
tively) [94]. Further optimization of these promising small molecules was performed,
resulting in molecule 24 with an IC50 of 0.8 ± 0.4 nM [117].



Molecules 2022, 27, 2237 17 of 36Molecules 2022, 27, x FOR PEER REVIEW 18 of 38 
 

 

21 22 23

N
H

N
N

HN

O

N

N
H

N
N

HN

O
F

N
H

N
N

HN

O

N
N

N
H

HN
O

Br

HO 24  
Figure 8. 1H-Pyrazolo[3,4-b]pyridines as inhibitors of hGSK-3α. 

Cyclin-dependent kinases (CDKs) are encouraging drug targets for various human 
diseases, in particular for cancer. SAR studies of compounds 25 and 26 (Figure 9) led to 
the discovery of an excellent CDK1/CDK2 selective inhibitor 27, BMS-265246 (CDK1/cycB 
IC50 = 6 nM and CDK2/cycE IC50 = 9 nM) [118]. 

N
H

N
N

N N
HN

O

N N
H

N

O

25, SQ-67563

O

N N
H

N

O

26, SQ-67454

O

N N
H

N

O

27, BMS-265246

N
N

N

Ar
N

HN

R

R4

HO
R2

R1

N
H

N
N

N

O

Cl

HO

N
N

NH
N

NH2

H2N

30, CAN508
N

N
N
H

HO O

N
N

N
H

N

N

O

28 29

31 32

CF3

CF3

33: Ar = Isoquinolin-4-yl, R = R1 = R4 = H, R2 = (1H-4-Me-piperizin-1-yl)
34: Ar = 5-(EtNHCH2)-pyridin-3-yl, R = Me, R1 = R4 = H, R2 = F

 
Figure 9. 1H-Pyrazolo[3,4-b]pyridines as inhibitors of CDKs. 

Figure 8. 1H-Pyrazolo[3,4-b]pyridines as inhibitors of hGSK-3α.

Cyclin-dependent kinases (CDKs) are encouraging drug targets for various human
diseases, in particular for cancer. SAR studies of compounds 25 and 26 (Figure 9) led to
the discovery of an excellent CDK1/CDK2 selective inhibitor 27, BMS-265246 (CDK1/cycB
IC50 = 6 nM and CDK2/cycE IC50 = 9 nM) [118].
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Compound 28 inhibits CDK1 activity with an IC50 of 23 nM. This inhibitory activity
has been observed by a reduced amount of 33P-cATP incorporated into the immobilized
substrate in a FlashPlate assay format. 28 has also shown inhibition growth of HeLa cervical
adenocarcinoma, A375 malignant melanoma, and HCT-116 colon carcinoma cells, with
IC50 values of 1.7, 0.87, and 0.55 µM, respectively. Moreover, this compound also exhibits
inhibition of VEGFR-2 kinase, a receptor tyrosine kinase implicated in angiogenesis, another
important mechanism for tumor progression with an IC50 value of 1.46 µM [119].

In the growth of colorectal cancer, multiple lines of evidence propose that the mediator-
complex-associated, cyclin-dependent kinase (CDK8) may act as an oncogene. Compound
29 (MSC2530818) is a structure-based, designed small molecule that exhibits outstanding
kinase selectivity, biochemical and cellular potency, microsomal stability, and is orally
bioavailable. This compound shows an in-vivo, oral, pharmacokinetic profile in mice, rats,
and dogs. It also evidences reduction of the tumor-growth rates of established human
SW620 colorectal carcinoma xenografts using two different oral dosing schedules. Con-
sidering its huge activity, compound 29 went into preclinical, in-vivo, animal efficacy and
safety studies [53].

Molecule 30 (CAN508) has been used for a scaffold-hopping strategy, and the scaffold
alteration using the 1H-pyrazolo[3,4-b]pyridine core appears to cause a positive alteration
in the selectivity profile of the inhibitors. Compound 31 exhibits an excellent inhibitor
activity against CDK2 and CDK9 (IC50 values of 0.36 µM and 1.8 µM, respectively). Fur-
thermore, compound 32 evidences extraordinary selectivity towards CDK2 (265-fold over
CDK9) [120].

1H-Pyrazolo[3,4-b]pyridine analogs 33 and 34 also manifest a selective and potent
cyclin-dependent kinase and cellular antiproliferative inhibition. These compounds have
shown an excellent in-vitro inhibition of the cellular proliferation in HeLa, HCT116, and
A375 human tumor cell lines [121].

About 7% of all cancers present the V600E mutation of B-Raf kinase, which results in
the constitutive activation of the MAPK signaling pathway. Molecules 35 and 36 (Figure 10)
have been structure-based designed for inhibiting B-RafV600E. These compounds have
shown to be potent, selective, and orally bioavailable debutants that inhibited tumor
growth in a mouse xenograft model driven by B-RafV600E [67].
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Moreover, one of the most difficult types of cancer to treat is metastatic melanoma;
the inhibition of BRAFV600E mutant kinase is its main current therapy. Nevertheless, the
inhibition of BRAF by small molecules in cancer patients provokes an increase of wild-type
BRAF activity in healthy tissue, causing side effects and the formation of new tumors.
Hoorens et al. have developed the BRAFV600E kinase inhibitor 37 (Figure 10), the activity



Molecules 2022, 27, 2237 19 of 36

of which can be switched on and off in a reversible way with light. Consequently, the
drug can be selectively activated at the desired site of action, avoiding side effects. This
small molecule contains in its structure an azobenzene photoswitch that, once activated
with light, increases the inhibitory activity by 10-fold compared with the non-activated
form [122].

Lead compounds 38 and 39 (Figure 11) have been described for their strong inhibition
activity towards a broad spectrum of Bcr-Abl mutants, such as the gatekeeper T315I and
p-loop mutations, which are associated with disease progression in chronic myelogenous
leukemia (CML). They resolutely inhibited the kinase activities of Bcr-AblWT and Bcr-
AblT315I with IC50 values of 0.60, 0.36, and 1.12, 0.98 nM, respectively [123].
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GZD824 40 is another small molecule described for the treatment of CML that includes
a 1H-pyrazolo[3,4-b]pyridine moiety. Such a compound is an orally bioavailable inhibitor
against a broad spectrum of Bcr-Abl mutants, including T315I. This promising compound
has a Kd value of 0.32 and 0.71 nM for Bcr-AblWT and Bcr-AblT315I, respectively. It also
effectively suppresses the proliferation of Bcr-Abl-positive K562 and Ku812 human CML
cells with IC50 values of 0.2 and 0.13 nM, respectively. Its bioavailability is 48.7%, and it
presents a half-life of 10.6 h. Moreover, it stimulates tumor regression in mouse xenograft
tumor models and greatly improves the survival of mice, altogether making GZD824 a
potential lead aspirant for the development of Bcr-Abl inhibitors [95].

A series of 1H-pyrazolo[3,4-b]pyridine derivatives (41, 42, 43, 44, and 45, among
others), have been designed as potential anticancer agents (Figure 12). They have been
screened for their antitumor activity in vitro, with compound 41 having been tested with a
full-panel, five-dose assay to assess its GI50, TGI, and IC50 values. Compound 41 exhibits
broad-spectrum antiproliferative activities over the whole National Institute cancer (NCI)
panel, with excellent growth inhibition. Its full-panel GI50 (the mean activity value for
the entire panel, MG-MID) value equals 2.16 mM and subpanel GI50 (MG-MID) range
is 1.92–2.86 mM. Moreover, 1H-pyrazolo[3,4-b]pyridines 41, 42, 43, 44, and 45 have been
tested for their antiproliferative activity against a panel of leukemia cell lines (K562, MV4-
11, CEM, RS4;11, ML-2, and KOPN-8), where they showed excellent antileukemic activity.
These results make compounds 42, 43, 44, and 45 encouraging lead molecules to stimulate
optimization to frame more robust and efficient anticancer candidates [124].
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Compounds 46 and 47 (Figure 13) demonstrated antitumor activity against a liver cell
line with an IC50 of 3.73 µM and 3.43 µM, respectively [64].
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Figure 13. Pyrazolo[3,4-b]pyridines against liver cancer cell lines.

The human nicotinamide phosphoribosyltransferase (NAMPT) is involved in the first
step of the conversion of nicotinamide (NAM) to the biologically important enzyme co-
factor nicotinamide adenine dinucleotide (NAD). Compound 48 (Figure 14) was identified
after structure-based design studies and exhibits nanomolar antiproliferation activities
against human tumor lines in in vitro cell culture experiments. This compound has an
IC50 = 6.1 nM and an IC50 = 4.3 nM for NAMPT BC and A2780 cells, respectively [125].
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The rat sarcoma virus (RAS) is a guanosine-nucleotide-binding protein. Specifically, it
is a single subunit, small GTPase. Activated RAS GTPase signaling is a crucial motor of
oncogenic alteration and malignant disease. The use of cellular models of RAS-dependent
cancers has driven the identification of molecule 49 (SCH51344) (Figure 15) as a human
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mutT homolog MTH1 (also known as NUDT1) inhibitor, a nucleotide pool sanitizing
enzyme [126].
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Figure 15. 1H-Pyrazolo[3,4-b]pyridine active in cellular models of RAS-dependent cancers.

Compound 50 (Figure 16) has been designed as a tubulin polymerization inhibitor
targeting the colchicine site. It has been tested by MTT assays for its antiproliferative
activity against three human cancer cell lines (SGC-7901, A549, and HeLa). 50 exhibits
noticeable in vitro potential activity because SGC-7901 has an IC50 = 13 nM, and it could
significantly inhibit tubulin polymerization and strongly disrupt the cytoskeleton [127].
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Figure 16. 1H-Pyrazolo[3,4-b]pyridine active as a tubulin polymerization inhibitor.

An encouraging molecular target for non-small cells lung carcinoma (NSCLC) is the
anaplastic lymphoma kinase (ALK). Compound 51 (Figure 17) has been described for its
excellent inhibitory activity against ALK-L1196M (IC50 < 0.5 nM) and ALK-wt. Moreover,
51 shows a remarkable inhibition of ROS1 (IC50 < 0.5 nM) and displays excellent selectivity
over c-Met. 51 resolutely suppresses proliferation of ALK-L1196M-Ba/F3 and H2228 cells
boarding EML4-ALK via apoptosis and the ALK signaling blockade [128].
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Compound 52 (Figure 18) has been found to have an excellent DYRK1B inhibitory
enzymic activity with an IC50 = 3 nM, cell proliferation inhibitory activity (IC50 = 1.6 µM)
against HCT116 colon cancer cells, and inhibitory activity in a patient-derived colon cancer
organoids model and a 3D spheroids assay model of SW480 and SW620 [18,19].
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at exon 17. This mutation causes multiple gastrointestinal stromal tumors (GISTs). This 
small molecule can decrease the cecal tumor volume in model mice; thus, it seems to in-
hibit in vivo tumor progression. These studies suggest that Pimitespib can be a potential 
drug to control multiple GISTs in patients with germline KIT-Asp820Tyr [129]. 

Figure 18. 1H-Pyrazolo[3,4-b]pyridine active against HCT116 colon cancer cells.

Mitogen-activated protein kinase 4 (MKK4) has recently been identified as the main
regulator in hepatocyte regeneration. A scaffold-hopping approach has been performed
to obtain compounds 53 and 54 (Figure 19), which show high affinity to MKK4 in the low
nanomolar range and a selectivity profile from a multiparameter-optimization due to the
essential antitargets (MKK7 and JNK1) and off-targets (BRAF, MAP4K5, and ZAK) in the
MKK4 pathway [28].
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Figure 19. 1H-Pyrazolo[3,4-b]pyridine active against mitogen-activated protein kinase 4 (MKK4).

Pimitespib (55, TAS-116, Figure 20) shows an inhibitory effect on the phosphorylation
of KIT-Asp818Tyr, which is a c-kit gene that contains a germline Asp820Tyr mutation at
exon 17. This mutation causes multiple gastrointestinal stromal tumors (GISTs). This small
molecule can decrease the cecal tumor volume in model mice; thus, it seems to inhibit
in vivo tumor progression. These studies suggest that Pimitespib can be a potential drug to
control multiple GISTs in patients with germline KIT-Asp820Tyr [129].
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asthma, and allergic rhinitis. Compound 56 (Figure 21) presents great Syk inhibitory ac-
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Although pulmonary hypertension (PH) is a cardiovascular disease, its known in-
flammatory basis led us to include it in this section [131]. Soluble guanylate cyclase (sGC) 
is an essential signal-transduction enzyme activated by nitric oxide (NO). The pathogen-
esis of cardiovascular and other diseases can be a consequence of impairments of the NO– 
sGC signaling pathway. The stimulation of sGC is a promising treatment for pulmonary 
hypertension (PH), a disease related to a poor prognosis. Pyrazolopyridines 57 (BAY 41-
2272) and 58 (BAY 41-8543) (Figure 22) exhibited favorable effects in experimental models 
of PH, despite their being related to unfavorable drug metabolism and pharmacokinetic 
(DMPK) properties. Riociguat (59) (Figure 22) is a designed compound found by SAR ex-
ploration that improves the DMPK profile and shows excellent effects on pulmonary he-
modynamics and exercise capacity in patients with PH. Riociguat was investigated in 
phase III clinical trials for the oral treatment of PH [132] and approved in the USA, Europe, 
and other regions for patients with pulmonary arterial hypertension and marketed by 
Bayer under the trade name Adempas. 
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4.2. Anti-Inflammatory Agents

The use of 1H-pyrazolo[3,4-b]pyridines as scaffolds for anti-inflammatory agents
corresponds to 13% of the overall biomedical applications of such structures. The main
combination of substituents used for such biological activity is the disubstitution at R3

and R5 (7045 molecules, 36% of this group). A total of 1761 pyrazolo[3,4-b]pyridines (9%
of this group) include a trisubstitution at positions R1, R4, and R5. Other substitution
patterns used less often are the combinations R3-R4-R6, R3-R4, and R1-R3-R4-R6, with 981,
961, and 908 molecules, respectively. In this case, the combination of substituents in which
R1 = R4 = R6 = H and R3 and R5 are heterocyclic rings covers 30% of the total number of
structures claimed as having an anti-inflammatory activity (5856 compounds).

The repression of spleen tyrosine kinase (Syk) is an encouraging approach for the
treatment of several allergic and autoimmune disorders, such as rheumatoid arthritis,
asthma, and allergic rhinitis. Compound 56 (Figure 21) presents great Syk inhibitory
activity (IC50 = 1.2 µM), representing a good lead compound for further optimization [130].
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Although pulmonary hypertension (PH) is a cardiovascular disease, its known inflam-
matory basis led us to include it in this section [131]. Soluble guanylate cyclase (sGC) is an
essential signal-transduction enzyme activated by nitric oxide (NO). The pathogenesis of
cardiovascular and other diseases can be a consequence of impairments of the NO– sGC
signaling pathway. The stimulation of sGC is a promising treatment for pulmonary hyper-
tension (PH), a disease related to a poor prognosis. Pyrazolopyridines 57 (BAY 41-2272)
and 58 (BAY 41-8543) (Figure 22) exhibited favorable effects in experimental models of PH,
despite their being related to unfavorable drug metabolism and pharmacokinetic (DMPK)
properties. Riociguat (59) (Figure 22) is a designed compound found by SAR exploration
that improves the DMPK profile and shows excellent effects on pulmonary hemodynamics
and exercise capacity in patients with PH. Riociguat was investigated in phase III clinical
trials for the oral treatment of PH [132] and approved in the USA, Europe, and other regions
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for patients with pulmonary arterial hypertension and marketed by Bayer under the trade
name Adempas.
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show potent IL-6 inhibitory activity, with an IC50 of 0.2 and 0.3 µM, respectively [133]. 
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Molecules 60 and 61 (Figure 23) exhibit promising anti-inflammatory activity against
TNF-α and IL-6. In concrete, against IL-6 with 60–65% inhibition at 10 µM. Moreover, they
show potent IL-6 inhibitory activity, with an IC50 of 0.2 and 0.3 µM, respectively [133].
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The inhibition of p38a is one of the major targets in developing anti-inflammatory
drugs due to its prominent role in regulating inflammatory cytokines, such as TNFα and
IL-1. Molecule 62 (Figure 24) has potent p38a inhibitor activity and excellent in vivo activity
upon oral administration in animal models of rheumatoid arthritis [134].
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The study of the activity of molecule 63 (Figure 25) on macrophage growth, phago-
cytosis of FITC-zymosan, radical scavenging affinity against OH·, ROO·, and O2

−, and
macrophage binding affinity to fluorescein isothiocyanate-conjugated bacterial lipopolysac-
charide (FITC-LPS), together with its affection for the inflammatory mediators (nitric oxide
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(NO), tumor necrosis factor-a (TNF-α), prostaglandin E-2 (PGE-2), cycloxygenase-2 (COX-
2), and 5-lipoxygenase (5-LO)) in LPS-stimulated macrophages, have converted it into a
promising multipotent anti-inflammatory agent [135].
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Compound 67 (Figure 27) was discovered after the optimization of a high-through-
put screening hit. This molecule exhibits potent and selective inhibition activity against 
phosphodiesterase 4 (PDE4) with a pIC50 of 8.5, thus being a promising target for the treat-
ment of chronic obstructive pulmonary disease (COPD). Moreover, molecule 67 also in-
hibits LPS-induced TNF-α production from isolated human peripheral blood mononu-
clear cells and has a promising rat pharmacokinetic profile for oral dosing [137]. Com-
pound 68 (Figure 27) was found to have excellent potent inhibitory activity against PDE4. 
This compound was discovered after SAR studies of the 5-position. Thus, optimization 
using X-ray crystallography and computational modeling led to 68 with sub-nM inhibi-
tion of LPS-induced TNF-α production from isolated human peripheral blood mononu-
clear cells [138]. 
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4-Anilinopyrazolopyridine derivative 64 (Figure 26) led to the optimization of phos-
phodiesterase 4 (PDE4) inhibitors. Compounds 65 and 66 present improved therapeutic
capacity with fewer side effects, being orally active compounds. Compound 66 shows
much higher bioavailability than compounds 64 and 65 [136].
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Figure 26. 1H-Pyrazolo[3,4-b]pyridines active against phosphodiesterase 4 (PDE4).

Compound 67 (Figure 27) was discovered after the optimization of a high-throughput
screening hit. This molecule exhibits potent and selective inhibition activity against phos-
phodiesterase 4 (PDE4) with a pIC50 of 8.5, thus being a promising target for the treatment
of chronic obstructive pulmonary disease (COPD). Moreover, molecule 67 also inhibits LPS-
induced TNF-α production from isolated human peripheral blood mononuclear cells and
has a promising rat pharmacokinetic profile for oral dosing [137]. Compound 68 (Figure 27)
was found to have excellent potent inhibitory activity against PDE4. This compound was
discovered after SAR studies of the 5-position. Thus, optimization using X-ray crystallogra-
phy and computational modeling led to 68 with sub-nM inhibition of LPS-induced TNF-α
production from isolated human peripheral blood mononuclear cells [138].

T cell activation and survival strongly depend on protein kinase C θ (PKCθ). Re-
cent studies show that T cell responses associated with autoimmune diseases are PKCθ-
dependent. Selective and potent inhibition of PKCθ is likely to block autoimmune T cell
responses without compromising antiviral immunity. Molecule 69 (Figure 28) was discov-
ered by using structure-based rational design and has shown to be a potent and selective
PKCθ inhibitor [139].
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4.3. Nervous System Agents 
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diseases corresponds to 10% of the overall biomedical applications. A total of 2,799 mole-
cules (20% of this category) presents a disubstitution R3 and R5, while 2,044 compounds 
(14% of this group) include a trisubstitution at R1-R4-R5. Lower amounts of molecules 
(1,337, 964, and 881 molecules) present substituents at R1-R4-R5-R6, R3-R4-R6, and R1-R3-R4-
R6, respectively. In this category the situation concerning the nature of substituents pre-
sent at the different positions is not so clear, but 1,509 structures (10% of the total) present 
R1 = alkyl (or alky-substituted), R3 = H, R5 = carbonyl group, and R6 not equal to a hydrogen 
atom. 

Adenosine is a neurotransmitter distributed through a wide variety of tissues in 
mammals. A1-adenosine receptor (A1AR) is an adenosine receptor that modulates adeno-
sine effects together with A2A, A2B, and A3. Affinity data at A1AR, A2AAR, and A3AR in 
bovine membranes reveal that 70 (Figure 29) binds selectively and with a high-affinity 
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4.3. Nervous System Agents

The use of pyrazolo[3,4-b]pyridines as a scaffold for the treatment of nervous system
diseases corresponds to 10% of the overall biomedical applications. A total of 2799 molecules
(20% of this category) presents a disubstitution R3 and R5, while 2044 compounds (14%
of this group) include a trisubstitution at R1-R4-R5. Lower amounts of molecules (1337,
964, and 881 molecules) present substituents at R1-R4-R5-R6, R3-R4-R6, and R1-R3-R4-R6,
respectively. In this category the situation concerning the nature of substituents present at
the different positions is not so clear, but 1509 structures (10% of the total) present R1 = alkyl
(or alky-substituted), R3 = H, R5 = carbonyl group, and R6 not equal to a hydrogen atom.

Adenosine is a neurotransmitter distributed through a wide variety of tissues in mam-
mals. A1-adenosine receptor (A1AR) is an adenosine receptor that modulates adenosine
effects together with A2A, A2B, and A3. Affinity data at A1AR, A2AAR, and A3AR in bovine
membranes reveal that 70 (Figure 29) binds selectively and with a high-affinity A1AR over
A2AAR and A3AR [140].
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Compound 71 (LASSBio873, Figure 30) was structurally designed by using the anal-
gesic and sedative drug Zolpidem as a lead compound, which is used to treat anxiety disor-
ders linked to the neuronal inhibition induced by G-aminobutyric acid (GABA), the main
inhibitory neurotransmitter in the mammalian central nervous system (CNS). Molecule 76
presents not only a potent ability to induce sedation but also a potent central antinociceptive
effect [141].
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Corticotropin-releasing factor type 1 (CRF(1)) is a novel target for the treatment of
depression, anxiety, and stress-related disorders. Pyrazole-based molecule 72 (Figure 31)
potently binds the CRF(1) with a Ki = 2.9 nM and inhibits the adrenocorticotropic hormone
(ACTH) release from rat pituitary cell culture with an IC50 of 6.8 nM, which is the key
hormone governing stress response. This compound also shows a great ACTH reduction
of 84–86% when it is given orally at 30 mg/kg doses [142].
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Compound 73 (Figure 32), which displays its CNS action as a muscarinic M1 receptor
agonist, is an efficient compound to diminish the locomotor activity in mice at a dose of
10 µmol/kg [143].
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for the treatment of systemic heart failure [147]. 

Figure 32. 1H-Pyrazolo[3,4-b]pyridine active as an M1 receptor agonist.

Pyrazoloquinoline 74 (Figure 33) has been described as a potent, selective, and orally
active phosphodiesterase 10A inhibitor (PDE10A) for the potential treatment of schizophre-
nia. Compound 74 inhibits MK-801-induced hyperactivity at 3 mg/kg with an ED50 of
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4 mg/kg and exhibits a 6-fold improvement between the ED50 for inhibition of MK-801-
induced hyperactivity and hypolocomotion in rats [144].
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The latest indicators demonstrate that of the two confirmed methods for measuring
amyloid, the decrease in cerebrospinal fluid (CSF) amyloid β1–42 (Aβ1–42) may be an earlier
sign of Alzheimer disease (AD) risk [145]. Compounds 75 and 76 (Figure 34) avoid the
decrease in cell viability caused by Aβ1–42. 76 also prevents the upregulation of AChE
induced by Aβ1–42. It also may act as an antagonist of voltage-sensitive calcium channels.
Compound 77 exhibits potential for the treatment of Alzheimer disease [146].
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Figure 34. 1H-Pyrazolo[3,4-b]pyridines potentially active against Alzheimer disease.

To close this review, the search carried out in DrugBank (see our Introduction) has
allowed us to establish that only two 1H-pyrazole[3,4-b]pyridines have already been ap-
proved: Riociguat 59, commercialized by Bayer as Adempas (described above and ap-
proved in 2013) and Vericiguat 78 (Figure 35), a stimulator of soluble guanylate cyclase
(sGC) approved by the FDA in January 2021 and commercialized by Merck as Verquvo for
the treatment of systemic heart failure [147].
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5. Conclusions

In this paper, we reviewed the substitution patterns of 1H-pyrazolo[3,4-b]pyridines (1),
establishing the type of substituents mainly used at positions N1, C3, C4, C5, and C6.
Such analysis has established that the 1H-isomers (substituted or unsubstituted at N1)
predominate in a ratio of 3.6 to 1. Among 1H-pyrazolo[3,4-b]pyridines (1), two substitution
patterns also are predominant: 3,4,6-trisubstitution and 3,5-disubstitution, both groups
presenting mainly a hydrogen atom or methyl substituent at N1.

The complex landscape of the synthetic methods used for preparing such heterocycles
has been analyzed and classified into two main methodologies: (a) formation of a pyridine
ring into an existing pyrazole ring, and (b) the formation of the pyrazole ring into a
preexisting pyridine ring. Most of the reactions found in the literature are of type (a) and
use 3-aminopyrazole (substituted or not at N1) as the starting material, which generally
acts as a 1,3-NCC-dinucleophile, reacting, therefore, with a 1,3-CCC-biselectrophile. The
different subtypes depend on the nature of the 1,3-CCC-biselectrophile. Most of the type (b)
constructions use hydrazine (or substituted hydrazine) onto a 2-chloro substituted pyridine
ring bearing an aldehyde, ketone, ester, or cyano group at C3. Such groups determine the
nature of the substituent present a C3 of the final 1H-pyrazolo[3,4-b]pyridine formed.

Finally, we have analyzed the potential biological uses of 1H-pyrazolo[3,4-b]pyridines 1,
establishing that such types of structures have been used for a wide range of biological
targets. In fact, one-half of the molecules described were developed to discover biological ac-
tivities. The main bioactivity indicators found include antitumor agents, anti-inflammatory
agents, and nervous system agents that cover 36% of the overall biomedical applications.
The most important biological targets and molecules developed have been summarized,
showing the high versatility of these structures. Also, the substitution patterns and types
of substituents used for each of the biological activities analyzed have been summarized.

The fact that, from the total number of references included in SciFinder since 1908,
more than 50% correspond to the period from 2012 to 2022, showing an almost exponential
increase, with half of them being patents, clearly indicates that this type of structure
currently plays an important role as a scaffold for the development of drug candidates. The
only drawbacks they present are the regioselectivity issues described in the synthetic section
of this review and the fact that, in many cases, it is difficult to establish unequivocally the
regioisomer formed based on spectroscopic techniques.
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