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COVID-19 severity due to innate immunity dysregulation accounts for prolonged
hospitalization, critical complications, and mortality. Severe SARS-CoV-2 infections
involve the complement pathway activation for cytokine storm development.
Nevertheless, the role of complement in COVID-19 immunopathology, complement‐
modulating treatment strategies against COVID-19, and the complement and SARS‐
CoV‐2 interaction with clinical disease outcomes remain elusive. This study investigated
the potential changes in complement signaling, and the associated inflammatory
mediators, in mild-to-critical COVID-19 patients and their clinical outcomes. A total of
53 patients infected with SARS-CoV-2 were enrolled in the study (26 critical and 27 mild
cases), and additional 18 healthy control patients were also included. Complement
proteins and inflammatory cytokines and chemokines were measured in the sera of
patients with COVID-19 as well as healthy controls by specific enzyme-linked
immunosorbent assay. C3a, C5a, and factor P (properdin), as well as interleukin (IL)-1b,
IL-6, IL-8, tumor necrosis factor (TNF)-a, and IgM antibody levels, were higher in critical
COVID-19 patients compared to mild COVID-19 patients. Additionally, compared to the
mild COVID-19 patients, factor I and C4-BP levels were significantly decreased in the
critical COVID-19 patients. Meanwhile, RANTES levels were significantly higher in the mild
patients compared to critical patients. Furthermore, the critical COVID-19 intra-group
analysis showed significantly higher C5a, C3a, and factor P levels in the critical COVID-19
non-survival group than in the survival group. Additionally, IL-1b, IL-6, and IL-8 were
significantly upregulated in the critical COVID-19 non-survival group compared to the
survival group. Finally, C5a, C3a, factor P, and serum IL-1b, IL-6, and IL-8 levels positively
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correlated with critical COVID-19 in-hospital deaths. These findings highlight the potential
prognostic utility of the complement system for predicting COVID-19 severity and
mortality while suggesting that complement anaphylatoxins and inflammatory cytokines
are potential treatment targets against COVID-19.
Keywords: COVID-19, SARS‐CoV‐2, complement anaphylatoxins, inflammatory cytokines, in-hospital
mortality, prognosis
INTRODUCTION

Sever Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
was reported in China on Dec 31, 2019, after several unexplained
cases of pneumonia were reported (1, 2). COVID-19 cases are
defined as symptomatic, asymptomatic, and severe disease with
mortality rates highest among patients with chronic disease, the
elderly, and immunocompromised patients (3). The World
Health Organization declared the outbreak a public health
emergency of international concern On January 30, 2020 (2).
Following community transmission of SARS-CoV-2 in many
countries, the WHO declared the COVID-19 outbreak as a
pandemic on March 12, 2020. By December 3, 2020, SARS-
CoV2 had spread to 206 countries with a total of 63,719,213
laboratory-confirmed cases and 1,482,084 deaths reported around
the world (1–4). Severe cases of COVID-19 cannot be predicted
early during the onset of symptoms due to the lack of biomarkers
or accurate testing for the prediction of COVID-19 disease
severity (5, 6). As such, identification of immune parameters as
diagnostic biomarkers to predict COVID-19 disease severity
might help to accurately select interventional strategies (7–9).

Immune response dysregulation is a primary characteristic of
COVID-19 severity, disease evolution and worse clinical
outcomes (10). Accumulated evidence suggests that SARS-
CoV-2 infections are characterized by dysregulation of innate
and adaptive immunity (10–12). Several inflammatory cytokines
and chemokines (interleukin (IL)-1b, IL-2, IL-6, IL-7, IL-8, IL-
10, granulocyte colony-stimulating factor (G-CSF), granulocyte/
macrophage colony-stimulating factor (GM-CSF), interferon
gamma-induced protein (IP)-10, monocyte chemoattractant
protein (MCP)-1, macrophage inflammatory protein (MIP)-1a,
interferon (IFN)-g, tumor necrosis factor (TNF)-a, C-C motif
chemokine ligand (CCL)2 and CCL3) as well as C-reactive
protein (CRP) are significantly upregulated in severe and
critical COVID-19 patients (13, 14). The high inflammatory
cytokines and chemokine levels during SARS‐CoV-1, MERS‐
CoV, and SARS‐CoV‐2 infections are strongly associated with
massive infiltration of immune cells into the lungs and poor
disease outcomes (15, 16).

The complement system comprises a proteins network (17).
Depending on the type of activation factors, the complement
cascade is activated through three pathways: The classical
pathway, lectin pathway, and alternative pathway (18–20).
Crosstalk between the complement and coagulation systems
has been reported to play a crucial role in the vascular
endothelial damage and thromboinflammation (21). The
complement system is negatively regulated by various
org 2
complement proteins, including factor I, C1-inhibitor (CI-
INH), factor H and C4-binding protein (C4-BP) (11, 21);
meanwhile, factor P (properdin) is a positive regulatory
complement protein. Several viral infections are associated
with complement activation and coagulation dysfunctions (22).
Overactivation of pulmonary and systemic complement plays a
key role in inflammation, endothelial cell damage, thrombus
formation, intravascular coagulation, and multiple organ failure,
ultimately leading to death (23, 24). C5a is chemoattractant for
neutrophils, monocytes, eosinophils, and T lymphocytes (24).
Following infection, complement anaphylatoxins stimulate
macrophages to produce TNF-a, IL‐1b, IL‐6, and IL‐8; these
mediators promote vascular dysfunction, fibrinolysis, and
microvascular thrombosis formation (24). The C5a also plays a
major role in inducing higher expression of P‐selectin,
intercellular adhesion molecule‐1, fibronectin and fibrinogen.
This upregulation of adhesion molecules provokes various cell
signaling and pro‐inflammatory pathways (25).

The role of complement in COVID-19 immunopathology
and complement‐modulating treatment strategies against
COVID-19 has received limited attention with several
unanswered questions regarding the interaction between
complement, SARS‐CoV‐2, and clinical disease outcomes. In
this study, we comprehensively investigated the complement
system, pro-inflammatory cytokines/chemokines, and antibody
responses of patients with critical and mild COVID-19. The
correlation between all examined parameters and COVID-19 in-
hospital mortality was also assessed. To the best of our
knowledge, this is the first study to investigate the functionality
of several complement proteins and complement regulatory
factors in the context of critical COVID-19 cases.
MATERIALS AND METHODS

Patient Selection, Setting, and
Sample Collection
This study enrolled 53 patients infected with SARS-CoV-2, as
confirmed by RT‐PCR (inclusion criterion). There were 26
critical (intensive care unit [ICU]) and 27 mild COVID-19
cases, and 18 healthy matched control groups. The mild cases
were defined based on the absence of symptoms such as
shortness of breath and pneumonia and other less severe
clinical symptoms (low-grade fever and cough). Blood samples
were collected, allowed to clot for 20–35 min at 25°C and
subjected to centrifugation for 15 min at 1,000 × g. The serum
July 2021 | Volume 12 | Article 668725
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was immediately assayed, liquated, and stored at ≥ −20°C.
Repeated freeze-thaw cycles were avoided. The exclusion
criteria were: 1) patients under 14 years of age; 2) patients co-
infected with other respiratory pathogens; 3) patients diagnosed
with bacteremia and/or viremia caused by any other viruses; 4)
immunocompromised patients; 5) patients under treatment with
anti-inflammatory and/or anti-complement drugs; 6) patients
with preexisting autoimmune diseases; 7) women who were
either pregnant or lactating (Table 1). This study was reviewed
and approved by the Institutional Review Board of King Fahad
Medical City (IRB register number 20‒193) and written
informed consent was obtained from all subjects prior
to enrollment.

Clinical Laboratory Investigations
The following blood parameters were examined: CRP, INR, PT,
PTT, creatine kinase, Creatine Kinase Myocardial Band, Trop,
Hb, platelet, red blood cells, WBC, glucose, ESR, low-density
lipoprotein cholesterol, AST, ALT, urea, creatinine, high-density
lipoprotein cholesterol, albumin, and total protein.

Measurement of Complement
Inflammatory Mediators Anaphylatoxins
(C3a/C3b and C5a) and Complement
Classical Pathway Component (C1q)
and C2 Levels
Serum levels of human complement C3 and C5 fragments, as
well as C3b, C1q, and C2 were measured according to the
manufacturer’s guidelines using enzyme-linked immunosorbent
assay (ELISA) kits (HCA39-K01-Eagle Biosciences, Inc.,
Columbia, USA; ab193695, Abcam, Cambridge, UK; ab195461,
Abcam; ab170246, Abcam; ab154132, Abcam). The
concentrations were calculated using standard curves.

Quantification of Serum Complement
Regulatory Components (Factors) Levels
Serum concentrations of four complement regulatory factors, P,
I, C4-BP, and H were quantified using ELISA kits (ab222864,
Abcam; ab195460, Abcam; ab222866, Abcam; HK342, Hycult
Biotech, Uden, Netherlands). All ELISA protocols were
Frontiers in Immunology | www.frontiersin.org 3
performed according to the manufacturer’s instructions. The
concentrations were calculated using standard curves.

Quantification of Serum Chemokine
RANTES (CCL5) Levels
Serum RANTES levels were quantified in COVID-19 infection
patients (n = 53) and healthy volunteers (n = 18) using a human
RANTES ELISA kit (R&D Systems, Minneapolis, USA)
following the manufacturer’s protocol. The concentrations
were calculated using standard curves, and the results were
expressed as pg/mL.

Quantification of the SARS-CoV-2
Antibody
The SARS-CoV-2 IgM antibody was quantified using ELISA kits
(AnshLabs, Webster, USA). The SARS-CoV-2 IgM ELISA assay
detects antibodies against the spike and nucleocapsid proteins.
The assay was performed according to the manufacturer’s
protocol. IgM concentration > 12 AU/mL (positive cutoff) was
considered positive.

Quantification of Pro-Inflammatory
Cytokine and Chemokine Profiles
Using ELISArray
The concentrations of the primary 12 human pro-inflammatory
cytokines and chemokines (IL1-a, IL1-b, IL-2, IL-4, IL-6,
IL-8, IL-10, IL-12, IL-17A, IFN-g, TNF-a, and GM-CSF)
were measured in the serum of 53 COVID-19 patients and
healthy controls, using the multi-analyte ELISArray (Qiagen,
Germantown, MD, USA) following the manufacturer’s
protocol. The absorbance of the ELISArray was measured at
450 nm and concentrations were calculated using a standard
curve. The cytokine or chemokine levels were expressed as
pg/mL.

Statistical Analysis
All statistical analyses were performed using GraphPad 5.0
(GraphPad Software, San Diego, CA, USA). Data were assessed
using one-way ANOVA followed by Tukey’s multiple
comparison test. The correlations between complement
proteins, inflammatory cytokines/chemokines, and clinical
laboratory blood parameters were tested using the Pearson
correlation. Results are presented as mean ± standard
deviation unless otherwise specified. A p-value of < 0.05 was
considered statistically significant.
RESULTS

Basic Characteristics of COVID-19
Patients
A total of 53 COVID-19 patients (26 critical and 27 mild) were
included in this study (41 males and 12 females), with an
age ranging from 18 to 92 years and a mean age of 53.2 ± 18.0
years. The mean age was 61.6 ± 11.8 years in the critical group,
TABLE 1 | Demographics and clinical characteristics of COVID-19 patients.

Baseline variables All patients Mild Critical p-value
n = 53 n = 27 (51%) n = 26 (49%)

Demographics
Age
Median 55 ± 18 46 ± 19 63 ± 12
Range 16–92 16–92 25–82
Gender
Male 41 (77%) 21 (78%) 20 (77%) 0.94
Female 12 (23%) 6 (22%) 6 (23%)
Ethnicity
Saudi 19 (36%) 6 (22%) 13 (50%) 0.03
Non-Saudi 34 (64%) 21 (78%) 13 (50%)
Case Fatality Rate 11 (21%) – 11 (100%)
July 2021 | Volume 12 | Article 668725
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45.2 ± 19.2 years in the mild group, and 66.2 ± 6.5 and 58.3 ±
13.6 years in the non-survival and survival patients, respectively.
Eleven (42.3%) patients died while 15 recovered (57.7%) in the
critical COVID-19 group. All basic characteristics of the enrolled
patients are shown in Table 1.

Circulating Complement Activation in
Critical and Mild COVID-19 Patients
To determine whether critical COVID-19 patients have high
leve ls of the complement inflammatory mediators
anaphylatoxins C3a and C5a, systemic levels of complement
(anaphylatoxins) C3a, a product of C3 cleavage, and C5a, a
product of C5 cleavage, were measured in samples from patients
with confirmed SARS-CoV-2 infection (26 critical and 27 mild),
and 17 healthy groups. As shown in Figures 1A, B, both C3a and
C5a levels were higher in the COVID group than in the control
group. Additionally, severe patients had higher levels of these
markers than patients with mild disease (p < 0.0001). The
elevated levels of C3a and C5a observed in the critical COVID-
19 patients were consistent with decreased levels of complement
negative regulatory factor I and C4-BP in the same patients.
Overall, these results illustrate the role of complement
anaphylatoxins C5a and C3a in pulmonary immunopathology,
endothelial damage, vascular leakage, and case fatality in patients
with critical COVID-19. The C2 levels were higher in the
COVID group than in the control group (Figure 1D).
Frontiers in Immunology | www.frontiersin.org 4
Interestingly, C2 was higher in mild patients compared to
severe patients, while there were no significant differences in
the C1q levels between these two groups (Figure 1C).

Critical COVID-19 Condition Related
to Abnormal Levels of Complement
Regulatory Proteins
Critical COVID-19 Is Associated With Positive
Regulation of Complement Activation
These alterations in major complement proteins led us to
investigate whether there are changes in regulators of this
pathway. The complement regulatory proteins are crucial for
controlling complement overactivation to avoid inflammatory
pathologies and tissue damage. To determine whether the
complement regulatory factors were altered during SARS-CoV-2
infection, four complement regulatory factors, namely factor P,
factor I, C4-BP, and factor H, were quantified in critical and mild
COVID-19 patients. As shown in Figure 2D, the levels of positive
regulatory factor P were significantly higher in the critical COVID-
19 patients than in the mild COVID-19 and non-COVID-19
healthy control groups (p < 0.0001), suggesting that the levels of
factor P may positively regulate complement activation during the
SARS-CoV-2 infection. Furthermore, measurement of factor P in
serum might provide evidence for the involvement of the
alternative complement pathway since factor P is an important
factor in the alternative pathway activation.
A B

DC

FIGURE 1 | Serum concentrations of the anaphylatoxins in critical and mild COVID-19 patients, and healthy controls. Concentrations of (A) complement fragment
C5a; (B) complement fragment C3a; (C) complement fragment C1q; and (D) complement fragment C2 were measured using ELISA. ANOVA and Tukey’s multiple
comparison test were used for statistical comparisons. *p < 0.05, ***p < 0.001, and ns p > 0.05.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Alosaimi et al. Prognostic Markers for COVID-19
Critical COVID-19 Cases Are Associated With
Decreased Levels of Complement Negative
Regulatory Proteins
Measurement of negative regulatory proteins in COVID-19
patients may provide evidence for complement cascade
regulation. Quantitation of the complement negative regulatory
factors (factor I, C4-BP, and factor H), in critical and mild
COVID-19 patients showed that the levels of negative regulatory
proteins, factor I and C4-BP, were significantly lower in the
critical COVID-19 group than in the mild COVID-19 group (p <
0.0001; Figures 2A, B). These negative regulatory proteins play a
critical role in complement system regulation. The low levels of
factor I and C4-BP suggest that critical COVID-19 patients have
a reduced ability to control and regulate complement activation,
suggesting that SARS-CoV-2 somehow suppresses and inhibits
the complement negative regulatory proteins during critical
COVID-19. In contrast, the level of factor H, which regulates
complement by inactivating the C3 convertase and dislodges Bb
from the C3bBb complex, did not differ between the critical and
mild COVID-19 patients (p > 0.05; Figure 2C).

Critical COVID-19 Induces High Levels
of SARS-CoV-2 IgM Antibody
We aimed to determine whether SARS-CoV-2 IgM contributes
to COVID-19 severity. Both critical and mild COVID-19
patients showed positive IgM antibody response, with mean
Frontiers in Immunology | www.frontiersin.org 5
values of 2,050.7 AU/mL and 992.2 AU/mL, respectively
(positive cutoff > 12 AU/mL). However, the IgM concentration
in critical COVID-19 patients was significantly higher than that
in patients with mild COVID-19 (p = 0.0021; Figure 3).

RANTES (CCL5) Levels Are Increased
in Mild COVID-19 Patients
Alterations in the concentration of serum RANTES in the
studied patients with mild COVID-19 and non-COVID-19
healthy controls are shown in Figure 4E. The serum RANTES
levels were higher in the mild COVID-19 group than in the
critical COVID-19 and healthy control groups (p < 0.01, for
both). RANTES during mild SARS-CoV-2 infection might play a
role in the anti-SARS-CoV-2 immune response.

Critical COVID-19 Patients Exhibit High
Levels of IL-1b, IL-6, TNF-a, and
Neutrophil Chemoattractant Chemokine
IL-8 (CXCL8)
The serum samples from critical COVID-19, mild COVID-19,
and healthy controls were collected to quantify 12 pro-
inflammatory cytokines and chemokines. The levels of IL1-b,
IL-6, IL-8 (p < 0.0001, for each), and TNF-a (p < 0.01) were
significantly higher in the critical COVID-19 patients than in the
mild COVID-19 and non-COVID-19 healthy controls (Figure 4).
A B

DC

FIGURE 2 | Serum concentrations of complement factors in the critical and mild COVID-19 patients, and healthy controls. Concentrations of (A) factor I; (B) factor
C4-BP; (C) factor H; and (D) factor P. ANOVA and Tukey’s multiple comparison test were used for statistical comparisons. ***p < 0.001 and ns p > 0.05.
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Critical COVID-19 Non-Survival Patients
Have Elevated Levels of Complement
Components and Pro-Inflammatory
Cytokines/Chemokines
It was found that 11/26 (42%) critical COVID-19 patients died
during hospitalization. The C5a (7,770.3 ± 191; p =0.0047), C3a
Frontiers in Immunology | www.frontiersin.org 6
(5,019.2 ± 920.4; p = 0.0008), and factor P (68.8 ± 6.7; p = 0.0002)
concentrations were significantly higher in the critical COVID-19
non-survival group than in the critical COVID-19 survival group
(Figure 5). Additionally, the concentrations of IL-1b (1,236.5 ±
398.1; p = 0.0105), IL-6 (1,408.9 ± 490.3; p = 0.0198), and IL-8
(1,443.4 ± 195.8; p = 0.0012) were significantly upregulated in the
critical COVID-19 non-survival group compared to the critical
COVID-19 survival group (Figure 5).

Association Between Circulating Levels
of Complement Proteins and Pro-
Inflammatory Cytokines/Chemokines With
Critical COVID-19 Patients In-Hospital
Mortality
Pearson’s correlation analysis showed that serum levels of C5a,
C3a, and factor P strongly correlated with critical COVID-19 in-
hospital death (r = 0.5366; r = 0.6138; r = 0.6716, respectively;
Figures 6A–C). Likewise, serum IL-1b, IL-6, and IL-8 levels were
positively correlated with critical COVID-19 in-hospital death
(r = 0.4929; r = 0.4539; r = 0.6002, respectively; Figures 6D–F).
Our results indicated that the overactivation of the complement
system and higher levels of pro-inflammatory cytokines/
chemokines in critical COVID-19 patients were significantly
correlated with critical COVID-19 in-hospital mortality.

Pro-Inflammatory Cytokine/Chemokine
Profiles in the Serum of Critical COVID-19
Patients and Their Correlation With Serum
Concentrations of Complement Proteins
We further investigated any potential correlation between pro-
inflammatory cytokines/chemokines and anaphylatoxins and
A B

D E

C

FIGURE 4 | Comparison of the cytokine/chemokine levels between the critical and mild COVID-19 patients, and healthy controls. (A) interleukin 1 b (IL-1b);
(B) interleukin 6 (IL-6); (C) interleukin 8 (IL-8); (D) tumor necrosis factor a (TNF-a); (E) RANTES. *p < 0.05, **p < 0.01 and ***p < 0.001 and ns p > 0.05.
FIGURE 3 | Levels of SARS-CoV-2 immunoglobulin M (IgM) in critical and
mild COVID-19 patients (P = 0.002). ELISA assay was used to detect
antibodies against spike and nucleocapsid protein.
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showed that the levels of C3a positively correlated with the levels of
IL-6 (r = 0.3886, P = 0.0498) and IL-1b (r = 0.3517, but P = 0.0781;
Table 2). Additionally, C5a levels mildly, correlated with the levels
of IL-1b (r = 0.2979, but P = 0.1394) and IL-6 (r = 0.2862, but P =
Frontiers in Immunology | www.frontiersin.org 7
0.1564), however these results were not significant (Table 2). In
addition, serum factor P levels positively correlated with the levels of
C3a (r = 0.6766, P = 0.0001).We also observed a positive correlation
between C5a and C3a levels (r = -0.5672, P = 0.05; Table 2).
A B

D E F

C

FIGURE 5 | Comparison of the complement proteins and cytokine/chemokine levels between critical COVID-19 patients who survived and those who did not survive.
The serum samples were collected from the day of admission or day 14 during the intensive care unit (ICU)stay. (A) complement fragment C5a (P = 0.005); (B) complement
fragment C3a (P < 0.001); (C) factor P (P < 0.001); (D) interleukin 1 b (IL-1b) (P = 0.01); (E) interleukin 6 (IL-6) (P = 0.02); (F) interleukin 8 (IL-8) (P = 0.001).
A B

D E F

C

FIGURE 6 | Correlation between serum complement components and inflammatory cytokine/chemokine levels in critical COVID-19 patients who died in hospital.
(A) complement fragment C5a (P = 0.005); (B) complement fragment C3a (P < 0.001); (C) factor P (P < 0.001); (D) interleukin 1 b (IL-1b) (P = 0.01); (E) interleukin 6
(IL-6) (P = 0.02); (F) interleukin 8 (IL-8) (P = 0.001).
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DISCUSSION

In this study, we sought to determine the level of complement
factors and pro-inflammatory cytokines/chemokines in the
critical and mild patient responses to SARS-CoV-2. This study
offers the first insights into the protein expression profile of the
complement factors during SARS-CoV-2 infection. Different
markers of human serum obtained from patients with COVID-
19 and healthy controls were analyzed. The concentration of
complement inflammatory mediators (C3a and C5a),
responsible for attracting phagocytic cells to infection sites,
were higher in critical COVID-19 patients than in the mild
and healthy groups. However, lower levels of complement
regulators were associated with the critical groups. We also
analyzed a panel of 12 inflammatory cytokines/chemokines,
including IL1-a, IL1-b, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-
17A, IFN-g, TNF-a, and GM-CSF, in the sera obtained from
critical and mild patients diagnosed with SARS-CoV-2 infection.
Among these cytokines, serum levels of IL1-b, IL-6, IL-8, and
TNF-a were found to be significantly increased in the critical
COVID-19 patients relative to mild patients. In addition, the
RANTES serum levels were significantly elevated in mild
COVID-19 patients relative to the critical cases.

The complement system is an important component of the
innate immune response to pathogens. Activation of
complements by viral infections induces acute and chronic
inflammation, as well as intravascular coagulation and cell
damage. Consequently, organ failure and death occur (23, 26).
Indeed, complement activation has been implicated in the
pathogenesis of MERS-CoV and SAR-CoV infections, which is
similar to the current pandemic SARS-CoV-2 infection (27).

C5a and C3a are potent mediators that induce inflammatory
reactions. C5a triggers the recruitment of neutrophils and
monocytes followed by their accumulation and activation. In
addition, it initiates mast cells activation and degradation while
increasing the induction of cytokines and vascular permeability
(28, 29). This observation was evident following SARS-CoV
infection (30) as well as demonstrated in vitro and in vivo
following pathogenic H5N1 influenza virus (31). Our work has
demonstrated that the concentrations of the pro-inflammatory
mediators, anaphaylatoxin C3a and C5a, were significantly
increased in critical COVID-19 patients relative to mild and
non-infected groups. In turn, these anaphylatoxins likely
enhanced the release of pro-inflammatory cytokines and
chemokines (IL-1, IL-8, IL-6 and TNF-a) from phagocytic cells
Frontiers in Immunology | www.frontiersin.org 8
and T cells, as previously reviewed (19). This indicates that the
amount of C3 is this group is higher than that of healthy
volunteers. Additionally, the non-survival group demonstrated
a higher concentration of C3a, C5a, and factor P in comparison
to the critical survival group. A significant correlation was
observed between serum complement components and
inflammatory cytokines/chemokines levels in patients with
critical COVID-19 in-hospital mortality.

A recent study on SARS-CoV infections has shown that C3
activation exacerbates acute respiratory distress syndrome
(ARDS) which is associated with SARS-CoV. Low lung
infiltration of neutrophils, inflammatory monocytes, and
decreased concentration of cytokines and chemokines in the
lungs and serum have also been reported (32). A deficiency of C3
in these patients led to low production of C3a and C3b, a skewed
immune response toward Th2 and induction of regulatory T cell
development from CD4+ cells (33, 34).

Another study (35) has described the increased serum levels
of C5a in critical cases of COVID-19 patients, which is consistent
with our findings. A study conducted in Italy showed high
induction levels of C5a and C5b-C9 in the plasma of a
COVID-19 infected group (36). These molecules were
observed in the serum and lung tissue of mice infected with
MERS-CoV (37). However, in severe COVID-19 patients, only
the deposition of C5b-9 was observed and was significantly
elevated in pulmonary microvasculature (22). Patients
hospitalized with COVID-19, who were admitted to ICU, had
elevated levels of C3b on red blood cells peaking on day 7,
relative to healthy non-infected COVID-19 donors (38).
Collectively, MERS-CoV, SARS-CoV, and SARS-CoV-2 over-
activate the complement system and contributes to dysregulation
of the host immune response. High serum levels of complement
protein C5a have also been reported in non-survivor H5N1
patients compared with survivors (24). Animal studies have
further demonstrated that complement C3 knockout mice are
protected from lung inflammation and respiratory failure as well
as inflammatory cytokines (32). Furthermore, a MERS-CoV
mouse model treated with a C5a receptor (C5aR, CD88)
blocker reduced lung inflammation and decreased viral
replication in the lungs (39).

Furthermore, other proteins mediators of complement, such
as C3, C4, and C5b-9, as well as inflammatory cells were found to
be significantly increased in alveolar epithelial cells of the non-
survivors infected with COVID-19. A probable inhibitory effect
was noticed in this study when patients were treated with anti-
C5a monoclonal antibody (35), which may be a potential strategy
against SARS-CoV-2 infection. In addition, strong deposition of
C5b-9 in the kidney tissue of patients infected with SARS-CoV-2
has recently been reported, which caused tissue damage (40).

To the best of our knowledge, this is the first study to report
significantly elevated levels of other complement components
such as factor P, C1q, C2, and C3 in COVID-19 patients in
comparison to healthy non-infected individuals. Moreover,
factor P was higher in the critical group than in the mildly
affected group. However, no difference was observed between the
critical and mildly affected groups in terms of C1q. These
TABLE 2 | Correlation between serum complement proteins and inflammatory.
cytokines/chemokines.

Variable Pearson (r) p-value

C3a IL-6 (r = 0.3886) 0.0498
IL1-b (r = 0.3517) 0.0781

C5a IL-6 (r = 0.2862) 0.1564
IL-1b (r = 0.2979) 0.1394
C3a (r = -0.5672) 0.0500

Factor P C3a (r = 0.6766) 0.0001
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mediators have important roles in enhancing complement
activation during SARS-CoV-2 infection. Thus, COVID-19
may trigger activation of complement via different pathways,
especially the classical and alternative pathways, causing an
accumulation of opsonin molecules, such as C3b, in COVID-
19 patients. Another study showed that SARS-CoV, MERS-CoV,
and SARS-CoV-2 can activate the lectin pathway through
interactions between N-protein and MASP-2 (35). Hence, we
can conclude that 1) the lower C2 and C1q level in critical
patients is believed to complement the depletion during
activation; 2) regulatory mediators are upregulated; and 3) the
time of sample collection may have impacted the results, as levels
were increased during the early stage and gradually decreased
during infection.

Several regulatory molecules, including C1-INH, C4-BP,
decay-accelerating factor (DAF/CD55), factor H, and factor I,
control complement activation (11, 19). This is the first report
regarding SARS-CoV-2 infection, showing that both critical and
mild cases of COVID-19 patients have elevated levels of factor I,
factor H, and C4-BP compared to those in non-COVID-19
healthy individuals (Figure 3). However, the critical groups
had a lower proportion of these regulatory proteins, except for
factor H, in their serum compared to mild cases (Figures 3A–C).
This might be attributed to the high concentration of
anaphylatoxins, C3a, and C5a, among the critical groups
resulting from complement activation.

The first published autopsy study of severe COVID-19
infection showed an association between activation of the
alternative pathway and lectin pathway cascades and
microvascular injury and thrombosis, suggesting complement-
mediated thrombotic microvascular injury syndrome through
alternative and lectin pathway activation (22). Accumulated
evidence demonstrated an association between coagulopathy
(pulmonary embolism or venous, arterial, and/or microvascular
thrombosis) and SARS-CoV-2 infection (41). In fact, systemic
microthrombi and multi-organ injury following SARS‐CoV-1,
MERS‐CoV, SARS‐CoV‐2, H1N1, H5N1, and H7N9 influenza
infections have been described (24, 42). Patients with SARS-CoV-
2 infection are characterized by overactivation of the complement
pathways (17, 43). Meanwhile, data from COVID-19 patients
showed that inflammation and respiratory failure are associated
with systemic complement activation (44). A recent study
confirmed that severe COVID-19 cases have a higher level of
circulating C5a and sC5b-9, signifying C5a blockade as a potential
treatment strategy to control and reduce disease severity (36, 44).
Numerous randomized controlled trials reported increased
survival in severe cases of COVID-19 patients treated with anti-
C5 therapy (27, 36, 45). Collectively, these results confirm that
inhibition of an over-activated complement response significantly
reduces COVID-19 disease severity.

We have also demonstrated a significant correlation between
complement concentration and coagulation in patients infected
with SARS-CoV-2, compared to mild cases and healthy controls.
Moreover, patients with high complement proteins showed
increased platelet counts. Several studies have shown that
COVID-19 patients with excessive coagulant factors are more
susceptible to increased thrombosis and deteriorating clinical
Frontiers in Immunology | www.frontiersin.org 9
outcomes (21). Thus, the lack of C3 in mouse models
demonstrated a decrease in apparent defect of thrombus and
activation of platelets (46). However, after treatment with
different anticoagulants (Clexane & heparins), the level was
decreased. The levels were significantly decreased in the same
group that received Clexane but not heparin. Moreover, critical
patients treated with hydroxyl chloroquine and antiviral drugs
(ritonavir and lopinavir) showed inhibition of coagulation with
no thrombosis, although antiviral drugs (remdesivir, favipiravir)
alone had no significant effect.

The levels of cytokines and chemokines in patients with
COVID-19 remains controversial (47). Moreover, ICU patients
have elevated plasma levels of IL-2, IL-7, IL-10, GSCF, IP10,
MCP1, MIP1A, and TNF-a compared to non-ICU patients (13).
However, one study has reported no significant differences in
serum levels of TNF-a, IL-1, IL-8, and IL-10 in mild, severe, and
critical ICU patients (48). Similarly, we did not observe
differences in IL-10 levels between critical and mild COVID-
19 patients.

Elevated serum levels of pro-inflammatory cytokines,
including IL1-b, IL6, IL-12, IFN-g, IP10, and MCP1 are
associated with lung inflammation and damage in patients with
SARS (49). Additionally, MERS-CoV infection has been reported
to induce high levels of pro-inflammatory cytokines, including
TNF-a, IFN-g, IL-15, and IL-17 (50). Consistent with previous
findings (51, 52), we also observed that serum levels of IL1-b, IL-
6, IL-8, and TNF-a, but not IL1-a, IFN-g, IL-2, IL-4, IL-10, IL-12,
or IL-17A were significantly elevated in ICU patients compared to
non-ICU patients, suggesting a possible role for T-helper-1 cell
responses during SARS-CoV-2 infection. Moreover, the increased
levels of Th1 cytokines, including IL-1b, IL-6, and TNF-a, may be
associated with the cytokine storm that is associated with disease
severity. Nonetheless, SARS-CoV-2 infection was also shown to
induce increased levels of Th-2 cytokines, such as IL-4 and IL-10,
which can suppress inflammation (49).

Previous studies have reported that TNF-a exerts strong
antiviral activity against swine, avian, and human influenza
viruses (53). These cytokines are involved in the regulation of
inflammatory processes and infectious diseases (54). It has
further been reported that TNF-a serum levels are increased in
COVID-19 patients with higher levels detected in severe cases
(13, 51, 52). However, normal levels of TNF-a have been
reported in severe COVID-19 patients (55). Previous studies
have also reported that overproduction of TNF-a is associated
with poor disease outcomes in MERS-CoV and SARS-CoV (50,
56), while administration of anti-TNF-a antibody (certolizumab)
may have positive effects on COVID-19 patients (57).
Additionally, although elevated levels of TNF-a and IFN-g
contribute to lung damage and high case fatality in COVID-19
patients, combination therapy of anti-TNF-a and anti-IFN-g
neutralizing antibodies effectively reduces inflammatory cell
death, tissue damage, and mortality (58)

IL-1 is actively involved in inflammatory response to
infection (59). Meanwhile, SARS-CoV-2 has been shown to
affect the activation and maturation of IL-1b, which can
sequentially activate IL-6 and TNF-a (60–62). IL-1b also
contributes to the cytokine storm induced by SARS-CoV-2
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(63). In fact, most COVID-19 patients with severe illness have
increased levels of IL-1b, which is associated with ARDS (64);
therefore, inhibition of IL-1b can mitigate development of the
cytokine storm that causes death in COVID-19 patients (65).
Additionally, IL-1 and IL-18 are secreted following
inflammasome activation and have critical roles in the
regulation of innate and adaptive immune responses (66).
Severe SARS-CoV-2 infection engages inflammasome
activation and pyroptosis associated with elevated levels of IL-
1ß. However, therapy targeting IL-1ß has demonstrated
beneficial outcomes in the prevention of SARS-CoV-2-induced
cell death (67). Similarly, early blockade of the IL-1 receptor
was found to be a promising therapeutic strategy against
hyperinflammation, development of the cytokine storm, and
respiratory failure in COVID-19 patients (68).

Furthermore, IL-6 levels are elevated in patients with
COVID-19 and are associated with a poor prognosis (48, 69,
70), and are further increased in severe COVID-19 associated
symptoms compared to mild patients, suggesting the importance
of this cytokine as a marker to monitor disease progression and
development (52, 55). Additionally, the IL-6 levels were higher in
patients who died from COVID-19 than in the recovered
individuals (71). Recently, it has been reported that increased
levels of IL-6 enhance the inflammatory process and contribute
to cytokine storm thereby worsening prognosis (72); however,
targeting IL-6 receptors (IL-6r) with a specific monoclonal
antibody (tocilizumab) has been shown to mediate an effective
therapeutic option in COVID-19 patients who are at risk of
developing cytokine storms (69).

In addition, IL-8 is a strong pro-inflammatory cytokine that
plays an essential role in the activation and recruitment of
neutrophil cells during inflammation (73); neutrophilia is more
frequently observed in severe COVID-19 patients than in the
mildly affected patients (14), suggesting that IL-8 participates in
the pathophysiology of COVID-19. Similarly, in our study, high
IL-8 levels were associated with increased numbers of
neutrophils, particularly in the ICU patients relative to mild
patients and healthy normal controls. IL-8 also contributes to the
occurrence of ARDS and results in a cytokine storm linked to
death in patients infected with SARS-CoV or MERS-CoV (74,
75). It has been established that pre-treatment with an anti-
CXCL8 antibody prevents the development of severe lung injury
(76); thus, targeting this cytokine or its receptor may offer an
effective treatment option for COVID-19 patients.

RANTES (CCL5) is a strong leucocyte chemoattractant that
can activate and induce migration of several immune cells,
including T cells, natural killer cells, dendritic cells, monocytes,
basophils, and eosinophils, to the site of inflammation (77, 78). It
has been reported that, at the early stage of SARS-CoV-2
infection, increased serum levels of CCL5 were observed in
patients with mild COVID-19 symptoms compared to severe
patients, suggesting that CCL5 may protect against viral
infection, where virus-specific CD8+ T cells respond to the
removal of the virus before lung inflammation occurs (79). In
addition, it has been shown that mild cases, not severe COVID-
19 patients, are characterized by high expression of clonally
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expanded CD8+ T cells in the bronchoalveolar fluid, which
suggests the potential mechanisms underlying pathogenesis
and recovery in mild patients (80). Moreover, in agreement
with these findings, we found that serum levels of RANTES
were significantly elevated in mild patients and critical ICU
patients compared to healthy normal controls. However,
RANTES levels were significantly increased in the mildly
affected patients compared to the critical ICU patients (81).
Taken together, these results suggest that targeting RANTES,
at least in the early stages of viral infection, may enhance viral
clearance and prevent the spread of the virus to the lung and
other parts of the body. In addition, this finding highlights the
fact that RANTES might be important in antiviral responses in
patients mildly affected with COVID-19 but also contributes to
cytokine storm and mortality in severe cases.

The detection of antibodies during SARS-CoV-2 provides
insights into the disease diagnosis and clinical course of COVID-
19 infection. However, recent studies have indicated that
COVID-19 patients with high levels of antibody responses,
including the total antibodies, were associated with COVID-19
disease severity (9, 82). Likewise, increased B cell activation and
proliferation in severe COVID-19 patients is associated with
adverse outcomes (83, 84).

Additionally, a higher antibody response during several viral
infections, including COVID-19 and MERS-CoV, was associated
with antibody-dependent enhancement of immunopathological
and robust inflammatory response (85, 86). In this study, high
levels of IgM were detected in critical COVID-19 patients. Our
findings suggest that high levels of SARS-CoV-2 IgM response
could act as an early biomarker to differentiate between critical
and mild COVID-19 patients. Furthermore, this result provides
evidence of the possible antibody-dependent enhancement
phenomenon during SARS-CoV-2 infection. In fact, markedly-
increased humoral immunity has been linked to antibody-
dependent enhancement, which was observed during SARS-
CoV-1 infection (87). Therefore, we believe that high levels of
IgM may play a critical role in the immunopathology and
severity of COVID-19. In any case, further studies are required
to confirm this finding.

The limitations of the current study can be summarized as
follows: 1) Assessment of T-helper-1 and T-helper-2 cytokine
expression in the sera of infected patients may not reflect the host
response against SARS-CoV-2 in the airways. 2) COVID-19
patients were not tracked, and serum samples were collected
once and, therefore, it is difficult to determine the kinetics of
cytokine levels. Furthermore, future studies should examine the
expression of cytokines in bronchoalveolar fluid samples from
COVID-19 patients to achieve a better understanding of the host
immune response to SARS-CoV-2 infection. In addition,
conducting multiple sampling time points may help to
determine the peak levels for each cytokine.

In conclusion, we showed an increase in the serum levels of
cytokines, including IL1-b, IL-6, IL-8, and TNF-a in ICU patients
relative to mild COVID-19, while RANTES serum levels were
increased in the mild, not ICU patients. In addition, SARS-CoV-2
infection contributes to the potent activation of complement
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mediators including C5a, C3a, factor P, factor I, factor C4-BP, and
factor H. Despite the advantage of complement activation and
protection against COVID-19, there is a strong association in the
pathogenesis of SARS-CoV-2, especially in tissue inflammation
and coagulation. Thus, this outcome might have contributed to
tissue damage and dysfunction, whether in circulation or other
organs. There is an urgent need to identify an effective therapeutic
strategy against COVID-19 by targeting and suppressing excessive
mediators of complements in controlling SARS-CoV-2 infection,
as well as pro-inflammatory cytokines (IL1-b, IL-6, and TNF-a)
and chemokines (IL-8 and RANTES) that might be used as
predictive markers to evaluate disease severity and, thus, can be
targeted as treatment options in COVID-19 disease.
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