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Great progress has been made in the understanding of the pathophysiology of
cardiovascular diseases (CVDs), and this has improved the prevention and prognosis of
CVDs. However, while sex differences in CVDs have been well documented and studied
for decades, their full extent remains unclear. Results of the latest clinical studies provide
strong evidence of sex differences in the efficacy of drug treatment for heart failure,
thereby possibly providing new mechanistic insights into sex differences in CVDs. In this
review, we discuss the significance of sex differences, as rediscovered by recent studies,
in the pathogenesis of CVDs. First, we provide an overview of the results of clinical
trials to date regarding sex differences and hormone replacement therapy. Then, we
discuss the role of sex differences in the maintenance and disruption of cardiovascular
tissue homeostasis.
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INTRODUCTION

Despite recent advances in medical and interventional therapies, cardiovascular disease (CVD)
remains a leading global cause of death in men and women. Although sex differences are well
recognized in the epidemiology and outcomes of CVD, their full extent is yet unclear. The
results of recently published clinical studies on sex differences may provide new insights into
the underlining mechanisms. A recent study that investigated the effect of sacubitril–valsartan
on the incidences of cardiovascular death and hospitalization by heart failure (HF) in patients
with HF with preserved ejection fraction (HFpEF) reported significantly reduced outcomes in
women with HFpEF, but no statistically significant effect was observed in men with HFpEF
(Solomon et al., 2019; McMurray et al., 2020). Sacubitril upregulates natriuretic peptide signaling
of which cyclic guanosine monophosphate (cGMP) is considered the downstream target (Emdin
et al., 2020). Intriguingly, sildenafil, another activator of cGMP signaling, via inhibition of
phosphodiesterase type 5 (PDE5), showed sex differences in its beneficial effect on HF in animal
models (Takimoto et al., 2005; Sasaki et al., 2014). Studies also showed that women with premature

Abbreviations: ARB, Angiotensin receptor blockers; CHIP, Clonal hematopoiesis of intermediate potential; CVD,
Cardiovascular diseases; DOPS, Danish Osteoporosis Prevention Study; EC, Endothelial cells; HF, Heart failure; HFpEFHF,
With preserved ejection fraction; HFrEFHF, With reduced ejection fraction; HT, Hormone therapy; IHD, Ischemic heart
disease; VSMC, Vascular smooth muscle cells; WHI, Women’s Health Initiative.
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menopause more frequently embrace clonal hematopoiesis of
intermediate potential (CHIP), the age-related expansion of
hematopoietic stem cells with leukemogenic mutations without
detectable malignancy, which is associated with the development
of CVD (Jaiswal et al., 2017; Honigberg et al., 2021). Taken
together, these clinical and experimental findings suggest clear
sex differences in cardiovascular morbidity, natural course
and drug efficacy.

The role of sex hormones in the development of CVD,
particularly the effect of estrogen on the cardiovascular system, is
strongly suggested as the cause of these sex differences. Indeed,
several clinical trials, including recent large-scale clinical trials
and many basic experiments, have shown the cardiovascular
protective effects of estrogen (Bernelot Moens et al., 2012;
Schierbeck et al., 2012; Hodis et al., 2016). However, some
previous large-scale clinical trials have reported adverse effects
of estrogen (Manson et al., 2003; Turgeon et al., 2004), so it
seems estrogen may not be entirely beneficial. For clarity in this
area, it is necessary to determine the mechanisms of action of
estrogen in greater detail. Therefore, in this paper, we first outline
the results of clinical trials to date that evaluated the preventive
effects of estrogen against CVD, and then, we focus on the
molecular function of estrogen signaling in terms of receptors,
cell types, organs and pathological models. Finally, we discuss the
mechanisms by which estrogen signaling elicits sex differences in
the cardiovascular system.

SEX DIFFERENCES AND ESTROGEN
HORMONE THERAPY IN
CARDIOVASCULAR DISEASES

Sex Differences in Cardiovascular
Diseases
Studies over the decades have reported a distinct pattern of
CVD prevalence based on sex. Further, the latest epidemiological
report stated that younger women have a lower risk of developing
CVD, that the difference between sexes disappears at ages 60–79,
and that women overtake men at the age of 80 (Virani et al., 2020),
i.e., young premenopausal women have protection against CVDs,
and the protection fades away after menopause. Therefore, the
cardioprotective role of the female hormone estrogen has been
regarded as a major factor responsible for the sex difference in
the incidence of CVDs (Vitale et al., 2009).

The overall lifetime risk of HF is similar between the
sexes, but sex differences in the epidemiology of HF become
apparent when the type of HF is considered. HF with reduced
left ventricular ejection fraction (HFrEF) is more common in
men than in women (Lee et al., 2009; Dunlay et al., 2017).
This type of HF is caused by previous myocardial infarction
or dilated cardiomyopathy, and these two diseases are more
prevalent in men than in women. In contrast, as revealed
by the Framingham heart study, HFpEF is two times more
common in women than in men (Lee et al., 2009; Dunlay et al.,
2017). Given the fundamental differences in pathophysiology,
HFpEF and HFrEF are managed differently. Although results

of clinical trials on HFrEF demonstrate the effectiveness of beta
blockers, angiotensin converting enzyme inhibitors, angiotensin
receptor blockers (ARBs) and sodium–glucose cotransporter-2
inhibitors, these therapies do not definitively decrease morbidity
and mortality in patients with HFpEF (Borlaug, 2020). However,
there are weak signals of benefit for mineralocorticoid receptor
antagonists (Borlaug, 2020). It is important to note that the
Prospective Comparison of ARNI with ARB Global Outcomes
in Heart Failure With Preserved Ejection Fraction (PARAGON-
HF) trial, which is the latest and largest HFpEF outcomes trial,
reported a strong sex difference in the efficacy of angiotensin
receptor neprilysin inhibitor (ARNI) treatment, with greater
benefits observed in women than in men (Solomon et al.,
2019; McMurray et al., 2020). Sacubitril–valsartan, compared
with valsartan, reduced the prevalence of cardiovascular death
and total hospitalizations for HF by 27% in women with
HFpEF, but with no effect in men (Solomon et al., 2019;
McMurray et al., 2020).

The incidence of ischemic heart disease (IHD) is higher in
men than in women throughout their lifespans, even though
the sex difference decreases as age increases (Albrektsen et al.,
2017). Despite the low prevalence of myocardial infarction in
women compared to men, a recent large-scale cohort study
showed that women have a higher risk of death and HF
than men in the 5 years following an ST-segment-elevation
myocardial infarction, even after accounting for differences in
angiographic findings, revascularization, and other confounders
(Ezekowitz et al., 2020). Women with IHD characteristically
have higher prevalence of angina, burden of CVD risk factors,
and prevalence of non-obstructive coronary artery disease on
angiography than men with IHD (Garcia et al., 2016). Non-
obstructive coronary artery disease, also known as microvascular
angina, is a disease that predominantly affects postmenopausal
women (Jespersen et al., 2012), where estrogen is reported
to mediate coronary microvascular function by modulating
nitric oxide (NO) in coronary endothelium (Lu et al., 2016;
Vanhoutte et al., 2016). CHIP is associated with elevated levels of
inflammatory cytokines and accelerated atherosclerosis in animal
and human studies (Fuster et al., 2017; Jaiswal et al., 2017;
Jaiswal and Libby, 2020). A recent study reported that premature
menopause (i.e., menopause before the age of 40), and especially
natural premature menopause, is independently associated with
increased risk of CHIP (Honigberg et al., 2021). This suggests
that CHIP is associated with incident coronary artery disease
events in postmenopausal middle-aged women independent of
conventional coronary artery disease risk factors.

Although the risk of atrial fibrillation (AF) is higher in
men than in women (Ball et al., 2018), it is well documented
that women with AF have higher risks of stroke, myocardial
infarction and HF than men with AF (Regitz-Zagrosek et al.,
2016). In the CHA2DS2-VASc scoring system used to evaluate
the risk of stroke, a point is added for female sex, and
patients with total points ≥ 2 who have another risk factor are
recommended to receive oral anticoagulant therapy to prevent
stroke (January et al., 2014; Kirchhof et al., 2016). Uncontrolled
systolic hypertension is a stronger risk factor of incident AF in
women than in men, associated with a twofold increased risk
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of incident AF in women and a 30–60% increased risk in men
(Sharashova et al., 2020).

Hormone Therapy in Cardiovascular
Diseases
These sex differences in CVD prevalence may be attributed
to estrogen function in cardiovascular organs, and this is
supported by studies conducted over previous decades. In
1978, the Framingham study reported that women with
surgical menopause have a 2.7-fold higher risk of CVD events
than women of the same age without surgical menopause
(Gordon et al., 1978). This finding led to the notion that
exogenous estrogen could reduce the risk of CVD events in
postmenopausal women. Several cohort studies consistently
reported the cardioprotective effect of hormone therapy (HT)
that lowers risk of CVD (Grodstein et al., 1997; Varas-Lorenzo
et al., 2000; Taylor et al., 2020). In turn, major randomized
controlled trials reported around the year 2000 showed neutral
effects of HT (Hulley et al., 1998; Grady et al., 2002), and
a randomized placebo-controlled studies conducted by the
Women’s Health Initiative (WHI) reported no benefits in CVD
prevention but observed rather increased risks of stroke and deep
vein thrombosis (Rossouw et al., 2002). These conflicting results
may reflect differences in the time between menopause and the
start of HT. Earlier cohort studies have included younger women
who underwent HT in the early postmenopausal period, while
the randomized studies included participants who received HT
10 years after menopause when responsiveness to estrogen in
cardiovascular tissues may have diminished.

In fact, recent studies provided evidence supporting this
‘timing hypothesis’. The WHI-Coronary Artery Calcium Study
(CACS) analyzed the calcified plaque burden on coronary arteries
in women close to the age of menopause (50–59 years) who
received estrogen or placebo. The women who received estrogen
were found to have a lower calcified plaque burden than
the women who received placebo (Manson et al., 2007). The
Danish Osteoporosis Prevention Study (DOPS) was conducted
to estimate the effects of early initiated HT on CVD prevention
(Schierbeck et al., 2012). In DOPS, healthy women (n = 1,006)
with a mean age of 49.7 years were randomly divided into
two groups: HT group (n = 502) and no-treatment group
(n = 504). Women treated with HT for 10 years had a
significantly reduced risk of HF, myocardial infarction and
mortality, but they did not have a significant increase in the
risk of venous thromboembolism, stroke or cancer (Schierbeck
et al., 2012). In the Early versus Late Intervention Trial with
Estradiol study (ELITE), participants who had early menopause
(<6 years after menopause) and those who had late menopause
(≥ 10 years after menopause) were randomized to receive oral
17β-estradiol or a placebo (Hodis et al., 2016). The carotid
intima-media thickness (CIMT) measured by ultrasound was
the primary clinical outcome as an estimation of cardiovascular
risk. 17β-estradiol-treated early menopausal subjects had slower
progression of CIMT than placebo-treated subjects, but there
was no estrogen effect in late menopausal participants (Hodis
et al., 2016). Taken together, these clinical findings suggest that

estrogen HT exhibits cardioprotective effects when initiated at an
ideal timepoint after menopause, encouraging the researchers to
further investigate the molecular and physiological functions of
estrogen and estrogen receptor (ER)-mediated signaling in the
cardiovascular system.

The effects of sex hormones other than estrogen on CVD
have not necessarily been evaluated sufficiently. Progesterone, in
combination with estrogen, is effective in inhibiting endometrial
hyperplasia and cancer (Beresford et al., 1997). The risk of CVD
was lower when progesterone was used in combination with
estrogen than with estrogen alone (Grodstein and Stampfer,
1995), suggesting that progesterone may have cardioprotective
effects. However, the effects of progesterone itself on the
cardiovascular system have been little studied so far. It has also
been reported that low serum testosterone levels are associated
with an increase of the incidence of CVD in men (Khera et al.,
2021), while exogenous testosterone therapy reportedly increases
the risk of cardiovascular disease (Basaria et al., 2010; Vigen et al.,
2013), so the cardiovascular actions of androgens need to be
further studied as well.

MOLECULAR MECHANISMS OF
ESTROGEN RECEPTOR SIGNALING IN
CARDIOVASCULAR CELLS

There are two ERs: ERα and ERβ, both of which exhibit
high homology (Mendelsohn and Karas, 1999). Ligand-bound
ERs translocate from cytoplasm to nucleus and regulate gene
expression as transcription factors (nuclear ER signaling).
ERs alternatively function without nuclear translocation via
enzymatic signaling pathways (non-nuclear ER signaling)
(Mendelsohn and Karas, 2010; Ueda and Karas, 2013). Functional
ERs are expressed in various cardiovascular cell types of
humans and animals, including vascular endothelial cells (ECs),
vascular smooth muscle cells (VSMCs), and cardiomyocytes
(Mendelsohn and Karas, 1999). Estrogen is also known to
signal via a transmembrane G-protein-coupled receptor known
as GPER. The characteristics and signaling targets of each ER
are summarized in Table 1. Since GPER has been reviewed
extensively in other papers (Haas et al., 2009; Prossnitz and
Barton, 2011; Feldman and Limbird, 2017; Luo and Liu, 2020),
we will focus on ERα and ERβ in this review.

In the nucleus, ligand-bound ERs function as transcription
factors, interacting with estrogen response elements, and thereby
regulate gene expression (Mendelsohn and Karas, 2005). Also,
nuclear ER-estrogen complexes modulate the function of other
transcription factor classes via protein–protein interactions.
Hence, these complexes control gene expression without directly
binding to DNA (Mendelsohn and Karas, 1999; McKenna and
O’Malley, 2002). Recruitment of co-activators and displacement
of co-repressors differ in each cell type, which determine cellular
response to estrogen.

Cellular physiological responses to estrogen are elicited
within minutes by the activation of membrane-associated ER,
which has been termed “rapid” or “non-nuclear” ER signaling
(Ueda and Karas, 2013). Non-nuclear ER signaling has been
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TABLE 1 | Characteristics of ERs.

ERs ERα ERβ GPER

Identification 1969 1996 1997

Category Nuclear steroid hormone superfamily G protein-coupled
receptor superfamily

Location Cytoplasm,
nucleus

Membrane
(caveolae)

Cytoplasm,
nucleus

Membrane
(caveolae)

Membrane

Targets ERE,
non-ERE

PI3K, ERK ERE,
non-ERE

ND AC/PKA, EGFR (PI3K,
ERK)

References (Caulin-Glaser et al., 1997; Lantin-Hermoso et al., 1997;
Mendelsohn and Karas, 1999, 2005, 2010; Chambliss
et al., 2000, 2010; Simoncini et al., 2000; McKenna and
O’Malley, 2002; Florian et al., 2004; Lu et al., 2004;
Levin, 2005; Osborne and Schiff, 2005; Pedram et al.,
2006; Ueda and Karas, 2013; Ueda et al., 2018)

(Mendelsohn and Karas, 1999,
2005; Chambliss et al., 2002;
McKenna and O’Malley, 2002;
Patten et al., 2004;
Fliegner et al., 2010)

(Haas et al., 2009;
Prossnitz and Barton,
2011; Feldman and
Limbird, 2017;
Luo and Liu, 2020)

ER, estrogen receptor; GPER, G protein estrogen receptor; ERE, estrogen response element; AC, adenylate cyclase; PKA, protein kinase A; EGFR, epidermal growth
factor receptor; PI3K, phosphoinositide 3-kinase; ERK, extracellular signal-regulated kinase; ND, not determined.

identified in various cell types in vitro, including VSMCs,
ECs, and cardiomyocytes (Osborne and Schiff, 2005; Ueda and
Karas, 2013). The ERs located in small invaginations of the
cell membrane known as caveolae signal the rapid actions via
activating kinases or phosphatases to affect cell physiology (Levin,
2005; Pedram et al., 2006). Non-nuclear ER signaling in the
cardiovascular system has been most studied in ECs, where rapid
(within 15–30 min) activation of endothelial nitric oxide synthase
(eNOS) by estrogen was observed (Caulin-Glaser et al., 1997;
Lantin-Hermoso et al., 1997). ERs that reside in caveolae activate
PI3K, Akt and ERK1/2 kinases, leading to activation of eNOS
phosphorylation in ECs (Simoncini et al., 2000; Florian et al.,
2004; Pedram et al., 2006). ERα binds to striatin, which is a
scaffold protein colocalized with caveolin-1. The activation of
PI3K requires that striatin acts as the scaffold protein of the
ERα complex at the caveolae (Chambliss et al., 2000; Lu et al.,
2004). Blocking ERα-striatin binding, either with a peptide that
represents ERα amino acids 176–253 or with the ERα triple-point
mutation (lysine 231, arginine 233 and arginine 234 to alanine:
KRR), abolishes non-nuclear signaling without affecting nuclear
signaling (Lu et al., 2004, 2016; Bernelot Moens et al., 2012; Ueda
et al., 2018). Meanwhile, endogenous ERβ was also found in the
EC membrane, specifically at the caveolae; however, its associated
proteins have not been determined (Chambliss et al., 2002).

ESTROGEN ACTIONS IN ANIMAL
MODELS OF CARDIOVASCULAR
DISEASES

Ischemic Heart Diseases
In animal models of IHDs, such as myocardial infarction and
ischemia–reperfusion, both of ERα and ERβ were reported
to play a role in the cardioprotective effects of estrogen.
After myocardial infarction, increased mortality and HF
exacerbation were observed in global ERβ KO mice (Pelzer
et al., 2005). Consistently, cell-type specific overexpression of
ERβ in cardiomyocytes improved cardiac function and survival

after myocardial infarction. In female mice overexpressing ERα,
cardiac fibrosis after myocardial infarction was inhibited with
increased angiogenesis (Mahmoodzadeh et al., 2014; Schuster
et al., 2016). In an ischemia–reperfusion model, estrogen
normalized coronary endothelial dysfunction in ovariectomized
wild-type mice, while estrogen failed to reverse it in global
ERα KO mice (Favre et al., 2010). ERα KO mice also
demonstrated markedly impaired cardiac contractility, increased
cardiomyocyte death and mitochondrial damage after ischemia–
reperfusion (Zhai et al., 2000; Wang et al., 2006). In contrast,
in an ex vivo model of global ischemia–reperfusion, the hearts
of female ERβ KO mice showed poor functional recovery
compared to those of wild-type mice, but no significant
difference was observed between ERα KO and wild-type
mice (Gabel et al., 2005). Mechanistically, estrogen attenuates
reperfusion injuries after ischemia mainly via activation of
PI3K-Akt, increased expression of the anti-apoptotic protein
BCL-2 and reduced expression of proapoptotic caspase proteins
(Patten et al., 2004). In female ERβ KO mice, estrogen
treatment failed to induce recovery from ischemic injury or
activation of PI3K-Akt signaling in the hearts (Patten et al.,
2004; Fliegner et al., 2010). Taken together, ERβ seems to
play important roles in cardioprotection against ischemia–
reperfusion injury, while the role of ERα varies depending on
methodological conditions.

Cardiac Hypertrophy and Failure
Pathological cardiac hypertrophy develops in response to
various pathological stresses, including genetic, mechanical and
neurohormonal stress. Excessive and prolonged stress leads
hypertrophy to failure. Sex difference is known as a modifier
of cardiomyopathy in humans (van Berlo et al., 2013), as
well as in genetically modified mouse models of hypertrophic
cardiomyopathy, including a missense mutation (R403Q) in
the α-myosin heavy chain and a missense mutation (R92Q) in
cardiac troponin T (Maass et al., 2004; McKee et al., 2013; Chen
et al., 2015). In both transgenic mice, male mice showed an
overt phenotype of cardiac hypertrophy and failure compared

Frontiers in Physiology | www.frontiersin.org 4 September 2021 | Volume 12 | Article 738218

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-738218 September 24, 2021 Time: 13:7 # 5

Ueda et al. Sex Hormones in Cardiovascular System

FIGURE 1 | Rapid non-nuclear ERα signaling is indispensable for estrogen to provide NO that activates sGC. ERα non-nuclear signaling requires the interaction
between ERα and striatin, a scaffold protein residing at caveolae. A transgenic mouse line in which ERα non-nuclear signaling was selectively disrupted showed that
ERα non-nuclear signaling was indispensable to the therapeutic efficacy of cGMP-PDE5 inhibition in heart failure but not to that of sGC stimulation. These data imply
the advantage of sGC stimulation over PDE5 inhibition as a potential therapeutic strategy in treating heart failure in post-menopausal women, highlighting the need
for female-specific therapeutic strategies.

with female mice (Olsson et al., 2001; Maass et al., 2004;
McKee et al., 2013). Importantly, ovariectomized female mutant
mice had worse phenotypes with greater impairment of
contractile function and myocardial energy metabolism, while
estrogen supplementation restored these parameters (Chen et al.,
2015). These findings suggest protective effects of estrogen
against cardiac hypertrophy and failure.

Results of studies that used global ERα or ERβ KO mice
subjected to chronic angiotensin II treatment or pressure
overload have suggested the role of ERβ in the protective
property of estrogen against cardiac hypertrophy and failure.
Mechanistically, the link between estrogen and the cGMP-
PKG signaling pathway may be a key that deserves further
investigation (Kim and Levin, 2006). Upregulation of cGMP
signaling in myocardium has emerged as a novel therapeutic
strategy for heart failure, evidenced by recent clinical studies.
The Vericiguat Global Study in Subjects with Heart Failure
with Reduced Ejection Fraction (VICTORIA) study showed
cardiovascular protection by the soluble guanylate cyclase
(sGC) stimulator vericiguat (Armstrong et al., 2020). Neprilysin
inhibition by ARNI that provides cardiovascular benefits also
stimulates cGMP signaling via augmentation of the natriuretic
peptides (McMurray et al., 2014). Considering that myocardial
cGMP-PKG signaling pathway is deactivated in human HFpEF

and that HFpEF is associated with female sex independent of
obesity and diabetes (Lee et al., 2009; Dunlay et al., 2017), it
is reasonable to assume that estrogen decline and subsequent
cGMP deactivation may contribute to the pathophysiology
of HFpEF. In fact, estrogen signaling is crucial for a PDE5
inhibitor sildenafil-induced activation of cGMP-PKG in cardiac
myocytes to ameliorate HF in female mice (Fisher et al., 2005;
Sasaki et al., 2014). Additionally, using a novel knock-in mice,
whose ERα are replaced with the ERα harboring triple-point
KRR mutation, we recently reported that rapid non-nuclear
ERα signaling is indispensable for estrogen to provide NO that
activates sGC (Figure 1; Fukuma et al., 2020). These results
suggest a potential link between estrogen and cGMP signaling.
A recent study provided a great progress in the experimental
research of HFpEF, where mice treated with a combination
of high-fat diet and inhibition of NOS signaling by L-NAME
recapitulates the systemic and cardiovascular features of human
HFpEF (Schiattarella et al., 2019). In contrast to observations in
humans, however, female mice in the HFpEF model developed
a significantly attenuated cardiac phenotype compared with
their male counterparts, and this protection in female mice
was preserved even by ovariectomy (Tong et al., 2019). Given
that ARNI use for HFpEF patients reduced the risk of HF
only in women (Solomon et al., 2019; McMurray et al., 2020),
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extended studies may clarify the molecular mechanisms by
which cardiovascular benefits provided by the natriuretic peptide
augmentation and its downstream cGMP signaling show the sex
difference in HFpEF.

Injury Response in the Vasculature and
Atherosclerosis
Vascular damage provokes regional vascular inflammation
and prolonged inflammation leads to pathological vascular
remodeling that manifests as neointimal hyperplasia. Estrogen
was found to inhibit the intimal thickening in a mouse carotid
artery injury model through inhibiting the proliferation of
VSMCs and promoting re-endothelialization (Iafrati et al., 1997;
Hayashi et al., 2000; Brouchet et al., 2001; Chambliss et al.,
2010). In ERα KO mice, estrogen treatment failed to protect
vasculature against the vascular injury (Brouchet et al., 2001;
Pare et al., 2002), while in ERβ KO mice, it is still protective
(Karas et al., 1999; Brouchet et al., 2001), suggesting that
ERα is responsible for the estrogen protection on vasculature.
The importance of the non-nuclear ER signaling pathway in
estrogen-induced vascular protection has been evaluated in gain-
and loss-of-function studies. Estrogen dendrimer conjugates
(EDC), which was found to specifically bind to membrane ERs
but not those in cytoplasm and selectively activates non-nuclear
ER signaling, promoted re-endothelialization in injured carotid
arteries in an ERα-dependent manner (Chambliss et al., 2010).
Notably, endometrial carcinoma cell growth was activated by
estrogen, but not EDC, suggesting that selective activation of
the non-nuclear ER signaling does not promote cancer growth
(Chambliss et al., 2010). In turn, estrogen’s vascular protective
effect was not observed in disrupting peptide mice (DPM), in
which ERα-striatin binding was disrupted due to overexpression
of a peptide that represents ERα amino acids 176–253 (Bernelot
Moens et al., 2012), suggesting that non-nuclear signaling plays
a substantial role in the protection by estrogen against vascular
injury. Meanwhile, ligand-bound ERα mediates the transcription
of target genes through the activation function 2 (AF2) domain,
which is located on the C-terminal. Knock-in mice without a
functional AF2 domain showed impaired estrogen protection
against atherosclerosis (Billon-Galés et al., 2011). Conversely, the
estrogen effects on re-endothelialization after vascular injury was

preserved in these mice (Billon-Galés et al., 2011). Another study
using a knock-in mouse model harboring a point mutation of
the arginine 264 of ERα (R264A-ERα), in which non-nuclear
ERα signaling is selectively abrogated, consistently showed that
endothelial healing is mediated by non-nuclear ERα signaling,
and in turn, atheroma protection is mediated by nuclear
ERα action (Adlanmerini et al., 2020). Additionally, increased
atherosclerotic lesion area was displayed in LDL receptor-KO
mice transplanted with ERα KO mice bone marrow, suggesting
a substantial role of ERα signaling in bone marrow cells for
atheroprotection (Ribas et al., 2011).

CONCLUSION

Estrogen directly affects cardiovascular tissues and may have
considerable influence on the sex differences observed in the
epidemiology and outcomes of CVDs. Recent clinical studies
have highlighted the diverse cardiovascular effects of estrogen,
and research into the mechanisms of action of the sex hormone
will be increasingly important in the future.
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