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Abstract Eggs and oocytes have a prominent ability to

reprogram sperm nuclei for ensuring embryonic develop-

ment. The reprogramming activity that eggs/oocytes

intrinsically have towards sperm is utilised to reprogram

somatic nuclei injected into eggs/oocytes in nuclear

transfer (NT) embryos. NT embryos of various species can

give rise to cloned animals, demonstrating that eggs/

oocytes can confer totipotency even to somatic nuclei.

However, many studies indicate that reprogramming of

somatic nuclei is not as efficient as that of sperm nuclei. In

this review, we explain how and why sperm and somatic

nuclei are differentially reprogrammed in eggs/oocytes.

Recent studies have shown that sperm chromatin is epi-

genetically modified to be adequate for early embryonic

development, while somatic nuclei do not have such

modifications. Moreover, epigenetic memories encoded in

sperm chromatin are transgenerationally inherited, imply-

ing unique roles of sperm. We also discuss whether somatic

nuclei can be artificially modified to acquire sperm-like

chromatin states in order to increase the efficiency of

nuclear reprogramming.
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Introduction

During the course of development, totipotent embryonic

cells differentiate and become committed to distinct lin-

eages. Once a cell is differentiated, it cannot be dedif-

ferentiated in normal development. However, it was

proved that it is possible to dedifferentiate a cell experi-

mentally in a process called cloning. Successful cloning

experiments have been first performed in Xenopus laevis:

when cells from embryos/tadpoles were transferred into

enucleated eggs, arrested at the metaphase of the second

meiotic division (MII; the term ‘‘MII egg’’ is used in

frogs, while ‘‘MII oocyte’’ is used for mammals), healthy

embryos with the genetic material of the donor cells were

generated, reaching adulthood and sexual maturity [1].

Decades later, Dolly the sheep was born as the first

mammalian somatic cell nuclear transfer (SCNT) animal

[2], followed by reports of successfully cloned individuals

across many mammalian species, including the mouse [3],

cow [4], goat [5], pig [6, 7], cat [8], rabbit [9], horse [10],

rat [11], dog [12], ferret [13], red deer [14], and camel

[15]. However, regardless of the species used, embryos

obtained by SCNT develop to the adulthood inefficiently

compared to embryos obtained by fertilisation. Further-

more, it is generally regarded that the more differentiated

somatic cell nuclei are when used as donors in SCNT, the

less efficient the process is; for example, in frogs, when

blastula or gastrula nuclei were used as donors for SCNT,

36 % of resulting embryos were able to develop to

feeding tadpoles, whereas when the nuclei of intestinal

epithelium were used, only 1.5 % embryos reached a

feeding tadpole stage [16]. Although this rule may not be

fully applied to mammalian cloning [17, 18], it is still

valid to conclude that embryonic cells are a better source

for SCNT [19].

M. Teperek � K. Miyamoto (&)

The Wellcome Trust/Cancer Research UK Gurdon Institute,

The Henry Wellcome Building of Cancer and Developmental

Biology, University of Cambridge, Tennis Court Road,

CB2 1QN Cambridge, United Kingdom

e-mail: k.miyamoto@gurdon.cam.ac.uk

M. Teperek � K. Miyamoto

Department of Zoology, University of Cambridge,

Cambridge, United Kingdom

123

Reprod Med Biol (2013) 12:133–149

DOI 10.1007/s12522-013-0155-z



Why is SCNT inefficient or, in other words, why are

somatic cells resistant to reprogramming? The sperm

which fertilises the egg is also a highly specialised cell.

However, despite being specialised, its nucleus can almost

invariably support normal embryonic development.

Therefore, the specialisation of the sperm that occurs

during spermatogenesis prepares it to undergo efficient

reprogramming by the egg after fertilisation. Namely, the

sperm is developmentally ‘programmed’ to be ‘repro-

grammed’ and to sustain normal embryonic development.

In this review we first describe sperm ‘programming’: we

review the important nuclear changes occurring during

spermatogenesis that allow the mature sperm to acquire its

unique chromatin features. Secondly, we discuss which of

the unique sperm features may be responsible for the high

efficiency of embryonic development after fertilisation,

with a focus on protein and RNA contents, as well as on

epigenetic modifications present on the chromatin of the

mature sperm. Thirdly, we describe reprogramming events

occurring upon NT in order to compare them to those

occurring at fertilization. Thereafter, we summarise the

most commonly observed abnormalities in cloned

embryos, which are largely attributed to features of somatic

cell chromatin. Lastly, we focus on the main differences

between sperm and somatic cells that are likely related to

reprogramming efficiency and discuss possible ways of

improving cloning efficiency by making somatic cells more

sperm-like.

Unique features of sperm chromatin

Sperm specialisation occurs during spermatogenesis as a

series of precisely controlled events changing a progenitor

germ cell into a spermatozoon. The length of the process,

as well as the precise mechanisms controlling each step of

spermatogenesis, differs amongst vertebrates, though gen-

eral concepts are similar [20]. Somatic precursors of sperm

cells, spermatogonia (developed from male germ cells),

can undergo either a proliferative or a differentiative cell

division. The former produces more spermatogonial cells,

the latter results in the formation of a spermatogonial cell

and a primary spermatocyte [21]. Primary spermatocytes

enter meiotic division, producing secondary spermatocytes,

which, upon completion of the meiotic division, form

spermatids [20]. Spermatids have the number of chromo-

somes and the DNA content already reduced and do not

undergo any other divisions. However, they resemble

somatic cells morphologically, as well as at the molecular

level, and in order to transform into highly specialised

mature sperm they have to complete a series of substantial

structural and morphological changes, called spermiogen-

esis [22] (Fig. 1).

Changes in the nuclear composition

One of the most striking changes occurring during sper-

miogenesis is the compaction of the sperm nucleus. Inter-

estingly, it has been calculated that the volume of DNA of

mouse sperm is six times smaller than the DNA in mitotic

chromosomes [23]. The high condensation of sperm DNA

is possibly due to the presence of protamines. Protamines

are small and highly basic proteins that become incorpo-

rated into the chromatin during spermiogenesis in place of

core histones that are the major component of the chro-

matin in spermatids [24]. The process of protamine

incorporation is complex and requires many intermediate

steps. Firstly, histone variants are thought to be incorpo-

rated alongside canonical histones, which are subsequently

modified post-translationally and replaced by transition

proteins (explained later) [25, 26]. Eventually, transition

proteins are replaced by protamines, which are the major

chromatin component of the mature sperm (Fig. 1). Fur-

thermore, there are a lot of other changes occurring: tran-

scription ceases, and a lot of proteins disappear from the

maturing sperm nucleus whereas others are specifically

accumulated. Below, we briefly describe our current

understanding of nuclear changes occurring during

spermiogenesis.

Histone variants and histone modifications

As mentioned above, incorporation of histone variants is

the first major event allowing the nuclear maturation of a

spermatid. There are numerous histone variants expressed

specifically in testis, for example H2A.lap and H2A.Bbd as

variants of histone H2A [27, 28], TH2B as a variant of

H2B [29, 30], H1t and Hils1 as variants of H1 [31, 32] or

H3t as a variant of histone H3 [33]. It has been shown that

H2A.lap1 marks transcriptional start sites of specific tran-

scripts expressed during spermatogenesis [28]. Interest-

ingly, other histone variants are thought to facilitate

incorporation of protamines. In vitro studies, in which

nucleosomes have been assembled with testis-specific

histone variants (H3t, TH2B, H2A.L2) and with somatic-

type histones, indicate that such combinatorial nucleo-

somes are unstable [34–36]. Therefore, it is hypothesized

that when these histones start to be expressed during

spermatogenesis they form nucleosomes with somatic-like

histones present in the spermatids. This, in turn, confers the

instability of such combinatorial nucleosomes and allows

the incorporation of transition proteins [37]. Furthermore,

the instability of histone-containing nucleosomes can also

be due to the presence of post-translational modifications

that can alter the chromatin-binding properties. Such

modifications can be present not only on core histones, but

also on testis-specific histone variants [38–40]. One of the
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most striking and the best described changes in histone

post-translational modifications is a wave of core histone

acetylation during spermiogenesis. Immunohistochemical

studies revealed that acetylated forms of H2A, H2B, H3

and H4 are present specifically in elongating spermatids

(no acetylation in round spermatids and no acetylation in

mature sperm), suggesting that the transient presence of

this mark may be implicated in exchange of histones to

protamines and condensation of sperm DNA (Fig. 1) [41].

Further studies led to the identification of a protein, named

Brdt (Bromodomain testis-specific), which specifically

binds to acetylated lysine residues on histone H4 [42, 43].

Studies using mammalian culture cells ectopically

expressing Brdt have shown that its binding to acetylated

histones leads to chromatin compaction [42]. It has been

also demonstrated that Brdt remodels chromatin in an

ATP-independent way and that it interacts with Smarce1,

which is a member of SWI/SNF remodelling complex [44].

Importantly, male mice lacking Brdt are infertile and have

abnormal, misshapen sperm [45], suggesting that Brdt

binding to acetylated histones may be indeed a crucial step

allowing a proper condensation of sperm chromatin.

Transition proteins and protamines

Apart from histones and their modifications, other factors

which are implicated in protamine deposition are transition

proteins. Global histone acetylation precedes their

appearance [37]. There are two transition proteins: transi-

tion protein 1 (TP1) and transition protein 2 (TP2). Their

function is redundant, since mice with deletion of TP1 or

TP2 alone are fertile (albeit with a reduced fertility) [46,

47]. However, knockout of both TP1 and TP2 results in

infertile mice with abnormal sperm [26], suggesting that

Fig. 1 Major chromatin

changes during spermiogenesis.

In order to achieve a sperm-like

chromatin state, the round

spermatid which enters the

spermiogenesis process

undergoes a series of chromatin

remodelling events. First,

canonical core histones packing

the chromatin in the round

spermatid can be replaced by

histone variants, which together

with global histone acetylation,

leads to instability of the

nucleosome structure.

Subsequently, transition

proteins are incorporated in

place of unstable nucleosomes

in the elongating spermatid.

Finally, transition proteins are

replaced with protamines. The

mature sperm chromatin is

mainly composed of

protamines, with interspersed

histones and with tightly

associated mRNAs and

transcription factors. All these

processes are occurring in

parallel with the cessation of

transcription—round spermatids

are transcriptionally active,

whereas no transcription is

detected in the mature sperm
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transition proteins are important for a proper spermato-

genesis. Finally, the protamines, which replace transition

proteins towards the end of spermiogenesis, are also

essential for male fertility. It has been demonstrated that

even heterozygous male mice, which are mutant for prot-

amine 1 or protamine 2, are infertile [48]. Detailed analyses

of protamine 2 mutant mice revealed that haploinsuffi-

ciency of protamine 2 affected the DNA integrity of the

mature sperm [49]. Interestingly, abnormal levels or

mutations of protamines also correlate with infertility in

humans [50, 51].

Cessation of transcription and disappearance of basal

transcriptional machinery

Spermiogenesis is however not only a process leading to

the acquisition of unique sperm-specific proteins. Numer-

ous proteins typical for somatic cells disappear in the

course of spermiogenesis. The most remarkable is the

disappearance of RNA polymerase II and hence, cessation

of transcription in maturing spermatids; round spermatids

are actively transcribing, while there is no transcription in

mature sperm (Fig. 1) [52]. The same happens to basal

transcription factors: TAF1 and TLF (TBP-like factor) also

disappear during spermatid condensation [53–55]. There-

fore, it could be that cessation of transcription and removal

of the majority of basal transcriptional machinery is

important for the paternal nucleus to sustain the embryonic

gene expression pattern after fertilization.

Which components of the sperm make

it ‘programmed’ to be ‘reprogrammed’?

Since there are numerous factors being acquired and lost

during sperm maturation (Fig. 1), it is not easy to dissect

the ones that are responsible for rendering the sperm easily

reprogrammable by eggs/oocyte, as opposed to the somatic

cell after nuclear transfer. We can however classify them

into five categories: (1) protamines, (2) sperm-derived

transcriptional regulators, (3) sperm-derived RNAs, (4)

post-translational modification of histones in the mature

sperm, and (5) DNA methylation profiles in the mature

sperm. We will discuss below the potential involvement of

each of these categories in making sperm easily

reprogrammable.

Protamines

One of the biggest differences between sperm and somatic

cells is the fact that DNA of a somatic cell is wrapped

around histones, whereas DNA of sperm is tightly packed

by protamines. Containing protamines instead of canonical

histones can have at least two roles in facilitating the

reprogramming at fertilisation. Firstly, after fertilisation,

the protamines from the sperm are removed by an egg/

oocyte with the aid of a maternal protein called nucleo-

plasmin [56–59]. Subsequently, oocyte-derived histones

are incorporated into paternal DNA to allow the assembly

of chromatin [60, 61]. On the other hand, a somatic cell

does not have protamines, and hence it may be more dif-

ficult for the transplanted somatic cell to exchange its

histones for the oocyte-derived ones. In addition, somatic

cell histones often bear post-translational modifications

associated with active gene states, according to the lineage

from which the cell is originated. As a result, some genes

characteristic for that lineage could continue to be inap-

propriately expressed in the embryo. Indeed, it has been

shown in Xenopus that upon NT of somatic cells derived

from somites (muscle precursors expressing a gene called

MyoD), resulting embryos continued to aberrantly express

MyoD (discussed in the later section) [62]. Therefore, it is

tempting to speculate that having protamines instead of

histones may be beneficial for sperm to erase the devel-

opmental program which is often encoded in histone

marks: this is because at fertilisation protamines are effi-

ciently replaced with oocyte-derived histones and because

the newly incorporated histones are likely to be modified

according to the embryonic developmental program.

Indeed, it has been shown that embryos derived from round

spermatid injection (round spermatids do not yet have

protamines deposited on their chromatin) display epige-

netic abnormalities as compared to embryos obtained by

mature sperm injection (which do have protamines on their

DNA): round spermatid-derived embryos have been shown

to have elevated DNA methylation levels and histone

H3K9me3 marks present on the paternal chromatin, which

are not normally observed in sperm-derived embryos [63].

Apart from these potential roles of protamines in efficient

histone exchange, the presence of protamines on sperm

DNA and its tight packaging likely protects the DNA from

any physical damage. It has been shown that in rabbits in

which no offspring could be derived after the protamine-

free round spermatid injection, the developmental arrest is

likely due to abnormal ploidy of the resulting embryos

[64]. Similarly, during the NT procedure somatic cells are

exposed to numerous micromanipulations, and because

they do not have protamines tightly protecting their DNA,

these procedures could lead to DNA damage. In fact, it has

been suggested that one of the major causes of develop-

mental arrest of NT embryos is a result of DNA loss [65],

which might be a consequence of DNA damage. With the

current state of knowledge it is therefore difficult to dis-

criminate whether the presence of protamines on the DNA

helps to epigenetically program the paternal chromatin for

embryonic development or whether it prevents the DNA
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from physical damage (or both). In addition, it has been

shown that even though the embryonic development after

round spermatid injection is generally less efficient than the

development after sperm injection, it can reproducibly give

rise to normal offspring in several species [66–70], sug-

gesting that the chromatin of round spermatid, even though

it is not protaminated, can support full term development.

However, since mice deficient with protamines are infertile

[48], having protamines on the DNA is clearly beneficial

for the development and hence the lack of protamines

might be one of the explanations for the low efficiency of

SCNT.

Sperm-derived transcriptional regulators

As mentioned before, it has been demonstrated that

towards the end of spermiogenesis, transcription ceases and

components of the basal transcriptional machinery disap-

pear [55]. However, it has also been shown that the mature

sperm contains transcription factors (Oct-1, Ets-1, C/EBP

and TBP) associated with the hypersensitive regions of

chromatin [71] (Fig. 1). It is therefore likely that such

chromatin-associated factors could be delivered to the

oocyte at fertilization. Furthermore, proteomic analysis of

the mature sperm led to the identification of more proteins

which are involved in transcriptional regulation, for

example, Bromodomain-containing protein 7 (Brd7) or

Polycomb protein Suz12 [72]. Upon delivery to the oocyte,

these factors might help to pattern gene expression char-

acteristic for the developing embryo. In contrast, a somatic

cell during a nuclear transfer procedure may deliver tran-

scriptional regulators responsible for the maintenance of its

own differentiated cell state to the oocyte. This might

interfere with normal embryonic gene expression since the

embryo requires factors enabling the establishment of

totipotency and not cell-type specific, differentiation fac-

tors. In fact, injection of the somatic cell cytoplasm into

oocytes impairs normal development of fertilised embryos

and indeed it has been demonstrated that such embryos

have decreased expression levels of pluripotency factor

Oct4 [73].

Sperm-derived RNAs

It has been recently discovered that mature sperm, despite

having a very low amount of cytoplasm, carries numerous

mRNAs [74], including mRNAs encoding transcription

factors, for example cMyc [75]. These mRNAs have been

shown to be delivered to the oocyte after fertilisation [76].

What is the role of these sperm-derived mRNAs? It is

currently not well understood, but there are several

hypotheses. The first one suggests that these mRNAs

remain tightly associated with sperm chromatin and can

somehow protect some regions of the sperm DNA from

protamination. As a result, this would allow histone

retention on these regions. Such protamine-free regions

could be then selectively activated in the developing

embryo (see section below) [74]. A second hypothesis is

that RNA stored in the sperm can exert influence on the

gene expression profile of the resulting embryo. It could be

either by providing mRNA which serves as a template for

synthesis of transcription factors important for embryo-

genesis, such as cMyc, or by inducing paramutations.

Paramutation is a heritable epigenetic change resulting in a

mutant phenotype in the absence of the actual genetic

mutation. For example, it has been shown that wild type

progeny of mice generated from heterozygous fathers

harbouring a mutation in a cKit gene (demonstrated with a

white tail phenotype) also have white tails. This paramu-

tation was shown to be induced by antisense RNA carried

over to the oocyte by the sperm at fertilisation [77]. It is

also possible that sperm-derived RNA can be directly

involved in regulating embryonic development. Indeed, it

has been recently shown that sperm-borne microRNA-34c

is required for the first cleavage division of the mouse

embryo by directly regulating antiproliferative protein Bcl2

[78]. Therefore, there is evidence that carry-over sperm

RNA can influence the pattern of embryonic gene expres-

sion and even phenotypes of the progeny. Such instructive

information about embryonic development in a form of

RNAs is likely to be absent or altered in somatic cells

(presence of somatic-cell specific RNAs), therefore

affecting the normality of embryonic development after

NT.

Post-translational modifications of histones

in the mature sperm

Another explanation for why the sperm so efficiently

supports embryonic development can be due to the pres-

ence of particular post-translational modifications on his-

tones retained in mature sperm. As explained before,

towards the end of spermiogenesis, histones are replaced

with protamines. However, it has been recently shown that

both in mice and in humans some histones remain in the

mature sperm [79, 80]. It has also been described that both

in mouse and in human, sperm-derived histones (at least

some of them) are transmitted to the oocyte at fertilization

and retained in the paternal pronucleus [61, 81, 82].

Moreover, retention of histones in the mature sperm is

nonrandom; namely, histones are retained at promoter

regions of developmentally important genes. Furthermore,

these retained histones bear epigenetic marks and their

patterns correlate well with future embryonic gene

expression: genes with an activating mark, H3K4me3, are

switched on early in development, whereas genes with a
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repressive mark, H3K27me3, are either repressed or acti-

vated late [79, 80]. Interestingly, this phenomenon has also

been observed in species in which sperm is not protami-

nated (core histones are the major component of chromatin

in the mature gamete). For example, in zebrafish, which

does not have protamines, developmentally important

promoters also have signatures of H3K4me3 and

H3K27me3, which correlate with future embryonic gene

expression [83, 84]. Interestingly, it has been described that

infertile patients have abnormal histone retention profiles

[85]. All these suggest that sperm may be able to provide

the embryo with a ‘patterning’ message, encoded in its

histone marks, as to which genes should be expressed and

when during embryogenesis. Sperm of infertile patients,

which do not have this message (or have incorrect mes-

sages), cannot support proper embryonic development.

Such lack of the correct patterning message could also

explain inefficient embryonic development after nuclear

transfer. Somatic cells have their epigenetic marks on

histones established according to their own developmental

profile, and those epigenetic marks are likely different from

those of embryos.

DNA methylation profiles in the mature sperm

Another epigenetic feature of the mature sperm that may

render it suitable to support embryonic development is

DNA methylation. Cytosine in DNA can be methylated,

which leads to creation of 5-methylcytosine. Methylated

cytosines are often associated with gene repression [86–

90], whereas unmethylated cytosines usually mark trans-

criptionally active genes [91, 92]. Differential cytosine

methylation is also observed at gene promoters in mature

sperm. Interestingly, cytosine methylation states in gene

promoters in sperm are very similar to those of embryonic

stem cells [93] and correlate with gene expression pat-

terns in the embryos. Genes whose promoters are unme-

thylated in the mature sperm are expressed early during

embryogenesis, whereas methylated genes are expressed

late or repressed in embryogenesis [79, 80, 84]. More-

over, there is a correlation between abnormal DNA

methylation patterns in the mature sperm and infertility in

humans [94]. Therefore, DNA methylation can be yet

another way for the sperm to contribute a developmental

message to the embryo, another way the sperm differs

from somatic cells, and which may explain the low effi-

ciency of SCNT. In fact, a recent genome-wide study

clearly indicates that DNA methylation patterns of SCNT

embryos resemble those of donor somatic genome rather

than those of the paternal genome of fertilised embryos

[95], suggesting that DNA methylation profiles are indeed

different between sperm-derived and somatic cell-derived

embryos.

Reprogramming of somatic nuclei in eggs and oocytes

We have so far discussed how sperm nuclei are efficiently

reprogrammed in eggs/oocytes. However, cloned embryos

are produced in a very different way from normal fertilised

embryos and also undergo unique reprogramming pro-

cesses. In this section we describe a series of reprogram-

ming events in cloned embryos. To produce a cloned

embryo, nuclear transplantation of a somatic nucleus to an

enucleated egg/oocyte is performed (Fig. 2). Eggs/oocytes

at the metaphase II (MII) stage are widely used as recipi-

ents for NT. Since the MII-arrested oocytes have a strong

maturation promoting factor (MPF) activity, the trans-

planted somatic nucleus undergoes nuclear envelope

breakdown and premature chromosome condensation

(PCC) (Fig. 2) [96, 97]. It seems that exposure of somatic

chromatin to the MII egg/oocyte cytoplasm is an important

determinant for successful reprogramming by increasing

the number of origins of DNA replication in order to

facilitate robust DNA replication cycles in embryos [98,

99]. It has also been postulated that PCC allows oocyte

reprogramming factors to gain access to somatic chromatin

since the barrier of nuclear envelopes disappears. Epige-

netic modifications on histone tails, such as deacetylation

and phosphorylation [100, 101], are also induced soon after

NT (within 2 h) (Fig. 2). Moreover, some core and linker

histones are rapidly removed from somatic chromatin or

exchanged to oocyte counterparts (Fig. 2). For example,

macroH2A, associated with repressive chromatin, is readily

removed after NT (Fig. 2) [102]. Subsequently, MII-

arrested NT oocytes are activated and start early embryonic

development. NT embryos then form pseudo-pronuclei,

where somatic chromatin undergoes extensive deconden-

sation (Fig. 2) [97]. In mouse, heterochromatin reorgani-

zation is induced in the pseudo-pronuclei of NT embryos

[103]. Additionally, active DNA demethylation of the

somatic genome is observed during the one-cell stage

(Fig. 2) [95, 104]. Histone modifications of the pseudo-

pronuclei are significantly different from those of original

somatic chromatin and more resemble those of fertilised

pronuclei, although quantitative differences of such histone

modifications have been reported [100, 105–107] (see

below). Towards the end of the first cell cycle in mouse,

transcriptional activators are gradually accumulated in

pronuclei (Fig. 2) [108] to allow major embryonic gene

activation at the 2 cell stage (Fig. 2). Subsequently, genes

required for pluripotency such as Oct4 and Nanog are

activated [109]. Once NT embryos have reached the blas-

tocyst stage, embryonic stem cells can be derived. It is

possible that reprogramming is continuing even at the

blastocyst stage because abnormal histone modifications

prominent at the early embryonic stages are corrected in

the blastocyst stage embryos [107].
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There are some alternative methods for NT. Oocytes at

the telophase stage and enucleated embryos at the one-cell

stage can also be used as recipients for NT as long as

pronuclear factors are not removed during enucleation

[110–112]. It is not clear whether reprogramming events

induced in these NTs are the same as the ones in NT to

metaphase II oocytes. Apart from these NTs, which can

support full-term development, somatic nuclei injected into

the giant nucleus of Xenopus oocytes at the meiotic pro-

phase I stage also known as the germinal vesicle (GV)

stage can be reprogrammed to express embryonic genes

[113]. This type of NT is adequate for analysing mecha-

nisms of transcriptional reprogramming [114, 115] since it

does not require cell divisions and new protein synthesis.

However, this type of NT does not support full term

development.

There are a few maternal factors known to be important

for development of NT embryos. For example, nucleoli in

mouse and porcine NT embryos are derived from the

nucleolus of the recipient oocyte [116]. When maternal

nucleoli are removed, NT embryos are deprived of nucleoli

and fail to develop. These results suggest that maternally

inherited nucleoli are necessary for development. Tpt1

protein is an example of another maternal factor important

for development of bovine NT embryos with the mecha-

nisms still unknown [117]. Additionally, a screen for

maternal factors required for reprogramming has identified

DJ-1 as a maternal protein required for development of

porcine NT embryos [118]. DJ-1 inhibits P53 activation in

NT embryos; this also suggests that P53 is prone to be

activated in NT embryos. Furthermore, it has been shown

that maternal Tet3-mediated hydroxymethylation is

induced in cloned mouse embryos [119] and is responsible

for DNA demethylation on the Oct4 promoter [120]. More

studies to identify maternal factors important for develop-

ment of cloned embryos are needed for understanding the

basis of egg/oocyte-mediated reprogramming.

Abnormalities in cloned embryos in relation to somatic

cell characteristics

A number of reprogramming events, discussed in the pre-

vious section, are induced in NT embryos. NT embryos

Fig. 2 Nuclear reprogramming in somatic cell nuclear transfer

embryos. A series of reprogramming events occurring in NT embryos

are depicted (mainly focusing on mouse NT embryos). A somatic

nucleus injected into an enucleated oocyte at the metaphase II stage

undergoes premature chromosome condensation (PCC). After acti-

vation, pseudo-pronuclei are formed. Transcription of embryonic

genes starts from the 2-cell stage. Cloned embryos can be implanted

to foster mothers and in most cases less than a few percentage of

embryos can develop to term. Histone modifications, histone variants,

DNA methylation, and chromatin proteins show dynamic changes

during preimplantation development. Many of them are important for

development of cloned embryos, but are abnormally regulated

compared to fertilised counterparts. Abnormal gene expression in

cloned embryos has also been reported. The numbers of abnormally

expressed genes are based on transcriptome studies of 2-cell embryos

[151, 152] and those for blastocyst embryos [150, 151, 156]
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that have successfully gone through these events can

achieve full-term development. However, it is often the

case that NT embryos fail to complete at least a part of

reprogramming events. In this section, we discuss what

kinds of errors are prone to occur in NT embryos during

reprogramming. We then relate the defective reprogram-

ming events in NT embryos to specific characteristics of

somatic chromatin.

DNA demethylation and histone modification

In mouse, upon fertilisation, sperm DNA undergoes active

and global demethylation during the one-cell stage. Low

methylation levels are maintained until the blastocyst

stage when global remethylation starts [121]. In cloned

embryos, the extent of DNA demethylation in the trans-

planted somatic nuclei is less than that in paternal pro-

nuclei [104]. Such abnormally high DNA methylation

states in cloned embryos have been found across many

mammalian species [104, 122, 123]. Bisulfite sequencing

analyses have revealed that high DNA methylation states

remain at the various genomic regions including the

centric and pericentric repeats [124] and the Oct4 regu-

latory regions [125, 126]. A recent genome-wide DNA

methylation study has identified more than 20 genes

whose DNA methylation remains abnormally high after

NT compared to fertilised embryos [95]. This study also

shows that some repetitive elements, such as long inter-

spersed elements (LINEs) and long terminal repeats

(LTRs), are resistant to DNA demethylation in cloned

embryos [95]. Since these genomic regions are efficiently

demethylated in paternal pronuclei, the refractory nature

towards DNA demethylation seems largely attributed to

somatic genomes.

Histone modifications of somatic cell chromatin are

dramatically changed after NT to oocytes [100, 101].

Although histone tails of somatic chromatin are repro-

grammed to resemble those of embryonic chromatin, a

number of abnormal histone modifications have been

reported in NT embryos [100, 105–107, 127]. Notably,

abnormally high levels of histone H3K9 methylation are

retained in NT embryos [100, 105, 107] and the high

H3K9 methylation is likely one of the reasons why

cloned embryos exhibit a low developmental capacity.

Indeed, removal of H3K9 methylation prior to NT

improves cloning efficiencies [128, 129] although causal

relationship between loss of H3K9 methylation and

reprogramming in NT embryos has to be further tested.

H3K9 methylation also restricts reprogramming in iPS

cells [130, 131], supporting the idea that somatic chro-

matin acquires H3K9 methylation to stabilize differenti-

ation states and hence to resist nuclear reprogramming. A

more targeted way of removing histone marks before NT,

such as locus-specific H3K9 methylation removal, may

further boost reprogramming efficiency. It has also been

shown that modulating histone acetylation levels by his-

tone deacetylase inhibitors can greatly improve cloning

efficiencies [17, 132–136]. For example, histone H4K5 in

NT embryos shows less acetylation than in fertilised

embryos [127] and this abnormal acetylation state can be

partially corrected by Trichostatin A treatment [137].

Furthermore, histone deacetylase inhibitors also improve

many aspects of reprogramming including transcription

and chromatin reorganization [100, 138, 139]. Histone

modifications on H3K27 play an important role in gene

regulation especially in relation with polycomb com-

plexes. Many somatic genes are repressed through

H3K27 methylation. After NT of somatic cells to

oocytes, higher H3K27 methylation [140] and lower

H3K27 acetylation [106] than in fertilised embryos are

observed in 1- and 2-cell stage embryos. In addition,

localisation of PRC2 components in cloned embryos is

significantly different from fertilised embryos [140] and

abnormal expression of polycomb-associated genes is

observed [141]. Trichostatin A treatment was shown to

increase a H3K27 acetylation level in cloned embryos to

the one of fertilised embryos [106]. It would be inter-

esting to see whether the elevated level of H3K27 acet-

ylation is linked to the improvement of other chromatin

signatures, such as H3K27 methylation and association of

polycomb complexes.

In addition to the above mentioned histone modifica-

tions, linker histones and histone variants show dynamic

changes upon NT of somatic cells to oocytes. The somatic

type linker histone H1 is rapidly exchanged with the

embryonic type linker histone B4/H1foo upon NT to

oocytes [142–144]. Incorporation of histone B4 into the

somatic chromatin creates accessible states of chromatin

[144, 145]. A recent study indicates that histone variants

H3.1, H3.2 and H3.3, as well as H2A and H2A.Z, are

rapidly removed from transplanted nuclei in mouse NT

embryos [146]. At the same time, oocyte-derived histone

H3 variants and H2AX are incorporated into the trans-

planted nuclei. Interestingly, abnormally high amounts of

H3.1 are incorporated into transplanted somatic nuclei

compared to fertilised embryos (Fig. 2) [146]. This might

be attributed to the features of donor chromatin that prefer

H3.1 incorporation for heterochromatin formation or by the

fact that chaperones for H3.1 can be carried over with the

donor cell. In accordance with the incorporation of oocyte-

derived H2AX into transplanted nuclei [146], phosphory-

lated H2AX (cH2AX) is found in pseudo-pronuclei of NT

embryos although the number of cH2AX foci is smaller

than that of fertilised embryos [147]. cH2AX in 1-cell

embryos is proposed to be associated with DNA repair and

DNA demethylation.
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Embryonic gene activation

Transcriptionally silent NT embryos start to express

embryonic genes from the time of zygotic genome acti-

vation (ZGA) onwards. Hundreds of embryonic genes that

are silenced in somatic cells can be activated in NT

embryos. However, many defects in properly turning on

embryonic genes have been reported [148–152]. Abnor-

mal gene expression in NT embryos is observed as early

as ZGA [151, 152]. Microarray analysis of 2-cell mouse

embryos has revealed that more than 2000 mRNAs are

misregulated in NT embryos compared to fertilised

embryos [152]. Transcription by RNA polymerase I is

also disturbed in cloned embryos around this stage [139,

153]. This early abnormal gene expression can be rescued

by treatment with histone deacetylase inhibitors [135,

139], suggesting that abnormal gene expression in early

embryos is at least partially due to the somatic epige-

nome, which is not adequate to support the embryonic

gene expression program. In fact, some somatic genes

continue to express in NT embryos at the 2 cell stage

[154]. Equally importantly, maternally stored transcripts

are not properly degraded in NT embryos [152]. This is

also true in rhesus-bovine interspecies NT embryos [155],

implying that inappropriate degradation of maternal

transcripts can cause a critical problem for subsequent

embryonic development. Although NT embryos tend to

display numerous abnormalities at the early develop-

mental stages, the number of abnormally expressed genes

in cloned embryos usually decreases at the blastocyst

stage [151, 156]. This could be partially because only

successfully reprogrammed embryos are able to reach the

blastocyst stage. Nevertheless, these results support the

idea that reprogramming is continued throughout early

embryonic development. However, there are some

embryonic genes that are resistant to reprogramming even

at the blastocyst stage, such as Oct4 [148] and Sox2

[150]. Abnormal expression of such important pluripo-

tency genes at this stage may severely affect subsequent

development after implantation.

Recently, large-scale transcriptome analyses have iden-

tified gene loci that are often abnormally regulated in

cloned blastocyst embryos [150, 157]. Genes in the ‘‘large

organized chromatin K9-modifications’’ (LOCKs) regions

are repressed in NT embryos. LOCKs are enriched with

histone H3K9me2, a repressive mark [158]. Differentiated

cells exhibit larger occupancy of the LOCKs in the genome

than embryonic cells [158]. Since H3K9 methylation is

difficult to remove in cloned embryos (see above), it is

plausible that H3K9 methylation in LOCKs of somatic

chromatin causes abnormal gene repression in NT

embryos. It would be interesting to test functional signifi-

cance of the abnormal gene repression associated with

LOCKs in NT embryos. Another set of abnormally regu-

lated genes is X chromosome-linked genes. This is due to

the ectopic expression of Xist from the active X chromo-

some [157]. Suppressing excess Xist RNA by gene

knockout [157] or siRNA-mediated knockdown [159]

greatly improves the cloning efficiency. These results

indicate that misregulation of a single important gene can

cause detrimental effects on development of cloned

embryos.

Epigenetic memory of somatic chromatin

in cloned embryos

As mentioned above, somatic-like chromatin states can

be transmitted to NT embryos and possibly result in

inappropriate gene expression. It is especially clear that

oocytes often fail to reverse silenced states of some

embryonic genes in transplanted somatic chromatin

because of layers of silencing mechanisms, including

DNA methylation and H3K9 methylation. Apart from

these types of reprogramming errors, there is evidence

that active states of somatic genes are inherited in cloned

embryos and the somatic type of gene expression con-

tinues in early embryos. In this section, we discuss

examples of such abnormal somatic gene expression. For

example, when myoblasts are used as donor cells for

mouse NT, the myoblast cloned embryos start to express

glucose transporter type 4 (Glut4), which is expressed in

muscles but not in normal preimplantation embryos, at

the late one-cell stage [154]. Similarly, the neuroecto-

dermal marker gene is ectopically expressed in the

endoderm cells in Xenopus NT embryos in which neu-

roectoderm nuclei are used as donors, and vice versa

[160]. Interestingly, premature transcription of such

somatic gene expression in NT embryos is also observed

[160], suggesting that NT embryos are incapable of

properly repressing some somatic genes of transplanted

nuclei. Ng and Gurdon [62] provide a mechanistic insight

into this epigenetic memory of somatic gene expression.

Upon NT of somatic cells derived from somites (muscle

precursors expressing a gene called MyoD), resulting

embryos continue to aberrantly express MyoD. It has

been shown that this memory of an active gene is

dependent on trimethylation of lysine 4 on histone H3.3

in the promoter region of MyoD [62]. Another study

proposes that a low level of histone H4K5 acetylation in

somatic chromatin is inherited in cloned embryos and

this may contribute to aberrant gene expression [127].

This idea needs to be further tested in individual genes

that carry H4K5 acetylation. It is possible that more

histone marks and chromatin proteins associated with

active states of somatic gene expression would be dis-

covered in future.
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Other abnormalities in cloned embryos

Apart from the above mentioned chromatin defects,

numerous other abnormalities have been reported in cloned

embryos and animals, including defective placentas [161,

162], mitochondria heteroplasmy [17, 163], obesity [164],

abnormal offspring syndrome [165], and short life spans

[166]. In this section, we introduce other critical defects of

cloned embryos, which are related to or derived from

characteristics of somatic cells. In fertilised 1-cell mouse

embryos, centromeres and pericentric heterochromatin

regions of chromosomes associate with the periphery of the

nucleolar precursor bodies [167, 168]. After NT of somatic

nuclei into oocytes, the somatic type of heterochromatin

often fails to be reprogrammed to the embryonic-like het-

erochromatin. Many cloned embryos show an abnormally

high number of centromeres that do not associate with

nucleolar precursor bodies [103]. Since centromeres are

crucial for chromosome segregation, such abnormal posi-

tioning of centromeres may result in abnormal distribution

of chromosomes to the daughter cells. In fact, cloned

embryos often show improper distribution of chromosomes

[169]. Recently, Mizutani et al. [65] demonstrated that

abnormal chromosome segregation during early embryonic

development is detrimental to full term development of

cloned embryos. In relation to the abnormal chromosome

segregation, somatic NT embryos exhibit abnormal spindle

chromosome complex formation [170, 171] and spindle

associating factors, such as calmodulin and NuMA, are

found to be less abundant in somatic cell cloned embryos

than in embryonic cell cloned embryos and fertilized

embryos [170, 171]. Since defects in chromosome segre-

gation seem to be one of the major causes of poor devel-

opment of cloned animals, it would be interesting to

determine to what extent abnormal heterochromatin and

spindle formation affect early chromosome segregation

defects.

Can we impose sperm-like states on somatic cells

to increase the cloning efficiency?

As described above, there are a lot of differences between

the sperm and somatic cells and each one of them, or a

combination of these differences, may explain the low

efficiency of cloning, as compared to efficient embryonic

development after fertilisation. An ultimate goal in the

reprogramming field is to increase the efficiency of animal

cloning. It is reasonable to think that imposing sperm-like

changes onto somatic cells will make them more prone to

reprogramming. However, is such an approach feasible? In

this section we discuss different possibilities of making

somatic cells more like sperm.

Protamines

As mentioned above, the presence of protamines in the

mature sperm is crucial for its ability to support correct

embryonic development for at least a couple of reasons.

Firstly, it may physically protect DNA from damage.

Secondly, it may help to remove the majority of histones

together with their marks and allow incorporation of

oocyte-derived ones. Therefore, one could speculate that

the easiest way to make a somatic cell more reprogram-

mable would be to wrap its DNA with protamines. How-

ever, it may be technically very challenging, because the

deposition of protamines onto sperm chromatin is a com-

plicated, multi-step process. It has been shown that

impairments of single stages of this process (for example,

removal of acetyl-lysine binding protein Brdt, or depletion

of transition proteins) are detrimental for the sperm matu-

ration and result in infertility [26, 45]. Therefore, in order

to correctly deposit protamines on somatic cells, it is likely

that one would not only need to introduce protamines into

somatic cells, but also recapitulate other events occurring

during spermiogenesis. Furthermore, this should be done in

a sequential manner. Firstly, histone variants need to be

expressed. The second step is to induce global histone

acetylation, followed by histone removal and transition

protein deposition. Introduction of protamines is only the

last stage of the process. To summarise, if one could

deposit protamines onto the chromatin of somatic cells, this

might be a step forward in increasing the cloning effi-

ciency. However, at the current state of methodology

available, the correct deposition of protamines seems to be

a technically challenging objective.

Carry-over proteins and RNAs

The mature sperm carries numerous proteins and RNAs

which, as discussed above, could also be a part of sperm

programming to support efficient embryonic development.

Therefore, the next possible way to increase the efficiency

of SCNT is to supply somatic cells with sperm proteins and

RNAs. This would be challenging if one wants to isolate

only the proteins and RNAs which are developmentally

relevant, since numerous proteins and RNAs have been

identified in the mature sperm and it is not well known

which, if any, are important for embryonic development

[72, 74]. A feasible approach is to isolate total protein and

RNA from sperm and co-inject them into an oocyte toge-

ther with a cell during the NT procedure. However, it

cannot be excluded that the developmentally important

proteins/RNAs are tightly associated with the sperm

chromatin [74]. If this is the case, isolation of these factors

could be technically demanding. Another approach is to

directly deliver sperm into NT oocytes in which somatic
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nuclei have been transplanted beforehand and subsequently

remove the paternal pronucleus from the cloned embryos.

This way, cloned oocytes are also activated by sperm

injection in a similar way to normal fertilisation [97, 172].

However, this method did not improve cloning efficiency

[172], which can be due to the fact that factors which are

developmentally important may remain tightly associated

with the sperm chromatin. Alternatively, enucleated early

zygotes, in which sperm contents are delivered into reci-

pient, can be used for NT [110, 111, 173].

Histone marks and DNA methylation

Another explanation for a sperm being superior to a

somatic cell in its reprogramming capacity could be the

unique pattern of its epigenetic modifications: histone and

DNA methylation marks present on sperm chromatin can

possibly pattern future embryonic gene expression. It is

likely that imposing sperm-like epigenetic changes onto

somatic cells would improve development of NT embryos.

However, at the current state of knowledge this approach

seems difficult. Firstly, so far the only genome-wide pro-

files in mouse and human sperm are available for

H3K4me3, H3K27me3, H4K12ac, and DNA methylation

[79, 80, 174]. It is known that epigenetic marks often work

in combination and there are many more marks known than

just these three; for example histone arginine methylation

[175–177] or recently identified histone crotonylation

[178]. It could be that the instructive information for

embryonic development is a complex combination of var-

ious marks at various loci. If one can identify specific

histone marks on a certain gene of sperm that are important

for subsequent development, it would be worth trying to

mimic such marks on somatic cell chromatin. Achieving

gene locus-specific modification is currently difficult.

However, with the development of zinc finger or TALE

protein targeting approaches [179–184], it might be pos-

sible to induce sperm-like histone modifications in a gene-

specific manner by targeting histone-modifying enzymes in

the future.

Changing somatic cells into sperm?

The breakthrough study by Yamanaka and Takahashi [185]

made it possible to derive pluripotent stem cells (iPS cells)

from somatic cells by overexpression of transcription fac-

tors. iPS cells can differentiate into any type of cell in the

body. Recently, Hayashi et al. [186] have succeeded in

making spermatozoa from iPS and ES cells, and the pro-

duced spermatozoa supported full-term development after

intracytoplasmic sperm injection. In theory it is therefore

possible to obtain functional spermatozoa from somatic

cells. However, this process requires multiple steps

including dedifferentiation to an embryonic state, redif-

ferentiation to primordial germ-like cells, and, ultimately,

spermatogenesis. In addition, the resulting spermatozoa are

haploid, carry paternal imprinting and require a maternal

genome for successful development. Furthermore, the

ultimate process of changing somatic cells into sperm—the

spermatogenesis itself, is achieved by transferring pri-

mordial germ-like cells into testis. Therefore, this route

may not be appropriate for the purpose of increasing

cloning efficiency. However, this might be useful to pro-

duce a sperm deprived of a specific sperm factor important

for subsequent development because gene knockdown or

knockout can be achieved efficiently in pluripotent stem

cells. An alternative route could be to directly change

somatic cells to sperm-like or sperm progenitor-like cells

by factor overexpression or extract treatment. This seems

extremely challenging. Nevertheless, some progress has

been made in inducing testis-specific gene expression in

somatic cells treated with testis extracts. These extract-

treated cells supported better development of cloned

embryos than control non-treated cells [187]. It would be

interesting to investigate why and how testis extract-treated

cells are better reprogrammed in eggs/oocytes.

Conclusions and perspectives

Recent advances in genetic and epigenetic analytic

approaches allowed the identification of some unique fea-

tures of sperm chromatin that are absent in somatic cells.

For example, histones are retained in sperm chromatin at

promoter regions of developmentally important genes for

subsequent gene expression in embryos. Such sperm

chromatin modifications are likely to support embryonic

development after fertilisation. Somatic chromatin does not

have such ‘‘fine-tuning’’ for correct embryonic gene

expression. Therefore, it is a likely explanation for why

SCNT embryos often show abnormal reprogramming

events compared to fertilised embryos. Somatic chromatin

features, such as epigenetic memory, often remain in

cloned embryos and can interfere with normal develop-

ment. Moreover, other non-chromatin related factors, such

as the presence of certain somatic-like transcription factors

or presence of somatic-like spindle associating factors, can

also impede the development of NT embryos. Therefore, it

is remarkable that cloned embryos can sometimes develop

to totally normal individuals. This is a good example

illustrating that early embryonic development is charac-

terised by both amazingly accurate programming and sur-

prising plasticity. Nevertheless, there must be some

essential requirements for the accomplishment of success-

ful embryonic development. Identification of such road-

blocks to development is a key challenge for
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developmental and reproductive biology. Studying differ-

ences between the sperm and somatic cells in respect to

their abilities to be reprogrammed by the eggs/oocytes

would help to unravel the key requirements for successful

development.
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