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Large-scale siRNA screenings allow linking the function of poorly characterized genes to
phenotypic readouts. According to this strategy, genes are associated with a function of interest if
the alteration of their expression perturbs the phenotypic readouts. However, given the intricacy of
the cell regulatory network, the mapping procedure is low resolution and the resulting models
provide little mechanistic insights. We have developed a new strategy that combines multi-
parametric analysis of cell perturbation with logic modeling to achieve a more detailed functional
mapping of human genes onto complex pathways. A literature-derived optimized model is used to
infer the cell activation state following upregulation or downregulation of the model entities. By
matching this signature with the experimental profile obtained in the high-throughput siRNA
screening it is possible to infer the target of each protein, thus defining its ‘entry point’ in the
network. By this novel approach, 41 phosphatases that affect key growth pathways were identified
and mapped onto a human epithelial cell-specific growth model, thus providing insights into the
mechanisms underlying their function.
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Introduction

Phenotypic analysis of cell response after perturbations by
small interfering RNAs has established itself as a powerful
strategy to explore the function of entire gene families in large-
scale screenings (Kiger et al, 2003; MacKeigan et al, 2005;
Conrad and Gerlich, 2010; Horn et al, 2011). Using this
approach, genes are connected to a function of interest, if
the alteration of the cellular levels of their products perturbs a
phenotypic readout associated with the function under
investigation. However, this approach only provides correla-
tive information functionally linking the interfered gene and
the activation level of the phenotypic readout. Indeed, given
the extensive cross-talk among different signaling pathways,
the same readout alteration may be caused by perturbations of
radically different branches of the cell regulatory network. By
measuring multiple readouts it is sometimes possible to make
educated guesses about the network node that is the most
likely primary target of the induced perturbation (Jorgensen
et al, 2009). However, there are a number of issues that limit
this approach when applied on a large scale.

First the large number of functional (activation/inactivation)
relationships between gene products that have been reported
in the literature is overwhelming, even for an expert of a

specific biological domain. In addition, it is often difficult to
reconcile all the, sometimes conflicting, findings in different
experimental systems and summarize them in a trusted
signaling network, by modeling the biochemical reactions
underlying signal propagation in a specific cell system. Finally,
as the complexity of the model grows, it becomes practically
impossible to deduce the functional outcome of network
perturbations without the assistance of computable models.

Such models can be derived by a variety of different
approaches (Kestler et al, 2008). A first strategy uses systems
of coupled differential equations (Aldridge et al, 2006). In
these models, each molecular reaction is specified using a
kinetic law relating the concentrations of reactant and
products. These reactions are governed by rate constants that
must be estimated by optimizing the fit with a set of
experimental data. Due to the large number of parameters
this step can prove to be a very complex task.

An alternative approach represents signaling models as
logic networks. In this case, the pathway of interest is drawn as
a signed direct graph where nodes represent proteins and
edges specify activatory/inhibitory relationships between them.
The effect of edges is combined in logic gates (AND/OR). This
strategy generally yields discrete models that are less flexible
than those obtained with differential equations, yet much easier
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to understand and compute. Recently, methods have been
developed to optimize the structure of these models against
experimental data (Saez-Rodriguez et al, 2009).

Whatever the approach used biological signaling models
provide detailed descriptions of a system of interest, but are
necessarily limited in size due to their complexity. Conversely,
large-scale perturbation screenings provide a higher level view
of a larger number of proteins. In this work, we aim to bridge
the gap between these two worlds in order to obtain a higher
detail mapping of gene products onto complex pathways on a
large scale. Our approach is based on the combination of
multiparametric siRNA screening with modeling and simula-
tion. We developed the strategy with the aim of characterizing
protein phosphatases.

Phosphorylation is a pervasive post-translational modifica-
tion that contributes to form regulatory switches by modulat-
ing the activity of key enzymes and promoting the formation of
supramolecular complexes (Barford et al, 1998). Phosphatases
work together with kinases to modulate the phosphorylation
of a large number of tyrosine, serine and threonine residues on
most eukaryotic proteins. We focused on protein phosphatases
because of their broad yet poorly understood regulatory
function in signaling pathways (Barford et al, 1998; Sacco
et al, 2012). Indeed till recently protein phosphatases have
been considered uninteresting housekeeping enzymes and
have received less attention compared with kinases (Bardelli
and Velculescu, 2005). However, evidence accumulated over
the past decades have indicated that this enzyme class plays an
important regulatory role and that the deregulation of the
concentration or activity of specific phosphatases correlates
with a variety of human disorders (Wera and Hemmings, 1995;
Tonks, 2006). Approximately, 40% of protein phosphatases are
implicated in tumor development, highlighting the central role of
this enzyme group in growth regulation and identifying some
members as new therapeutic targets (Julien et al, 2011; Liberti
et al, 2012). However, the molecular mechanisms leading to
tumorigenesis have been characterized only for a few of these
potential oncogenes and oncosuppressors, whereas the majority
of them still awaits to be placed in the intricate functional protein
network underlying cell physiology.

To contribute to shed light on the involvement of phospha-
tases in the mechanisms regulating phosphoprotein homeo-
stasis, we have conceived a strategy to enable the mapping of
gene products onto a cell-specific growth network (Figure 1).
To this end, we have characterized the perturbation of a
number of key growth pathways after downregulation of 298
phosphatase (or phosphatase-related) genes by a large-scale
siRNA screening coupled to automated microscopy. We report
here the identification of human phosphatases (hits) that
finely modulate the activities of some key node in the growth
regulatory network. The change in cell state, induced by
perturbing each phosphatase, was defined by monitoring the

activities of pathways that regulate cell growth such as the
MAP kinase (ERK and p38), mTOR, NFkB pathways and
autophagy (Hennessy et al, 2005; Viatour et al, 2005; Roberts
and Der, 2007; Wagner and Nebreda, 2009; Steeves et al, 2010).
By combining the results of the siRNA screening with
modeling and simulation, B67% of the protein phosphatase
hits were mapped onto the growth model. Some of the hit
genes, when deregulated, cause alterations in the timing of the
cell cycle and therefore are new potential oncogenes or
oncosuppressors.

Results

Experimental strategy

To map protein phosphatases onto growth pathways, we
combined experimental characterization of the cell states upon
perturbation of phosphatases activity and logic modeling of
pathways relevant for cell growth. The strategy involves the
steps schematically summarized below and illustrated in
Figure 1.

(1) Perform a high-content siRNA screening of the human
phosphatome to identify phosphatases (hits) whose
activities modulate five readouts monitored by automated
fluorescence microscopy. The cell states after inhibition of
each phosphatase are represented as vectors with coordi-
nates corresponding to the measured readout values
(Figure 1Aa–e).

(2) Collect from the literature and from pathway databases
information describing the functional relationships
between signaling proteins in the pathways of interest. This
allows the assembly of a prior knowledge network which is
represented as a signed directed model, where edges have
sign (activating or inhibitory) and directionality (enzyme–
substrate relationships). This naı̈ve network integrates
information obtained in different cellular systems under
distinct experimental conditions (Figure 1Ba).

(3) Optimize the model by training it against an independent
set of experimental data obtained by measuring the
activation of a large number of nodes under different
perturbation conditions. This procedure removes connec-
tions that are not essential to explain the experimental
results in the specific cell system and yields a computable
model whose predictions best reproduce the experimental
data set used for training (Figure 1Bb, c).

(4) Use the optimized computable cell model to infer the
changes in the measurable readouts that occur after
upregulation or downregulation of the activity of each of
the nodes in the network (Figure 1Bd, e).

(5) Map the phosphatase hits on the node whose inferred
network perturbation matches the one obtained experi-
mentally in the siRNA screening (Figure 1C). The mapping

Figure 1 Schematic illustration of a strategy to map protein phosphatases onto growth pathways. (A) We used a multiparametric siRNA phenotypic screening of the
set of human genes encoding protein containing phosphatase domains or regulatory subunits to identify, by automated fluorescence microscopy and automated image
analysis, genes whose downregulation modulates the activity of some key growth-associated pathways. The perturbation of the cell state by each siRNA is represented
as a vector whose coordinates are the measured readouts. (B) In parallel, we assembled a literature-derived signed directed network and we simplified and optimized it
by training with experimental data. The resulting logic growth model was used to infer the cell state upon perturbation of each node. (C) Finally, by matching the
experimentally determined cell states with the one predicted by the pathway model, we inferred the pathway nodes that were likely to be affected by the phosphatase
knock-down.
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procedure is based on the idea that if inhibiting a
phosphatase in the siRNA screening results in the same
readout values obtained when simulating the upregula-
tion of a node in the logic model, then the phosphatase is
an inhibitor of that node.

siRNA screening of the human phosphatome

To identify phosphatase genes participating in the modulation
of cellular pathways underlying cell growth in HeLa cells,
B300 known and putative protein phosphatases and regula-
tory subunits (phosphatome) were systematically silenced by
transfecting with three different siRNA oligos for each gene
(Supplementary Table S1). To monitor the ‘activation state’ of
the cell upon phosphatase downregulation, five ‘sentinel
proteins’ were chosen for their centrality in growth regulation
pathways and for the robustness of available activation assays.
The features we analyzed were the nuclear translocation of
NFkB, the phosphorylation and activation of ERK, p38 and
rpS6 and the formation of autophagosomes, as revealed by the
appearance of LC3 dots. Forty-eight hours after transfection,
the p38 and NFkB activity were analyzed in cells treated for
10 min with TNFa, whereas ERK and rpS6 phosphorylation, as
well as autophagy, were monitored in untreated cells. In
preliminary experiments we confirmed that, in these experi-
mental conditions, the activation levels of each readout were
intermediate between the experimentally observable mini-
mum and maximum (Figure 2A–C). By inhibiting the activity
of upstream control genes it was possible to observe either
an increase or a decrease of the readouts (Supplementary
Figure S1).

Cells were reverse transfected for 48 h by seeding and
cultivating on LabTek chambers. After treatment with TNFa,
cells were fixed and stained with 40,6-diamidino-2-phenylin-
dole (DAPI) and antibodies specific for the five ‘sentinel
proteins’ or their phosphorylated forms. Images were auto-
matically acquired and analyzed (see Materials and methods).
Transfection efficiency was estimated from the appearance of
polylobed nuclei (485%) in cells silenced for the INCENP
gene, which has a clear mitotic phenotype (Figure 2D;
Supplementary Figure S2; Neumann et al, 2010). After
statistical analysis of three biological replicas (Supplemen-
tary Table S1), protein phosphatases whose downregulation
significantly affects the activation profile of the five readouts
were selected as hits, as described in detail in Materials and
methods. The plots in Figure 2E represent the distribution of
the Z-scores of the phenotypic readouts of cells silenced in the
different phosphatase genes. As expected signals in most of the
interference experiments are not substantially different from
the scrambled controls, while the knock-down of a few
phosphatases results in a signal that is significantly higher
or lower than the average (Supplementary Table S1). The
experimental variation between biological replicates was
analyzed by plotting the Z-scores of the phosphatase hits in
each pair of the three biological replicates (Figure 2F).

The primary siRNA screen identified a total of 76 phospha-
tase hits for the 5 different readouts, comprising B30% of the
human phosphatome (Supplementary Table S2). Sixty three
percent correspond to genes encoding proteins with a

phosphatase catalytic domain, while 20% encode regulatory
subunits. The remaining 17% belong to the lipid phosphatase
subgroup and was not considered further in this analysis.
Figure 3A presents the results of the primary screening as a
graph where phosphatase hits (circles) are linked to the
phenotypes (squares) that are affected by their downregula-
tion. In this graph, edges represent a functional relationship
not a direct interaction between phosphatases and readouts.
Red and green edges, respectively, connect the identified
positive and negative regulators to the five sentinel proteins.
Approximately 67% of the observed phenotypic perturbations
by any given phosphatase were supported by two or three
different phosphatase-specific oligos. Although it is possible
that some of the remaining 33%, which were experimentally
verified by a single oligo, may represent potential ‘off-target
effects’ they were nevertheless analyzed in the secondary
screening.

siRNA screenings are often affected by a high false positive
rate because of off-target effects. To increase the confidence in
the identified phosphatase hits, we performed validation
experiments using an independent RNA interference library
(Missions shRNA phosphatase library, Sigma). Based on the
availability of predesigned shRNA oligos in the second library,
38 phosphatase hits were selected for validation and interfered
by a pool of three different shRNA oligos (Supplementary
Table S3; Supplementary Figure S3). Approximately 75% of
the hits were confirmed by this independent approach
(Figure 3B). The remaining 25%, whose phenotype was not
confirmed, establishes the upper limit for false positive hits in
the primary screening.

A number of known functional relationships between
phosphatases and the pathways monitored in the screening
were recapitulated (Supplementary Table S4). However, our
approach failed to identify some known phosphatases affect-
ing the analyzed readouts, such as the PTEN and PTPN11
phosphatases acting on mTOR and MAPK signaling, respec-
tively (Chu and Tarnawski, 2004). The inefficiency of some
siRNA oligos (data not shown) and experimental noise could
explain these false negative results, a common problem in
high-throughput siRNA screening (Sachse et al, 2005).
However, the high rate of validation in the independent
secondary screening (75%) underscores the reliability and
robustness of the experimental strategy.

Logic-based modeling of cancer-associated
pathways

Next we aimed at increasing the details of the functional
analysis, in order to get insights into the molecular mechan-
isms underlying the activity of the phosphatase hits. To this
end, we have first assembled a prior knowledge network
by mining from the literature and from pathway databases
experimental evidence linking the growth pathways analyzed
in the screening. This yields an intricate and highly inter-
connected network (Supplementary Table S5) including 34
species and 59 stimulatory or inhibitory interactions.

This network was represented as a signed directed graph
(Figure 4A) and analyzed using the CellNetOptimizer
(CellNOpt) software (Saez-Rodriguez et al, 2009; Morris,
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2012). CellNOpt enables the assembly of a Boolean logic model
whose structure is optimized by maximizing the concordance
between the model predictions and a set of experimental data
used for training. As a first step, CellNOpt compresses the
model by removing nodes, whose states cannot be determined
with the experimental data at hand (Figure 4B). The
compression therefore depends both on the topology of the
network and on the design of the perturbation experiments.
Essentially, this step removes: (i) nodes whose states are not
affected by any of the inputs or perturbations; (ii) linear

cascades of undesignated nodes (i.e., not perturbed nor
measured) that impinge on a designated node.

The resulting graph is then optimized using a genetic
algorithm that randomly rewires the network, in order to
maximize the fit between experimental and simulated data.
The end result is the removal of interactions that are not
functional to explain the system response to perturbation in
the specific HeLa cell context and the integration of multiple
stimuli acting on the same protein node into AND/OR logic
gates (Figure 4D).
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Figure 2 Identification of phosphatase hits. Preliminary experiments were carried out to identify experimental conditions yielding intermediate readout values. (A) HeLa
cells were starved for 6 h (0% FCS), induced with EGF for 5 min (50 EGF) or left untreated (10% FCS). Cells were fixed and stained with anti-phospho ERK (FITC), anti-
phospho rpS6 (TRITC) antibodies and DAPI to visualize nuclei. Cells were analyzed by indirect fluorescence microscopy coupled to automated image analysis. The ERK
phosphorylation level in the nucleus (gray bar) as well as the rpS6 phosphorylation in the cytosol (black bar) were automatically measured and plotted. (B) HeLa cells
were serum and amino acids deprived for 3 h (0% FCS) or left untreated (10% FCS) or transfected with an empty vector. Cells were fixed and stained with anti-LC3
antibody (FITC) and DAPI to visualize nuclei. To estimate autophagosome formation, images were analyzed by Cell Profiler and the mean LC3 intensity in the cytosol
was measured and plotted as a bar graph. (C) HeLa cells were incubated with TNFa and sampled at time 0, 10 and 20 min. Cells were fixed, stained with anti-phospho
p38 and anti-NFkB and visualized by indirect fluorescence microscopy. The nuclear p38 phosphorylation level (black bar) as well as the nuclear translocation of NFkB
(gray bar) were measured by the Cell Profiler software and plotted. (D) HeLa cells grown on spots of siRNAs targeting the INCENP gene or a scrambled control were
stained with DAPI. Images were acquired by automatic fluorescence microscopy with a � 20 objective. siRNA inhibition of the INCENP gene, causing a clear mitotic
phenotype, was used as control of siRNA transfection efficiency (Neumann et al, 2010). (E) Distribution of the Z-scores of the phenotypic readouts of cells silenced in the
different phosphatase genes. (F) The Z-score of each pair of three different biological replicates of phosphatase hits was plotted on the X and Y axis of a dispersion plot,
respectively.
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The compressed model was trained and calibrated against
experimental data, obtained by growing HeLa cells in 12
different experimental conditions where stimulations with
serum or TNFa are combined with inhibitors targeting four
nodes of the signaling network (MEK, p38, PI3 kinase and
mTOR; Figure 4E). In each experimental context, the activities
of seven intracellular signaling proteins were measured by
western blot or immunofluorescence techniques with specific
antibodies (see Supplementary Figures S4 and S5). Overall, the
observed modulation of the readouts was consistent with the
experimental evidence reported in the literature.

The experimental training data were normalized in the 0 to 1
range with a Hill function and used to calibrate the Boolean
model by running CellNOpt 1000 times. The choice of
repeating the analysis multiple times stems both from the
stochastic nature of the optimization procedure and also from
the fact that the training data were not sufficient to fully
constrain the model (Saez-Rodriguez et al, 2009). By
performing subsequent calculations on this family of 1000
models it is possible to average out the inconsistencies present
in any single model (Figure 4C). Moreover, by this approach
one obtains quantitative predictions even though a given node
can only be on (1) or off (0) in any single model. This is
important when the experimental value of a readout is close to
0.5, that is, equidistant from 0 and 1. In these cases,
approximately half of the models will show inactivation and
the other half activation because both situations are equiprob-
able in the optimization scheme. Therefore taking the average
across all models will correctly show a midrange value, while
any single model is distant from the true experimental value
that does not show a strong activation/inactivation. In the
consensus graph shown in Figure 4D, the thickness and color
intensity of each edge is proportional to the number of times it
appears in the 1000 optimization runs.

We used the family of 1000 logic models to compute the
effect of inhibiting each of the four kinases that we had
targeted with small-molecule inhibitors. This procedure
essentially replicates the experimental set-up in silico and
can be used to evaluate the fit between the simulated data and
the experimental data used for the optimization. The activa-
tion state of a protein in a given condition is calculated as the
fraction of the 1000 models in which the protein was active.
The fit between the results of the in-silico simulation and the
experimental data is in general high (Pearson Correlation
Coefficient of 0.84), with a few exceptions, as shown in
Figure 4E. As expected, the agreement increases when the
predictions are carried out by averaging over a larger number
of models, reaching an apparent plateau at 100 models
(Supplementary Figure S6).

Mapping of phosphatase hits

The experimental data used to calibrate the HeLa cell model
did not include the results of inhibiting all the nodes in the
network. Moreover, the effect of upregulating the nodes is
completely absent from the experimental data. This is
especially relevant for the phosphatases that inhibit their
target node, as their silencing should result in an upregulation
of the target. However, the calibrated family of optimized
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models allows computing the effect of upregulating and
downregulating each node (see Materials and methods). Each
perturbation results in a predicted cell state defined as the
calculated activity of the five sentinel proteins. By matching
this signature with the experimental profile obtained in the
phosphatases siRNA screening it is possible to infer the target
and effect (activating/inhibitory) of each phosphatase, thus
defining its ‘entry point’ in the network. For instance, if the
silencing of a phosphatase results in the same cell state
obtained when GRB2 is upregulated in the simulation, we can
infer that the phosphatase downregulates GRB2. This ‘asso-
ciated’ node is unlikely to be the direct substrate of the
phosphatase since other proteins not included in our prior
knowledge network may link the phosphatase with the protein
in the model. The entry point of a phosphatase thus represents
the node that first senses the perturbation and propagates it to
the rest of the protein species in the model. This mapping
strategy is especially useful for the phosphatases whose
perturbation influence multiple readouts. Indeed these pro-
teins must modulate the activity of some upstream node that
serves as the branching point between multiple signaling
pathways.

As a first step, to compare the simulated results with the
ones measured experimentally, both experimental and
inferred readout values were normalized in the 0–1 interval,
as described in Materials and methods. Next, the continuous
values were discretized and transformed in a categorical
variable with three possible values, namely ‘downregulated’,
‘control’ and ‘upregulated’ when the normalized value fell in
the 0–0.33, 0.33–0.66 and 0.6–1 ranges, respectively. Follow-
ing the inhibition/activation of each protein in the growth
model, the cell states can be defined as vectors with
coordinates corresponding to the discretized state of each of
the five sentinel proteins, represented with green (upregu-
lated), white (control) and red (downregulated) squares in
Figure 5A. According to our mapping strategy, if a phosphatase
acts on a given node by inhibiting it, then its downregulation in
the siRNA screening should result in a cell state similar to the
one computed by the model, when the node is upregulated.
Conversely, if the phosphatase has an activating effect on a
network node, then we would expect that its downregulation
should result in a network state comparable to the one
predicted by the model after downregulation of the node. Each
phosphatase is therefore matched with the upregulation or
downregulation of a node that results in the most similar state
vector. The distance between the state vectors is calculated as
1—the fraction of sentinel proteins with identical states.

For 35 out of 58 phosphatase hits (60%), we can identify an
in-silico perturbation that has exactly the same effect (i.e.,
distance¼ 0) on the five sentinel proteins as the down-
regulation of the phosphatase in the siRNA screening. These
phosphatases were therefore mapped accordingly (Figure 5A).
We also considered the possibility that some phosphatases that
had a single mismatch between the experimental and the
closest inferred profile could be due to false negatives in the
siRNA screening or to the slightly different experimental set-up
used for the screening and for the training data set. In
particular, we checked whether modulation of phosphatase
activity in conditions of starvation could affect LC3 levels. This
turned out to be true for the PP2A scaffold PPP2R1A, its

regulatory subunit PPP2R5C and the cell-cycle modulator
CDC25C. This result is consistent with the mapping of the first
two phosphatases onto the TNFR node and of the third onto
the GRB2 node (Figure 5C, left panel). In addition, down-
regulation of the myotubularin-related protein MTMR2 was
found to negatively affect the concentration of the NFkB
inhibitor IkBa and this phosphatase was therefore mapped
onto the MEK/ERK nodes, as predicted by the model
(Figure 5C, right panel). Thus, a total of 41 phosphatases
were mapped onto a specific node. The downregulation by
siRNA of the remaining 17 phosphatase hits displayed a profile
that could not be matched with the effect of perturbing any
specific node. We considered the possibility that at least some
of them could be explained by assuming an effect on two
different nodes, and therefore simulated the effect of up/
downregulating all possible pairs of nodes. This procedure
allowed the mapping of three additional phosphatases
(PPP3CA, DUSP4 and PPP1R14D) whose profile differed for
a single readout in the simulation with single perturbations.
These are respectively predicted to be an inhibitor of IKK and
S6 (PPP1R14D) an activator of NFkB and S6 (DUSP4), and an
inhibitor of GRB2 and LC3 (PPP3CA).

Interestingly, as illustrated in Figure 5A, some phosphatases
show consistent activation profiles, even though they could
not be mapped to any single node in the model (or any specific
pair of nodes in the simulation with double perturbations). For
instance, PPM1M and the two PP2A regulatory subunits
PPP2R3C and PHACTR2 have an opposite effect on the
activation of ERK and S6, while CDC14C, DUSP26 and
PPP1R11 have a concordant effect on ERK activation and
autophagy (Figure 5A). These patterns cannot be explained by
our simulations, raising the possibility that some molecular
connections were not adequately represented in our optimized
logic model or that our training data were not sufficient to fully
train the model (see Discussion).

To assess the reliability of our mapping, we compared
experimental results and model predictions in conditions that
were not used during the optimization of the model nor in
phosphatase mapping. In a first experiment, we selected six hit
phosphatases and we measured the activation of the sentinel
proteins when the expression of the phosphatase was down-
regulated or upregulated in presence of serum after 10 min of
incubation with TNFa Figure 6A). In principle, upregulation
and downregulation may lead to activation profiles that are not
necessarily inverted as this depends on the activity levels of
the targeted nodes in basal conditions. However, we observed
that in these conditions the activation profiles are indeed
largely complementary, with the possible exception of the
observed inactivation of rpS6 when PTPN21 is silenced, which
is not matched by rpS6 hyper-phosphorylation when PTPN21
is overexpressed (Figure 6A, left panel). We next simulated the
same experimental conditions using the model and we
compared the computed activation states with the ones
obtained experimentally. The inferred states are computed
by setting in the model the values of the phosphatase target
nodes to 1 or 0 depending on whether the phosphatase was
predicted to be a positive or a negative regulator by the
mapping procedure (Figure 6A, right panel). The experimental
results largely confirm the predictions derived from the model.
Notable exceptions are the predicted modulation of NFkB and
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p38 by PTP4A1 and PTP4A2, respectively, which were not
observed experimentally. The experimental profiles of PTPN21
and DUSP18 had not been matched with a model prediction

when using the results of the siRNA screening. Even in
these different experimental conditions the profiles do not
correspond to any simulation result (Figure 6A).

Figure 4 Assembly and optimization of a literature-derived growth model. (A) An extensive literature and database search has been carried out to assemble a
literature-derived signed directed graph modeling the cross-talk between growth pathways. The network is visualized by the graph layout routine included in the CellNOpt
software. (B) The graph in (A) was automatically compressed by the CellNOpt software by applying the rules described by Saez-Rodriguez et al (2009). White ovals
circled with dashed lines in (A), represents nodes, not subjected to experimental manipulation, that were part of linear cascades in which a series of undesignated nodes
and edges impinged on a designated node. Such nodes were compressed by CellNOpt and consequently eliminated, as shown in (B). (C) Schematic representation of
the optimization strategy of a toy network. The CellNOpt software uses a genetic algorithm to identify models whose prediction better explains the experimental results.
Edges are randomly removed and connected by different combinations of AND/OR logic gates. The resulting rewired models are finally tested for their ability to
reproduce the experimental results. Since different optimization runs yield models with different connections, the performance of the model is obtained by averaging the
predictions of 1000 different models. (D) A graph representing the average results of 1000 optimization runs. The thickness and color intensity of each edge are
proportional to the number of times it appears in the 1000 optimized models. (E) Color coded representation of the results of the experiments that were used to train the
model and comparison with the average prediction of the 1000 models. The protein activation level, which ranges from 0 to 1, is represented with a gradient from blue
(inactive) to red (active). The third panel uses the same color scale to display the absolute value of the difference between the data simulated from the model and the
experimental data used for training.
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Figure 5 Mapping of phosphatase hits on the optimized growth model. (A) The siRNA screening results are represented as a hit map and compared with the model
predictions after upregulation or downregulation of the activity of each node in the 1000 optimized models. Red and blue indicate a downregulation or an upregulation of
the activity of the five sentinel proteins, respectively. (B, C) HeLa cells were transiently transfected with phosphatase coding plasmids or with an equimolar pool of vectors
expressing three different oligos targeting each phosphatase. After 48 h of transfection, cells were stimulated with TNFa for 15 min (right panel) or starved for 1 h (left
panel). The phosphorylation levels of p38 and ERK were measured by immunoblotting with anti-phospho p38, anti-tubulin and anti-phospho ERK. The LC3 and IkBa
protein levels were monitored by immunoblotting with anti-LC3, anti-IkBa and anti-GADPH and plotted in the bar graph. (D) Protein phosphatases hits are mapped on
the optimized logic model. Positive and negative regulators of the indicated nodes are represented with a green or a red background, respectively. Phosphatases with an
oncogenic or oncosuppressor functions are, respectively, labeled with a yellow or blue dot.
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In a second experiment, we checked whether the over-
expression of four phosphatases, which were mapped to
different positions of the signaling network (i.e., upstream and
downstream of AKTand ERK), differentially affect the activity
of two readouts (RAF1 and AKT activation) that were not
considered in the mapping procedure. For this purpose, we
selected the regulatory subunit PPP2R1A and the protein
phosphatase CDC25C, mapped upstream of AKT onto the
TNFR node, and the two tyrosine-specific phosphatases of
regenerating liver, PTP4A1 e PTP4A2, associated with the IKK
and p38 nodes, respectively (Figure 5B). As predicted, by the
model and the mapping, only the overexpression of PPP2R1A

and CDC25C significantly affects the phosphorylation levels of
the downstream kinases AKT and RAF1, resulting in a drastic
reduction of the activity of ERK, p38, rpS6 and NFkB
(Figure 6B). In contrast with the results of the experiment in
Figure 5C, the predicted upregulation of autophagy, upon
PPP2R1A and CDC25C overexpression, was not observed
in these experimental conditions. However, as shown in
Figure 6B, in the presence of serum and TNFa, autophagy is
severely downregulated and LC3 is barely detectable in the
western analysis. In these conditions, identification of subtle
modulations is extremely difficult. We confirmed in starved
cells that PPP2R1A and CDC25C positively modulate
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Figure 6 Validation of phosphatase hits mapping prediction on the optimized growth model. (A) Comparison of phenotypes obtained after downregulation and
upregulation of selected phosphatase genes. The results of the screening are represented with a color code where red and blue indicate that the phosphatase
downregulates or upregulates the activation of the readout indicated on the right of the panel. Phosphatases were overexpressed (blue arrow) or silenced (red arrow) by
an equimolar pool of vectors. After 48 h of transfection, cells were stimulated with TNFa for 10 min. Activation levels of the sentinel proteins were measured by
immunoblotting with anti-phospho ERK, anti-GAPDH, anti-phospho p38, anti-phospho rpS6 and anti-tubulin. The nuclear translocation of NFkB was measured by
indirect immunofluorescence microscopy coupled to automated image analysis in cells stained with anti-NFkB antibody. The obtained results were normalized by the Hill
function to values ranging from 0 to 1 and then compared with the ones obtained by the simulation of the downregulation (red arrow) or upregulation (blue arrow) of
specific nodes in the optimized model. Blue and red boxes, respectively, indicate high and low values, while intermediate values are mapped to shades of red and blue.
For each measurement, the average value and standard deviation of three independent biological replicas was calculated. (B) HeLa cells were transiently transfected
with plasmids encoding the indicated phosphatases or with an empty vector. After 24 h of transfection, cells were stimulated with TNFa for 10 min. Anti-V5 and anti-
tubulin antibodies were used to assess transfection efficiency and as loading control, respectively. The activation level of the five sentinel proteins was analyzed either by
western blot or by immunofluorescence techniques. The phosphorylation levels of RAF1, ERK, AKT, rpS6 and p38 were analyzed by immunoblotting with anti-phospho-
specific antibodies and anti-tubulin. The autophagy level was assessed by revealing protein extracts with anti-LC3 antibody and anti-tubulin, as loading control. As
previously described, the nuclear translocation of NFkB was measured by immunofluorescence microscopy coupled to automated image analysis. For each
measurement, the average value and standard deviation of four independent biological replicas was calculated. As previously described, the obtained results were
normalized by the Hill function to values ranging from 0 to 1 and reported. Source data is available for this figure in the Supplementary Information.
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autophagy (Figure 5C, left panel), confirming the reliability of
our mapping. In addition, in accordance with the model
prediction and its mapping on the IKK node, PTP4A1 only
induces the inactivation of p38 and NFkB, which in turn is not
affected by PTP4A2, which was mapped onto the p38 node.
The high degree of correlation between the experimental and
computed activation states, in a variety of experimental
conditions, highlights the ability of the model to compute the
network activation profile, after perturbing the activity of any
node. In addition, the mapping procedure is robust and, once
the entry node of a phosphatase has been identified, in a
specific experimental condition, the effect of modifying the
activity of the phosphatase in different conditions can be
computed by activating or inactivating the entry node in the
model simulation.

Phosphatase hits modulate cell-cycle timing

The aberrant activation of the pathways that we have
considered in the growth model has been implicated in the
development of several tumors. Therefore, we investigated
whether our screening had preferentially identified phospha-
tases that are enriched for those that have already been
characterized as oncogenes or oncosuppressors.

As shown in Figure 5B, the data curated in the Phosphatase
Database (Liberti et al in preparation), identified 24 of the 41
mapped phosphatase hits as oncogenes or oncosuppressors,

marked with yellow and blue circles, respectively. The
significant enrichment (P-value o0.01 by the hyper-geometric
test) of ‘cancer phosphatases’ in the hit list suggests that our
screening preferentially selects proteins that have the potential
to interfere with the control of cell growth.

To test this hypothesis, eight phosphatase hits were over-
expressed and the perturbation of cell-cycle timing was
monitored by counting the percentage of transfected cells
having nuclei positive for the cell proliferation marker Ki67.
As shown in Figure 7, the overexpression of PTPN21, a
phosphatase whose oncogenic potential has been character-
ized (Carlucci et al, 2010), increases the fraction of mitotic cells
whereas, consistent with their reported tumor suppression
function (Julien et al, 2011; Liberti et al, 2012), PPP2R1A,
PPP1CA and PTPN3 negatively regulate the number of mitotic
cells. Similarly, overexpression of DUSP18, which was shown
in our screening to downregulate the activation of the MAPK
ERK and p38 (Figure 6A), results in a decrease of the number of
cells that can be labeled with the mitotic antigen antibody.

Discussion

This work describes a novel strategy combining high-content
phenotypic screenings and modeling to map proteins on a
signaling network on a large scale. Our approach requires a
computable signaling model, which can be assembled from
the literature and subsequently optimized by training with the
results of perturbation experiments (Saez-Rodriguez et al,
2009). Such a model is used to predict the effect that the
activation/inhibition of upstream modulators has on a number
of molecular readouts that together are used as a signature to
describe the state of the cell. When the same molecular
readouts are measured in an independent siRNA high-
throughput screening, it is possible to bring a large number
of proteins in the model by simply matching the computed and
experimentally determined cell states. By this strategy the hits
identified in the high-throughput screening are linked to the
nodes in the model that, when perturbed in silico, result in the
same cell state. We show that using this approach, it is possible
to obtain mechanistic insights on a large scale without
sacrificing either coverage or detail.

This novel strategy was applied to study the involvement of
protein phosphatases in cell growth pathways. The results of
our screening support the notion that protein phosphatases
can both upregulate (40%) or downregulate (60%) signal
transduction events. This observation is consistent with the
current view that phosphatases do not only act to terminate
signaling, but also have a prominent role in the positive
regulation of signal transduction events, resulting in both
oncogenic and oncosuppressor functions (MacKeigan et al,
2005; Julien et al, 2011).

Here, we show that 67% (41) of the phosphatases that were
characterized as pathway modulators in our siRNA screening
could be mapped onto defined nodes of our cell-specific
optimized model (Figure 5). Importantly, our mapping
procedure is reliable and consistent with the results of
independent experiments (Figure 5). For instance, the over-
expression of either PTP4A1 or PTP4A2, which were mapped
on IKK and p38, respectively, only affects the activity of these
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Figure 7 Phosphatase hits affect cell-cycle timing. In HeLa cells, V5- or GFP-
tagged protein phosphatases or GFP coding vector, as negative control, were
overexpressed. After 24 h of transfection, cells expressing V5-tagged
phosphatases were fixed, stained with anti-Ki67 and anti-V5 antibodies and
analyzed by immunofluorescence microscopy coupled to automated image
analysis. The percentage of transfected cells having Ki67-positive nuclei was
measured. Two independent biological replicas were plotted in the bar graph.
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downstream nodes. Conversely PPP2R1A and CDC25C, which
were mapped upstream of RAF1 and AKT, have a much
broader effect on cell state, drastically inhibiting the activity
of ERK, p38, rpS6 and NFkB (Figure 6B) and positively
modulating autophagy (Figure 5C, left panel).

Interestingly each node of our model is modulated by
several phosphatases, suggesting a high level of redundancy
in pathway regulation. In this scenario, it is important to
consider that the scaffold model is compressed. Therefore,
each of the observed phosphatase modulators may affect in a
similar way the same node, by targeting different proteins that
have been compressed on the same node or even proteins that
do not appear in our model but modulate the activity of the
node in vivo. Alternatively, the redundancy that is observed in
HeLa cells may reflect a superimposition of mechanisms
modulated by phosphatases that act in a tissue-specific
manner in vivo. However, no clear-cut conclusion could be
drawn from the analysis of phosphatases co-expression data in
human tissues in the COXPRESdb database (Obayashi et al,
2008).

The measured profiles of 17 phosphatase hits could not
be matched with the effect of perturbing any specific node of
the model. We have considered the possibility that some of
these profiles could be explained by the targeting of multiple
nodes. Thus, we performed new simulations where we
computed the effect of up/downregulating all the possible
pairs of nodes in the model. This procedure allowed the
mapping of three additional phosphatases (PPP3CA, DUSP4
and PPP1R14D). The cell states (profiles) of the remaining
14 phosphatases were either: (i) not compatible with the
model, that is, they could not be reached in any of the
simulated experimental conditions involving perturbation
of up to two nodes or (ii) not specific to the perturbation
of any node, or pair of nodes. We can contemplate a number
of limitations of our model that could explain this partial
failure.

(1) Training data are insufficient to fully constrain the model.
We observed that some of the unmatched profiles could be
made compatible with the model by reinstating connec-
tions that were assigned a low weight in the model
optimization procedure. For instance, three phosphatases
(PPP1R11, DUSP26 and CDC14C) positively regulate both
autophagosome formation and ERK phosphorylation. The
link between ERK activation and autophagy was present in
our literature-derived network because DAPK was
described to remove the inhibitory interaction between
BCL-XL and beclin (Zalckvar et al, 2009) after activation
by ERK (Chen et al, 2005). However, this logic relationship
is given a low weight after model optimization possibly
because our training data were not adequate to support
this link. In addition, the optimization procedure does not
explore the addition of new nodes or edges. Thus, if the
literature-derived starting model misses elements that are
important to model the experimental results, these will not
be tracked down during model optimization.

(2) Gene regulation feedback loops. Gene expression feed-
back loops were not considered in the growth model. The
choice was dictated by the lack of information on the
regulatory circuits that are modulated by growth pathways

and on their impact on the activation of the model nodes.
In addition, Boolean models are inadequate to incorporate
feedback loops. These simplifications do not represent a
substantial limitation because the model was calibrated
against experimental data, obtained by short-term net-
work perturbations (1–2 h). However, in our mapping
procedure the inferences from the signaling model were
compared with the siRNA screening results, obtained by
downregulating phosphatases for 48 h. This procedure
would lead to incorrect inferences if the siRNA perturba-
tion activates feedback loops involving gene transcription
and causes network rewiring. Indeed extensive network
rewiring can be induced by small interfering RNA, as
pointed out by Jorgensen and Linding (2010). This may
be responsible for our inability to map some of the
phosphatase perturbations.

(3) Limits of the Boolean representation. The siRNA screening
results are quantitative and continuous. For comparison
with the Boolean model the data are discretized. This
procedure implies the somewhat arbitrary selection of
threshold values. It is possible that in some cases the
discretization procedure is an inadequate representation
of the complexity of the regulatory network.

Our analysis reveals that multiple regulatory subunits
targeting PP2A and PP1 phosphatases are essential modulators
of the analyzed pathways. These observations are consistent
with the current view that these two enzymes control different
physiological pathways, by interacting with diverse regulatory
subunits (Wera and Hemmings, 1995). Surprisingly, in our
screening, the downregulation of the PP2A and PP1 catalytic
subunits (PPP1CA, PPP2CA) only impairs rpS6 phosphoryla-
tion, without affecting the activity of the remaining branches
of the network. This observation can be rationalized by
considering that the mRNA levels of the two catalytic subunits
are incompletely knocked down by siRNA (Supplementary
Figure S1).

Our mapping strategy is not designed for the identification of
phosphatase substrates. Nevertheless, it enables the position-
ing of phosphatase hits in proximity of their physiological
targets. For instance, Eitelhuber et al demonstrated that
PPP2R1A, which we have mapped onto the TNFR node,
directly interacts with the Carma1-Bcl10-Malt1 (CBM) com-
plex. This complex indirectly interacts with trans-membrane
receptors, such as TCR or TNFR (Rawlings et al, 2006;
Eitelhuber et al, 2011), leading to the PP2A-mediated depho-
sphorylation of Carma1 and the inactivation of NFkB. This
observation is consistent with our mapping prediction,
suggesting that the PPP2R1A–Carma1 interaction not only
mediates NFkB inactivation, but also induces the ERK, p38 and
rpS6 de-phosphorylation and, as a consequence, decreases the
number of mitotic cells (Figures 5 and 6). Evidence showing
that this regulatory subunit has a high frequency of mutation
in human endometrial cancers and that the mutated region
mediates the association with the PP2A catalytic subunit
(Nagendra et al, 2011; Shih et al, 2011) underscore the
physiological relevance of our observations.

Similarly, we were able to identify a model ‘entry node’ for a
number of additional ‘cancer phosphatases’, whose molecular
mechanism leading to tumorigenesis is still unknown
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(Figure 5). Indeed the statistically significant overlap between
the hits of our screening and the phosphatases already
implicated in cancer suggests that some of the phosphatase
hits, which are not yet recognized as such, should be
considered as new potential oncogenes or oncosuppressors.
For example, we demonstrated that the poorly characterized
DUSP18 phosphatase strongly downregulates the fraction of
mitotic cells, possibly by negative modulation of the pro-
proliferative MAPK ERK pathway, suggesting a novel tumor
suppressor role for this phosphatase (Figure 6). However,
further in-vivo experiments are required to confirm that
DUSP18 as well as the other phosphatase hits are new cancer
genes.

In conclusion, this study offers a genome-wide perspective
on the involvement of protein phosphatases in the modulation
of cell growth under TNFa stimulation, leading to the
identification of new modulators of pathways that may be
relevant for tumor development. To achieve this, we have
developed a novel strategy to map perturbations onto complex
pathways.

Multiparametric screening of cell phenotypes after small
RNA interference or small molecule inhibitors are currently
used to functionally characterize genes and discover new drug
leads, respectively. The proposed mapping strategy is general
and could be used in combination with the results of such large
screenings to achieve a more detailed mechanistic description
of the molecular mechanisms by which genes or small
molecules determine phenotype modulation.

Materials and methods

siRNA screen

The primary siRNA screen was performed using a phosphatase library
of siRNAs (Ambion) based on ENSEMBL version 27. Each phosphatase
was targeted by three different oligos. For hit validation, we used a
library of shRNAs (Missions shRNA phosphatase library, Sigma) and
HeLa cells were transfected with a pool of three shRNA oligos. For the
primary screening, B10�104 HeLa cells were seeded on LabTek
chambers and reverse transfected, as previously described (Erfle et al,
2007). After 48 h, the cells were treated with different stimuli according
to the analyzed molecular phenotype. In order to analyze the ERK and
rpS6 phosphorylation, as well as the LC3 levels, cells were left
untreated in growth medium. To induce an intermediate activation of
NFkB and p38, cells were treated for 10 min with TNFa.

Subsequently, cells were fixed with 4% paraformaldehyde. After
fixation, the cells were processed by immunofluorescence techniques
and images corresponding to each spot of the LabTek were acquired at
the HTS/HCA Facility of the Consorzio Mario Negri Sud (http://www.
negrisud.it/en/research/services/htmicroscopy/) in DAPI, RFP and
GFP separated channels using the automated microscopy image
stationScanR life Science (Olympus) equipped with Olympus IX81
inverted microscope, MT20E lamp, Digital camera CCD QE, motorized
fast movement turret, SuperApocromatic � 20 NA 0.75 short distance
objective. The experiments were carried out in three biological replicas.

Image analysis

Image analysis was performed using the open source Cell Profiler
software and consisted of the following three successive steps:
(i) identification of nuclei by cell nuclei segmentation in the Hoechst
channel; (ii) identification of cell cytoplasm by different segmentation
algorithms according to the different antibody staining; (iii) automatic
measurement of several cell characteristics: cell count, perimeter, area,
shape and eccentricity of cells and nuclei, signal intensity of the

antibodies in the nucleus and in the cytosol. For each image, B100
cells were identified and analyzed. To monitor the ERK and p38
phosphorylation, for each image the mean intensity value of these two
antibodies was measured in nucleus. To analyze the rpS6 phosphor-
ylation and the autophagy level, for each image the mean intensity
value of anti-phospho rpS6 and anti-LC3 was measured in the cytosolic
compartment. Finally to detect the NFkB activation, for each image we
measured the mean ratio between the nuclear fraction of NFkB and the
cytosolic one.

Cell culture

Human epithelial carcinoma (HeLa) cells were kindly provided by Jan
Ellenberg Lab and grown, as previously described (Sacco et al, 2009).
HeLa cells were treated with 50 ng/ml TNFa for the prescribed time.
Nutrients and amino-acid starvation was performed by incubating
cells with Early Balanced Salt Solution medium. Cells were stimulated
with EGF 100 ng/ml for the prescribed time. HeLa cells were lysed with
RIPA buffer and analyzed by SDS–PAGE, as previously described
(Sacco et al, 2009).

Immunofluorescence microscopy

HeLa cells were fixed with 4% paraformaldehyde and permeabilized
with PBS1X Triton 0.1% or Digitonin 100 mg/ml for 10 min at room
temperature. After 30 min of blocking solution (3% BSA PBS1X), the
cells were stained with primary antibodies and appropriate secondary
antibodies. Subsequently, the cells were stained with DAPI in PBS1X,
0.1% Triton for 5 min at room temperature. Images were acquired by
indirect immunofluorescence on Leica microscope or Delta Vision
microscope using � 20, � 40 or � 63 objectives.

Plasmids and reagents

Anti-phospho rpS6, anti-phosho ERK and anti-phospho p38 were from
Cell Signaling; anti-b-tubulin, anti-NFkB, anti-GFP and anti-p62 were
from Santa Cruz Biotechnology; anti-GADPH was from BD labora-
tories; anti-LC3 (IF) was from MBL; anti-LC3 (WB) was from
Nanotools. Anti-V5 was from Invitrogen. The anti-rabbit and anti-
mouse secondary antibodies were purchased from Jackson Immunor-
esearch. pENTR plasmids coding for protein phosphatase genes were
purchased from Open Biosystem or kindly provided by Dr Stefan
Wiemann. The phosphatase genes, contained in the pENTR plasmids,
were cloned into pcDNA 3.1 CT-GFP Topo and pcDNA 3.2/capTEV-V5
DEST commercial destination vectors, by applying the Gateway
Cloning System (Invitrogen). The small molecules kinase inhibitors
(UO126, SB203580, Wortmannin and Rapamycin) were from SIGMA.
HeLa cells were treated with 10mM UO126 per 1 h, with 15 mM
SB203580 per 1 h, with 200 mM Wortmannin per 2 h and were
incubated with medium containing 100mM Rapamycin per 1 h.

Statistical analysis of siRNA screening results

The data from several LabTek showed a strong positional bias.
This effect was corrected by performing a 2D loess regression of
the data in each array and then subtracting the estimated value
from the actual value (Smyth and Speed, 2003). In order to compare
data from different chambers, we calculated the Z-score of each
data point with respect to all *384* points in the same chamber. We
used a robust Z-score that uses the median in place of the mean and the
mean absolute deviation instead of the standard deviation. We chose
the median as in some cases there were extreme outliers due to
artifacts in the fluorescent staining or in the image acquisition.
We therefore used the median in order to have a measure as insensitive
to outliers as possible. Then, to identify immunofluorescence artifacts,
images corresponding to the data points with a Z-score of 415 and
with a cell count of 4170 were manually analyzed and B30 images,
showing clear artifacts were removed. Moreover, in order to minimize
non-specific effects due to changes in cell growth/death, we
removed the images containing a number of cells in the top and
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bottom 2.5 percentile of the distribution of each experiment. As final
value for each data point, the median of the three biological replicates
was used. In order to combine the data from the three oligos
against each phosphatase, we performed a w2 test by summing the
squares of the three Z-scores (one for each oligo). The null hypothesis
is that the vector representing the effect of the three oligos
has coordinates (0, 0, 0), that is, no-effect. The values for the controls
were all summed together, since in this case all the oligos are identical.
We selected as hits the phosphatases with a P-value of o0.04 after
the w2 test. Subsequently, we removed from the list of hits all the genes
for which the P-value of the Z-score on a standard normal distribution
was 40.2. This was done in order to eliminate genes that have a
significant effect on a phenotype (according to the w2 test) but
for which the effect is small in absolute terms, that is, the Z-score is
close to 0.

Training data set normalization

The biochemical measurement of the seven signaling proteins,
whose activation was measured, was scaled to a value between 0
and 1, using a Hill function (Supplementary Figure S4). The midpoint
of the function was chosen so as to have a normalized value of 0.5 for
the measurements obtained in experimental conditions that we
consider basal. More specifically, the growth medium was considered
as basal condition for the ERK, rpS6, LC3, AKT and JNK measure-
ments, whereas stimulation with TNFa constituted the basal condition
for p38 and NFkB measurement. The steepness of the Hill function was
chosen after visual inspection in order to have a good dynamic
response across all the range of experimental values (Hill
coefficient¼ 2).

Network model optimization

After data normalization, the literature-derived network model was
subjected to 1000 runs of optimization using CellNetOptimizer
(CellNOpt; www.cellnopt.org). This software tries to determine which
connections in the network are significant and in which way (i.e.,
AND/OR) multiple inputs acting on the same node should be
combined. The aim of the optimization is to minimize the difference
between the experimental data and the values that can be simulated
from the network model.

We then calculated the activation state of all the proteins in the network
after inhibiting or activating each node. This calculation was repeated
1000 times, that is, once for each optimized model. The final value for each
protein is the proportion of the 1000 optimized models in which the
protein was active. For instance if the inhibition of protein A led to the
activation of protein B in 120 out of 1000 models, then we express
as 0.12 the activation value of B when A is inhibited. This procedure
enables a quantitative prediction even when using Boolean models,
which are constrained to discrete values by nature. These averaged
values were compared with the training data to evaluate the goodness
of the fit.

Simulating upregulation and downregulation of
each node

The family of 1000 network models was used to simulate the effect of
upregulating and downregulating each node on the state of the five
sentinel proteins. A Boolean logic can only simulate activation or
inhibition but not upregulation. Therefore, we switched to a multilevel
approach. We assigned a value of 0.5 to the presence of a stimulus
(Serum or TNFa) in control conditions. Upregulated and down-
regulated nodes were assigned a value of 1 and 0, respectively. Beside
this difference in the allowed states of each node, it is necessary to
choose a transfer function that relates the state of each downstream
node to the states of its upstream modulators. In analogy with the
Boolean approach, we used a linear transfer function. This means that
the value assigned to a node corresponds to the value of the upstream
node, if the edge is activatory, or 1—the value of the upstream node
otherwise. Similarly to Boolean models, AND gates are computed as

the minimum of the values of the incoming edges, while OR gates as
the maximum. The final value for each protein in a given condition is
the average of the values in the 1000 models.

Matching simulated values with the results of the
siRNA screening

The results of the siRNA screening were coded with a discrete variable
with three possible values ‘downregulated’,‘control’ and ‘upregulated’
according to the results of the primary and validation screenings.
Therefore, each phosphatase hit has an associated cell state vector
with coordinates corresponding to the values of the five sentinel
proteins coded as described above. In order to code the results of the
simulation with a discrete variable, we first normalized them using a
Hill function. Particularly, for the ERK and rpS6 normalization the Hill
coefficient was 1.5, while for NFkB and LC3 the coefficient was 5. The
Hill coefficient for the p38 normalization was 20, because this
measurement was less sensitive to simulation of model perturbation.
Once again the midpoint of the function was chosen so as to have a
normalized value of 0.5 for the measurements obtained in basal
conditions (Serum for ERK, rpS6, LC3, SerumþTNFa for p38 and
NFkB). Next, the normalized values were coded as ‘downregulated’,
‘control’ and ‘upregulated’ when the value fell in the 0–0.33, 0.33–0.66
and 0.6–1 ranges, respectively.

Following this step, both the siRNA screening and the results of all
the simulations are coded as a vector of five discrete variables
representing the states of the five sentinel proteins (cell-state vector).
Our mapping strategy relies on the assumption that if a phosphatase
acts on a given protein, then its perturbation in the primary siRNA
screening should result in a cell state similar to the one obtained when
the protein is downregulated, if the phosphatase has an activatory
effect, or upregulated otherwise. The distance between two cell-state
vectors is calculated as 1—the fraction of sentinel proteins with
identical states. Each phosphatase is therefore matched with the
simulation resulting in the cell-state vector of minimum distance. Since
in each simulation a single node is perturbed this matching allows the
assignment of the phosphatase to the activation or inhibition of a
specific node.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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