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ABSTRACT
The silverfish Neoasterolepisma foreli belongs to the family Lepismatidae within Zygentoma and is well
known for the peculiar habit of living in strict association with ant nests (myrmecophily). In this study,
we describe its mitochondrial genome, a circular molecule of 15,398bp including the canonical 13
PCGs, 22 tRNAs, 2 rRNAs, as well as a 403bp AT-rich region. A phylomitogenomic analysis of the new
sequence, alongside basal hexapod mtDNAs, confirmed the monophyly of all orders, with some uncer-
tainty over the position of the enigmatic Tricholepidion gertschi that would make Zygentoma paraphy-
letic. Neoasterolepisma foreli is recovered in a basal position within family Lepismatidae, at odd with
our current understanding of the group that would, in turn, suggest a closer relationship with the
genus Lepisma (Mendes, 1991).
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Zygentoma (silverfishes) is a small taxon of primitively wing-
less hexapods. Despite the availability of anatomical and
embryological data (Gaju-Ricart et al. 2015), genetic and gen-
omic information is still limited. They are generally regarded
as sister group of the flying insects (e.g. Mendes 2018), with
some doubts on the enigmatic Tricholepidion gertschi that
may represent an early offshoot of the common dicondylian
stock, making Zygentoma the only non-monophyletic high-
ranking basal hexapod group. This latter hypothesis was pro-
posed based on morphological evidence (i.e. Boudreaux
1979; but see Kristensen 1998; Blanke et al. 2014) and revived
based on phylomitogenomic investigations (Carapelli et al.
2006; Leo et al. 2019). Lepismatidae are the largest family
within Zygentoma, display a cosmopolitan distribution and
include well known anthropophilic species such as Lepisma
saccharinum and Thermobia domestica. Nevertheless, infra-
order relationships are still unclear. The species
Neoasterolepisma foreli (Moniez, 1894) has been investigated
in relation to its myrmecophilous habit (Molero-Baltan�as
et al. 2017), but its phylogenetic position has never been
studied in detail. In this work, we describe the complete
mitochondrial genome of Neoasterolepisma foreli and study
its phylogenetic position within basal Dicondylia.

A single specimen of N. foreli collected in 2019 in V�elez de
Benaudalla (Granada, Spain; 36�50’1300N 3�3002400W; voucher
ID: NFO_03, preserved at the Life Sciences Department of the
University of Siena; determined by M. G. -R.) was used for
total genomic extraction using QIAmpVR UCP DNA kit.
Libraries were prepared using the TruSeq DNA Nano kit
(Illumina, San Diego, CA) and 151 bp paired-end sequences

were obtained on a HISeq 2500 platform (Illumina, San
Diego, CA) at Macrogen Europe together with additional
libraries from unrelated arthropod species (data not shown).
Resulting reads were de novo assembled as in Nardi et al.
(2020). In brief, the cox3 gene was employed as seed in the
NOVOPlasty v. 3.8.3 (Dierckxsens et al. 2017) assembling
method with manually curated k¼ 33 and 39. The resulting
assemblies were checked against a MEGAHIT assembly (Li
et al. 2015) and manually curated. The final mtDNA sequence
was automatically annotated using MITOS (Bernt et al. 2013)
and manually curated. The new sequence (PCGs only) was
retro-aligned with the dataset of Leo et al. (2019), together
with Ctenolepisma villosum (Chen et al. 2019) and Lepisma
saccharinum (Bai et al. 2020) sequences, and hypervariable
regions were removed using Gblocks v. 0.91b (Castresana
2000). The best partitioning scheme and evolutionary model
were selected using PartitionFinder 2.1.1 (Lanfear et al. 2016)
and used for a Bayesian phylogenetic analysis in MrBayes
3.2.6 (Ronquist et al. 2012) through the CIPRES Science
Gateway (Miller et al. 2010) with four chains of 2� 107 gener-
ations, a burn-in of 0.25 and a sampling frequency of one
tree every 1000 iterations.

The complete mtDNA of N. foreli is 15,398 bp long, in line
with the previously described mitogenomes of Lepismatidae
(e.g. Thermobia domestica: 15,152 bp, Lepisma saccharinum:
15,244 bp, Ctenolepisma villosum: 15,488 bp). The molecule
encodes for the common 37 genes encountered in metazoan
mtDNAs (13 PCGs, 22 tRNAs, and 2 rRNA) plus a non-coding
Aþ T rich region of 403 bp. Overall, all PCGs show a canon-
ical Methionine start codon (ATN), with the exception of cox1
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(TTG – Leucine), nad3 and nad5 (ATT – Isoleucine). All PCGs
are characterized by a TAA complete stop codon, with the
exception of nad1 (TAG), nad3 and cob (T–). Two overlaps
between adjoining genes are observed, namely atp8–atp6
(4 nt) and nad4–nad4L (7 nt). Gene order conforms to the
ancestral Pancrustacea model (Boore 1998), as in all other sil-
verfishes studied (Comandi et al. 2009). The nucleotide com-
position of the entire mitogenome is as follows: A¼ 39.8%,
T¼ 32.2%, C¼ 17.6% and G¼ 10.4%, with the highest AT
nucleotide bias (72%) within the order (Cook et al. 2005;
Comandi et al. 2009; Chen et al. 2019; Bai et al. 2020).

The phylogenetic tree obtained from the Bayesian
Inference analysis confirms the results of Leo et al. (2019)
and, despite the addition of new sequences, most of the
inter-order relationships remain unvaried. A comparison with
Chen et al. (2019) and Bai et al. (2020) is, on the other hand,
more difficult due to a different taxon sampling in these lat-
ter. Overall, the tree supports the monophyly of Ectognatha,
Dicondylia, Pterygota, Ephemeroptera, Odonata,
Microcoryphia and Diplura with high posterior probability val-
ues, but not of Zygentoma (Figure 1). In fact, as shown in
previous morphological and molecular studies (Leo et al.
2019; Montagna 2020), T. gertschi appears to occupy a basal
position within the Dicondylia clade, hence making
Zygentoma paraphyletic with respect to Pterygota, although
with marginal support. If any, this indicates that the phylo-
genetic position of this relict species is still a debatable topic
(Blanke et al. 2014). At the family level, Machilidae
(Microcoryphia) is recovered as paraphyletic with respect to
Meinertellidae due to the position of Petrobiellus puerensis
(nomen nudum) and P. bannaensis (nomen nudum) as sister
group to Nesomachilis australica. Within bona fide Zygenoma
(i.e. Euzygentoma), Atelura formicaria, the only representative

of family Nicoletiidae family, is sister group to the
Lepismatidae. Neoasterolepsima foreli appears as the basal
group within Lepismatidae at odds with our current under-
standing of the group that would suggest a closer relation-
ship with Lepisma (Mendes, 1991). The study of new samples
and the review of previously published ones would be war-
ranted to clarify the position of N. foreli and L. saccharinum.
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Figure 1. Phylogenetic tree obtained through a Bayesian statistical approach on the concatenated 13 PCGs of basal Ectognatha and two outgroups (Artemia francis-
cana and Cryptopygus terranovus). Neoasterolepisma foreli phylogenetic position is bold highlighted. Paraphyletic groups are highlighted with an asterisk. Posterior
probabilities are shown at nodes (full support if not otherwise indicated).
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