
Network Neuroscience and Personality

Sebastian Markett1, Christian Montag2,3 and Martin Reuter4

1Department of Psychology, Humboldt University, Berlin, Germany, 2Department of Molecular Psychology,
Institute of Psychology and Education, Ulm University, Ulm, Germany, 3The Clinical Hospital of Chengdu Brain
Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of
China, Chengdu, China and 4Department of Psychology, University of Bonn, Bonn, Germany

Abstract

Personality and individual differences originate from the brain. Despite major advances in the
affective and cognitive neurosciences, however, it is still not well understood how personality
and single personality traits are represented within the brain. Most research on brain-
personality correlates has focused either on morphological aspects of the brain such
as increases or decreases in local gray matter volume, or has investigated how personality
traits can account for individual differences in activation differences in various tasks.
Here, we propose that personality neuroscience can be advanced by adding a network
perspective on brain structure and function, an endeavor that we label personality network
neuroscience.
With the rise of resting-state functional magnetic resonance imaging (MRI), the

establishment of connectomics as a theoretical framework for structural and functional
connectivity modeling, and recent advancements in the application of mathematical graph
theory to brain connectivity data, several new tools and techniques are readily available to be
applied in personality neuroscience. The present contribution introduces these concepts,
reviews recent progress in their application to the study of individual differences, and explores
their potential to advance our understanding of the neural implementation of personality.
Trait theorists have long argued that personality traits are biophysical entities that are not

mere abstractions of and metaphors for human behavior. Traits are thought to actually exist
in the brain, presumably in the form of conceptual nervous systems. A conceptual nervous
system refers to the attempt to describe parts of the central nervous system in functional
terms with relevance to psychology and behavior. We contend that personality network
neuroscience can characterize these conceptual nervous systems on a functional and
anatomical level and has the potential do link dispositional neural correlates to actual
behavior.

1. Personality network neuroscience

Ever since the affective and cognitive neurosciences have embarked on their journey towards
unraveling the biological basis of cognition, motivation/emotion, and behavior, new techno-
logies and paradigms have shaped their path. One of the hallmark developments on the
technological side was MRI. It enables researchers to non-invasively assess neural processes in
the awake human brain (Turner & Jones, 2003). MRI is not perfect, just like any other
scientific method, but it is of indisputable value for the study of the human brain (Turner,
2016). On the spatial level, MRI depicts anatomy of the living human brain with unprece-
dented spatial detail. On the functional level, it can keep track of ongoing activity in brain
dynamics. Furthermore, MRI has been approved for use in healthy human research partici-
pants who volunteer their time for scientific enquiry. In this regard it is superior to other
techniques like intracranial recordings, optogenetic imaging, or radioligand-based imaging
which are either not approved for the use in healthy human volunteers, are not approved for
use in humans at all, or are severely constrained due to the emission of harmful radiation.
Since its introduction in the early 1990s, MRI has positioned itself as the methodological
backbone of cognitive neuroscience and has provided marvelous insights into the neural
foundation of psychological processes (Raichle, 2009).

On the paradigmatic side, the last 10 years have seen the rise of connectomics and network
neuroscience as a new way to reason about the brain. The neologism connectome, introduced
independently by Patric Hagmann and Olaf Spons in 2005 (Hagmann, 2005; Sporns, Tononi,
& Kötter, 2005), combines the term “connection” with the suffix “-ome” which stands for “the
whole class of something.” In analogy to the term genome (“gene” and “-ome”) which describes
the entirety of and the organizational principle behind the genetic information of a species or
an organism (Winkler, 1920), a connectome describes the organization of connections
throughout a nervous system. The brain is a complex network whose intricacy can be
apprehended on many different resolution levels. On a microscopic level, neurons sprout
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axons that find their way to the dense dendritic trees of other
neurons where they connect via synaptic contacts. On a macro-
scopic level, the axons of thousands of neurons merge together in
major white matter fiber bundles that project from one brain area
to another. MRI technology can be applied to non-invasively map
these fiber bundles in the human brain and to estimate from
functional imaging data how information processing unfolds
along these pathways. MRI connectomics has revealed that neural
connections follow—despite all their complexity—certain orga-
nizational principles that enable efficient and goal-oriented
information processing. Recent years have seen major advances
in the field of network science. Sophisticated network modeling
tools have been developed that are increasingly applied to brain
connectivity data in order to unravel organizational principles
and understand their relevance for psychological processes and
clinical conditions.

Personality neuroscience as a new field of study within the
cognitive and affective neurosciences has embraced neuroimaging,
psycho-pharmacology, molecular genetics, and psychophysiological
methods as its tools of choice to study the biological foundations of
personality, and to derive explanatory models of individual differ-
ences (DeYoung & Gray, 2009). In the present contribution, we
argue that neural network modeling techniques should step up to
join the methodological pantheon of our field. We will outline how
connectivity research can complement more traditional brain
mapping approaches such as brain activation or simple morpholo-
gical studies in assessing the biological bases of personality traits. To
this end, we are going to introduce key concepts and findings of
resting-state functional MRI (fMRI), diffusion MRI and basic ideas
of network neuroscience, with the aim of promoting the application
of network neuroscience in general, and MRI-based connectomics in
particular, to the study of personality and as a basis of new types of
personality theory (see sections 4 and 5). We will build our argu-
ments mostly on studies investigating non-ability traits, even though
similar ideas should in principle be also applicable to other aspects
of individual differences.

2. Where nature meets nurture

Before we begin with introducing key concepts from brain con-
nectivity, connectomics, and network science, we would like to
briefly review the goals and aims of personality neuroscience. The
key presumption of personality neuroscience is that a person
cannot be understood without understanding their brain
(DeYoung, 2010). Personality neuroscience therefore utilizes
techniques from affective and cognitive neuroscience to relate
brain processes to personality characteristics.

Personality psychology has developed sophisticated taxo-
nomies to describe individual differences. Classificatory systems
such as the Big Five model/five-factor model (Costa & McCrae,
1992; Goldberg, 1993), the six-dimensional HEXACO model (Lee
& Ashton, 2008), or multi-factor hierarchical models (Cattell,
1965) mostly utilize self-report data to locate individuals in a
multi-dimensional factor space. Although these models have been
very successful in describing individual differences and also in
predicting actual behavior from individual personality scores,
they are mostly non-explanatory and allow for only limited
insights into why people differ. The personality neuroscience
approach which seeks to trace the neural implementation of
personality factors in the brain is also not explicatory per se and
often falls short of providing insights into causal mechanisms.
It does, however, give a more detailed picture on how personality

might work, and constitutes an attempt to unveil the neural
foundation of personality that can be more easily traced to distal
determinants of personality such as genetic and environmental
influences (DeYoung, 2010). Population genetic studies can
provide insights into such distal determinants of individual
differences. A recent meta-analysis has compiled evidence from
2,748 twin studies of the last 50 years and has quantified genetic
influences on personality at 49% on average (Polderman et al.,
2015). This estimate suggests that roughly one half of the variance
in individual differences in personality can be explained by
genetic factors, while the other half should originate from
environmental influences. Such work is based on the decom-
position of covariance matrices. Despite its tremendous success in
pointing towards broad classes of influencing variables, it still falls
short of pointing towards explanatory pathways and mechanisms.
Moreover, findings like the above from twin research too easily
suggest for laypersons that nature and nurture are two distinct
entities. But abundant research demonstrates that nature and
nurture strongly interact (for a short overview, see Montag &
Hahn, in press). Even when the recent advances in molecular
genetics (for review, see Reuter, Felten, & Montag, 2016) and the
utilization of genome-wide association designs and genetic
complex trait analysis (Plomin & Deary, 2015) would lead to an
exhaustive list of genetic polymorphisms responsible for indivi-
dual differences in the personality domain (which is an utopia
at the moment), we would still need to tackle the mechanisms
by which these genetic variables interact with environmental
influences and cause individual differences in behavior and
behavioral dispositions. This problem also applies to environ-
mental factors equivalently. Furthermore, new advances in the
field of epigenetics suggest an impact of the environment on gene
activity at a molecular level. Such gene-environment interactions
are currently studied by analyzing methylation patterns in pro-
moter regions of genes and histone modification (Zhang &
Meaney, 2010). Personality neuroscience, with its focus on neural
processes, will be of much value by describing personality and
individual differences at the brain level and hence providing
intermediate mechanisms that bridge between personality and
its more distal influences such as molecular genetics, gene by
environment effects and the epigenome. This idea is also cur-
rently utilized in the field of psychiatric genetics that faces
quite similar challenges in linking genetic variation to complex
behavioral traits and individual differences (Meyer-Lindenberg &
Weinberger, 2006).

In order to be successful in explaining individual differences
and personality, we need to ask how to best derive such inter-
mediate neural models of personality. Here, we can get inspira-
tion from behavioral biology. In the 1980s, behavioral biologists
and geneticists published a complete list of all neurons and their
synaptic connections of the nematode Caenorhabditis elegans, a
widely studied model organism in biology (Emmons, 2015;
White, Southgate, Thomson, & Brenner, 1986). This roundworm
possesses only a small number of neurons (around 300) that form
around 5,000 chemical synapses. The rationale behind this effort
was straightforward: synaptic contacts between single neurons are
established during learning and can thus depend on experience
(Kandel & Schwartz, 1982). Genetic mechanisms are similarly
involved in synaptic plasticity and long-term potentiation
(Alberini, 2009). Identifying a neural circuit with relevance for
behavior and then studying its genetic and experience-dependent
determiners thus qualify as holistic approach with potential to go
way beyond mere description (Bargmann & Marder, 2013).
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Studying nematode behavior and neural connectivity has at
best only limited potential for understanding human individual
differences. The research strategy, on the other hand, could prove
very fruitful, and clearly the study of C. elegans and Aplysia
californica led to groundbreaking insights (for an overview, see
Hawkins, Kandel, & Bailey, 2006). At present, however, C. elegans
is the only organism with a completely recovered network map at
the cellular level. Similar efforts in other model organisms such as
Drosophila or the mouse are still pending, mainly because of the
complexity of their nervous systems (Schröter, Paulsen, & Bull-
more, 2017). Fortunately, such detail in mapping neural con-
nectivity is not required to assess organizational principles of
brain networks. White matter fiber tracts consist of thousands of
single axonal connections that share an area of origin and a
projection site. A large number of myelin sheets that insulate the
axons affect signals that can be picked up by MRI scanners.
Macro-level brain connectivity in the form of white matter fiber
tracts can be revealed by modern MRI technology without
detailed knowledge of micro-level connectivity on the level of
single neurons (Sporns, 2013).

Previous work has successfully demonstrated that
experienced-based changes in human behavior and ability are
accompanied by changes at the level of brain networks (Lewis,
Baldassarre, Committeri, Romani, & Corbetta, 2009; Scholz,
Klein, Behrens, & Johansen-Berg, 2009), and that individual dif-
ferences in brain networks show associations with genetic varia-
tion (Markett et al., 2016a, 2017a). Nature and nurture affect
individual differences and personality. Environmental influences
reach the brain through all afferent projections, mainly from
sensory sources. Each cell within the brain contains a complete
copy of the genome and genetic information is constantly tran-
scribed with marked effects on neural processing. It is within the
human brain where nature and nurture meet. Models of the brain
and its functions should thus provide an ideal background for the
study of mental faculties such as human personality.

3. Personality traits and their neural implementation

Even though most definitions of personality emphasize a holistic
perspective on individual differences, personality neuroscience
has so far mostly focused on the neural implementation of
personality traits (DeYoung, 2010). In our present line of argu-
mentation, we also focus primarily on personality traits, while
acknowledging that this captures only parts of human personality.

The trait definition by Gordon Allport, one of our field’s early
eminent trait theorists, views personality traits as neuropsycho-
logical systems with the purpose of making a variety of stimuli
functionally equivalent, in order to trigger a consistent and
meaningful response (Allport, 1937). Functional equivalence
means that a “common ground” of a class of stimuli is extracted,
in order to initiate an appropriate response. As an example to
illustrate this rather abstract definition, consider the emotion
anxiety. There is a fair deal of stimuli that have the potential to be
perceived as frightening. This can range from social situations
such as public speech, to approach-avoidance conflicts such as
taking an important exam, and to situations with high uncertainty
and potential danger such as a dark alley at night. These situa-
tions might appear as entirely different things at first glance but
can very well trigger a feeling of anxiety. The trait concept
assumes that distinct circuitries in our brains (the neuropsycho-
logical systems from the definition) are dedicated to extract the

frightening/worrying components from the stream of incoming
information and initiate a consistent response that might involve
a reappraisal of the situation, careful exploration, and rumination,
or—in case of an imminent threat—flight, fight, or freezing (Gray
& McNaughton, 2000). Individual differences come into play by
the assumption that the reactivity or sensitivity of a given
neuropsychological system varies across people. People who are
more of the anxious type react with a stronger or more frequent
anxiety response than less anxious people. The trait concept can
thus account for at least three aspects of behavior: (a) that entirely
different situations can lead to a similar affective or motivational
reaction, (b) that people differ in the perception of external
stimuli as positive or threatening, and that (c) the strength and
even direction of the reaction to these stimuli is marked by
individual differences. The trait definition is of course not limited
to the description of dispositional differences in anxiety but
applies to other aspects of personality such as extraversion or
openness to experience as well.

This definition of a personality trait follows a neo-behavioristic
line of thought. Neo-behaviorism positions that behavior can be
best described in terms of a S→O→R equation, where S denotes a
Stimulus, R an overt or covert reaction, and O an organism. We
use the prefix neo- with the term behaviorism to emphasize that
the trait definition does neither imply that the organism is a black
box that is inaccessible to rigorous scientific examination, nor that
all behavior and behavioral disposition are solely the product
of learning and conditioning processes. By emphasizing the
organism variable in the form of neuropsychological systems as
the main substrate of the trait, the brain is brought into the focus
of trait research. Traits are not only statistical abstractions in
the imagination of psychometricians, but have a hard-wired
biological analogue in the physical world that can be localized and
assessed by neuroscientific methodology. This conceptualization
of traits as neuropsychological systems does not imply 1:1 cor-
respondence between single brain structures and personality
traits. Throughout the central nervous system, brain structures
are wired together into systems with certain functional roles. One
central assumption of personality neuroscience is the existence of
distinct brain systems for distinct traits. This functional per-
spective on brain systems is also reflected in the idea of the
conceptual nervous system that seeks to explain the brain on the
conceptual rather than the anatomical level (Gray, 1971; Gray &
McNaughton, 2000).

Another corollary of the trait definition is the emancipation of
the trait concept from trait-relevant stimuli and the organism’s
behavioral response. Even though traits have the purpose to
operate on environmental stimuli in order to trigger contingent
responses, the neuropsychological systems that constitute the
traits exist independently from the outside world (Mischel &
Shoda, 1995). A key feature of personality traits is their temporal
stability over longer stretches of an individual’s lifespan
(Edmonds, Jackson, Fayard, & Roberts, 2008; Specht, Egloff, &
Schmukle, 2011). An individual with a certain trait characteristic
should respond similarly over many instances of stimulus pre-
sentation over the period of several months if not years. Exam-
ining the interaction of the neuropsychological trait system and
an environmental stimulus is therefore as informative for per-
sonality neuroscience as the examination of neural systems in the
absence of stimulation. We emphasize this point because it is
often overlooked in traditional personality neuroscience research,
and because we believe that tools from network neuroscience can
make a genuine contribution in this regard.
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The majority of functional imaging studies on personality so
far have mainly examined the interaction of trait expression and
stimulus processing. The common paradigm entails the recording
of neural activity in response to a stimulus and the assessment of
the extent to which the strength of the neural response depends
on individual trait levels. The involved stimuli can range from the
simple passive viewing of emotional faces (e.g., Canli et al., 2001;
Reuter et al., 2004) to complex naturalistic scenarios with actual
behavioral relevance for the participants (e.g., Mobbs et al., 2007),
and various personality traits such as neuroticism (Haas, Omura,
Constable, & Canli, 2007), extraversion (Cohen, Young, Baek,
Kessler, & Ranganath, 2005), or self-transcendence (Montag,
Reuter, & Axmacher, 2011) have been examined. This research
strategy has led to a substantial body of research on the neural
correlates of individual differences. Taken together, the available
evidence unequivocally confirms that neural systems differ in
their reactivity to external stimulation depending on a person’s
personality (see Kennis, Rademaker, & Geuze, 2013 for review,
and Calder, Ewbank, & Passamonti, 2011, for a coordinate-based
activation likelihood estimation meta-analysis). This focus, how-
ever, does not distinguish between stimulus processing and the
neuropsychological trait system itself. Following the idea that
traits correspond to stable neuropsychological systems that exist
in the human brain independently from the outside world, neural
counterpart of personality trait should be reflected in intrinsic
properties of the brain. For the longest time, morphological
studies of the brain have been the methodological approach of
choice to assess such stable, stimulus-independent neural corre-
lates of behavioral dispositions (e.g., DeYoung et al., 2010; Liu
et al., 2013; Riccelli, Toschi, Nigro, Terracciano, & Passamonti,
2017; for a meta-analysis, see Mincic, 2015). Voxel-based mor-
phometry studies, in particular, provide detailed insights into
neuro-structural correlates of personality traits and have shown
that brain regions with trait-dependent activation profiles also
show trait-dependent differences in their morphology (Omura,
Todd Constable, & Canli, 2005, but see also Liu et al., 2013 for
replication issues). Within biological systems it is often said that
function follows structure (Kristan & Katz, 2006), and the study
of structural personality correlates should thus be informative for
the understanding of functional alterations. The relationship
between macroscopic morphology and neural activity, however, is
not straightforward and is very likely to involve many inter-
mediate steps. It will be necessary to consider additional aspects
of brain structure and function in order to fully map various
neuropsychological trait systems. Moreover, efforts to bring
together structural and functional brain imaging data in person-
ality neuroscience are scarce, until now.

Brain connectivity could represent an important step forward to
a more comprehensive understanding of the neuroscientific basis of
human personality. Early biologically oriented personality psycho-
logists have noted that it is always several brain areas (and not a
single one) that underlie fundamental personality traits. The rele-
vance for a trait system might not become apparent from anatomy
alone. Jeffrey Gray has coined the term “conceptual nervous system”
to describe neural systems from the perspective of their functional
and behaviorally relevant purpose (Gray, 1971; Gray & McNaugh-
ton, 2000). A conceptual nervous system implies several connected
brain areas. From this perspective, Gray can be seen as an early
proponent of a personality network neuroscience. The notion of
“brain networks” is mostly implicitly assumed in neuroimaging
studies, but not explicitly assessed in terms of connectivity between
multiple brain areas. The connectome paradigm offers the

methodological toolbox to advance the field towards unraveling the
connectivity patterns underlying personality traits. Resting-state
fMRI allows us to examine the intrinsic functional architecture
of the human brain, independent from external stimulation. We
are going to introduce this and other techniques of relevance in
connectomics in the following.

4. Connectivity and networks: The connectome paradigm

Connectomes are network maps of brain connectivity. In general,
connectomes can be studied on different scales, and the resolution
level determines what entity is considered a connection and what
entities are tied together by connections (Sporns, 2016). In studies
on human brain networks, connectivity estimates are usually
derived from neuroimaging data and the finest resolution level is
thus restricted to single voxels, although a less-fine-grained
resolution at the level of larger brain areas is more common.

When looking at gross brain anatomy, it becomes apparent
that the location of gray matter is restricted to the cortical ribbon
and subcortical structures (see Figure 1A). Neurons in layer three
of the cortical ribbon grow axons that leave cortical gray matter
and descend to white matter areas before making contact with
neurons in layer one or two of the cortical sheet in a distal part of
the brain. Beginning with the work by early neuroanatomists,
attempts were made to delineate the cortical ribbon into distinct
brain regions based on their cytoarchitecture (Brodmann, 1909;
von Economo & Koskinas, 1925), or other properties such as gyri-
and sulcification (Tziourio-Mazoyer et al., 2002), thickness of the
cortical gray matter sheet (Fischl & Dale, 2000; Fischl et al., 2004,
see Figure 1C), or the synthesis of multimodal brain imaging
techniques (Glasser et al., 2016). When assembling a connectome
map, one of such whole brain parcellation schemes is chosen
and for each pair of brain regions it is determined whether they
are connected or not (Hagmann et al., 2010, see Figure 1D).
Connectivity is either assessed on the structural or functional
level. This distinction is crucial for the connectome paradigm.

The study of structural connectivity in the form of anatomical
white matter fiber projections has become feasible with the advent
of diffusion-weighted MRI (Le Bihan et al., 1986), its refinement
as diffusion tensor imaging (DTI; Basser, Mattiello, & LeBihan,
1994) and the introduction of computer-assisted fiber-tracking
(Basser, Pajevic, Pierpaoli, Duda, & Aldroubi, 2000). In DTI,
water diffusion in biological tissue is described by a three-
dimensional tensor model. DTI exploits the shape of the diffusion
tensor which is affected by factors that restrict water diffusion in a
sample, such as the fat content of myelin sheets that insulate
axonal projections. Myelin sheets wrap around axons and thus
restrict water diffusion along white matter pathways. Each voxel’s
principle diffusion direction can be obtained from its diffusion
tensor and computational approaches can be used to reconstruct
major white matter projections in the brain (see Figure 1B).
White matter tractography is by no means a new development in
our field. The connectome paradigm, however, builds up on these
developments and provides an integratory framework for the
evaluation of white matter tracts throughout the entire brain.
A shortcoming of the DTI method is its inability to detect
directionality. From DTI alone, it cannot be inferred whether one
regions projects to the other or vice versa. At present, this can
only be achieved by means of invasive tract tracing and is
therefore not applicable in human research participants.

Results from connectome fiber tracking can be depicted in a
matrix that lists brain regions row- and columnwise, where
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matrix elements indicate whether two brain regions are connected
or not (see Figure 1F). Matrix elements can also give connection
weights, reflecting the absolute or relative strength of the con-
nection (e.g., based on streamline count or on summary measures
of fiber tract integrity such as fractional anisotropy). Connectome
matrices from diffusion MRI data are always symmetrical because
it is not possible to derive information on the directionality of
structural connectivity from this data source. Figure 2 illustrates a
fully assembled connectome as a circos plot.

Brain regions exchange information along the elements of the
neuro-structural white matter scaffold (Park & Friston, 2013).
The synchronization of neural activity from different brain
regions is commonly interpreted as evidence for a functional
coupling of these regions (Friston, Frith, Liddle, & Frackowiak,
1993). The assessment of functional connectivity on the grounds
of fMRI is thus correlational, and the most common approach is
to compute simple linear correlations between blood oxygen level
dependent (BOLD) time series data from two or more brain
regions (see Figure 3). For BOLD fMRI, whose temporal precision
is restricted by the sluggishness of brain hemodynamics, simple
linear correlations are sufficient. Imaging modalities with a higher
temporal resolution than BOLD fMRI, however, can require more
sophisticated coherence measures. The use of functional con-
nectivity data in connectome studies has been tremendously
advanced by resting-state fMRI (Smith et al., 2013). Resting-state
fMRI is an experimental neuroimaging protocol where BOLD
activity is recorded from the brains of research volunteers who do

not engage in a particular task (Fox & Raichle, 2007). In contrast
to brain activation studies that aim at the isolation of neural
correlates of circumscribed cognitive and emotional processes,
resting-state fMRI assesses intrinsic, non-stimulus-dependent
neural activity. In a pioneering resting-state fMRI study, Biswal,
Zerrin Yetkin, Haughton, and Hyde (1995) reported highly
synchronized brain activity in brain regions that are commonly
co-activated during simple motor tasks. Because this synchroni-
zation occurred in the absence of any motor behavior or motor
planning, it was interpreted as an intrinsic somatomotor network
(see Figure 3). Subsequent studies confirmed the robustness of the
finding and also provided evidence for other intrinsic connectivity
networks such as the default mode network (Greicius, Krasnow,
Reiss, & Menon, 2003), the insular-opercular network (Seeley
et al., 2007), the fronto-parietal network (Fox, Snyder, Vincent,
Corbetta, & Van Essen, 2005), and networks in visual areas (for
review, see van den Heuvel & Hulshoff Pol, 2010). Depending on
the analysis method and resolution parameters, 7–12 robust
intrinsic resting-state connectivity networks are commonly found.
It has been shown that these networks correspond to task-related
brain activity, in a way that brain regions that connect together at
rest activate together within and across experimental tasks
(Gordon, Stollstorff, & Vaidya, 2012; Smith et al., 2009). In
comparison to task fMRI, resting-state activity places a much
higher burden on the brain’s total metabolism budget (Raichle,
2006), which indicates that the maintenance of intrinsic activity is
biologically costly which is usually a sign of functional
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E

F

Figure 1. Illustration of the workflow of connectome reconstruction. A connectome combines information from cortical gray and white matter (A). Diffusion imaging and
computational reconstruction methods are applied to obtain a detailed map of white matter fiber connections (B). The cortical ribbon is parcellated into a set of non-
overlapping regions of interest, (C) illustrates Freesurfer’s Desikan-Killiany atlas. Connectome reconstruction combines the information from (B) and (C) and determines
whether two ROIs are touched by any white matter fibers or not. (D) Shows two examples: the left and right superior frontal gyrus (left) are densely connected (E, left) while the
left medial orbitofrontal and superior parietal gyrus (D, right) are only sparsely connected (E). Results can be displayed in a connectivity matrix. Rows and columns are regions
of interest from the whole brain parcellation. Matrix elements indicate the presence (white) or absence (black) of a connection (F). The left matrix groups brain regions
according to hemisphere and cortical vs. subcortical, the right matrix according to their allegiance to network modules.
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Figure 2. Circos plot (Krzywinski et al., 2009) depiction of a structural connectome. In total, 82 brain regions of Freesurfer’s Desikan atlas are ordered according to hemisphere
and lobe, and arranged on a circle. The red heat map illustrates degree centrality, a measure that quantifies the brain region’s number of connections (darker shades indicate
higher degree). The brain areas in dark gray are the brain regions with the highest degree (top 15%) that qualify as possible hub regions. Data are taken from Markett et al.
(2017b).

Figure 3. Functional connectivity from blood oxygen level dependent (BOLD) functional magnetic resonance imaging is estimated by correlating the extracted BOLD time series
from regions of interest or single voxels (left panel). The right panel shows prominent resting-state functional connectivity networks as revealed by independent component
analysis (data courtesy of the authors). The networks in the top row correspond from left to right to the visual, the default mode, the somatomotor, and the dorsal attention
network. The networks in the bottom row correspond to the left and right fronto-parietal, the frontal, and the salience network. All networks are displayed in radiological
convention (left is right).
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importance. In summary, the key finding of resting-state fMRI is
that single brain regions synchronize their activity even in the
absence of external stimulation. By applying multivariate statis-
tics, it can be shown that this synchronization is organized into
large-scale brain networks that together form the functional
connectome. It has been shown that the functional connectome
relates closely to its structural counterpart (Honey et al., 2009;
Horn, Ostwald, Reisert, & Blankenburg, 2014). Both types of
connectivity, however, are non-redundant and provide unique
insights into the network level architecture of the human brain.
Consider a train network as an analogy: in this analogy, structural
connectivity between brain regions would represent railway tracks
between various train stations. The train schedule, on the other
hand, would be akin to functional connectivity. The physical
railway network places major constraint of the train schedule for
sure, however, both types of information will be relevant for
railway engineers, traffic control, and passengers alike.

The connectome paradigm has gone further than just pro-
viding a method toolbox for the assessment of structural and
functional connectivity. More abstract organizational principles of
brain networks can be described by the utilization of mathema-
tical network theory. In network theory, a network consists of a
set of network nodes such as brain regions that are fully or
partially connected by a set of links such as structural and/or
functional connectivity (Albert & Barabasi, 2002). By applying
transformations to the connectome matrix, a set of key observa-
tions on brain networks have been observed: human brain
networks have a relatively sparse connection density which means
that most brain regions merely maintain direct connections to a
few other brain regions (Hagmann et al., 2007). Only a small
amount of brain regions maintain many connections. These
regions serve as network hubs in the brain and are crucial for
maintaining a highly efficient information exchange across sub-
networks (de Reus & van den Heuvel, 2014; Hagmann et al., 2008;
van den Heuvel & Sporns, 2013, see Figure 2). The organization
of brain networks into local subnetworks and a set of integratory
hubs ensure both local and global efficiency in information flow,
an organizational principle described as “small-world structure”
(Sporns & Zwi, 2004). Small-world networks are characterized by
a high connection density between neighboring nodes (char-
acterized by high clustering coefficients, see Figure 4C), and short
communication paths between distant network nodes that enable
quick information exchange across the entire network (char-
acterized by short characteristic path length, see Figure 4A).

Several studies have sought to relate individual differences in
such anatomical and neuro-functional organization principles of
human brain networks to personality. We will review some of
these findings in the next section.

5. Network level correlates of personality

The easiest and most basic connectomic studies make use of the seed
method. This method defines a starting point in the brain (the seed
region) and then examines all structural or functional connectivity
originating from this seed. Several studies have focused on the
relationship between personality traits and amygdala connectivity,
presumably based on the prominent role of the amygdala region
for affective processing. Aghajani et al. (2013) report differential
patterns of functional connectivity patterns originating from the
amygdala depending on neuroticism and extraversion scores. Li,
Qin, Jiang, Zhang, and Yu (2012) have provided a more fine-grained

perspective on amygdala connectivity by linking harm avoidance—a
measure related to neuroticism—to functional connectivity patterns
of different amygdala subregions. Distinguishing between different
amygdala subregions is important as the amygdala consists of dif-
ferent nuclei that play different roles in generating behavior (Ledoux,
2003). Even though it is difficult to image the medial temporal
region due to frequent signal distortions (Olman, Davachi, & Inati,
2009), it has been shown that different amygdala subregions have
distinct functional connectivity profiles at rest with unique pheno-
typical associations (Eckstein et al., 2017; Roy et al., 2009). Amygdala
functional connectivity was also shown to relate to trait anger
(Fulwiler, King, & Zhang, 2012) and the SADNESS trait from the
Affective Neuroscience Personality Scales (Deris, Montag, Reuter,
Weber, & Markett, 2017; for the importance of Panksepp’s Affective
Neuroscience Theory for personality neuroscience, see Montag &
Panksepp, 2017a, 2017b). Another seed-based functional con-
nectivity study from our group has used the anterior insula as seed
to show insula-centered connectivity differences in harm avoidance
(Markett et al., 2013). The most comprehensive resting-state func-
tional connectivity study on personality to date has used multiple
seed regions placed throughout central areas in major resting-state
networks and reported wide-spread associations between all Big Five
personality traits (Adelstein et al., 2011). Based on their findings the
authors concluded that personality is reflected in the brain’s intrinsic
functional architecture.

The link between neuroticism-related personality traits and
amygdala as well as insula connectivity has been corroborated by
structural connectivity studies. Westlye, Bjørnebekk, Grydeland,
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Figure 4. Toy networks for the illustration of measures from network theory. The
global efficiency of a network can be quantified by its characteristic path length (CPL).
CPL is the average of all shortest path length in a network. The shortest path between
any two nodes in a network equals the minimum number of edges that have to be
transversed to reach one node from the other. In the network in (A), the shortest path
equals 1 between node 1 and node 2, equals 2 between node 1 and node 4, and 4
between node 1 and node 7. The CPL of the network is 2.0476. The toy graph in (B)
illustrates degree centrality and betweenness centrality. Degree centrality of a node
equals the number of its connection to other nodes. The gray nodes have a degree of
one, the black nodes a degree of four, and the blue and red node a degree of 5. In
general, it is assumed that high degree nodes are more important for the network as a
whole. Betweenness centrality is a further centrality measure that can capture
different information on the importance of a node. Betweenness reflects the amount
of shortest paths between any two nodes that travel through a given node. The red
node, for instance, has a higher betweenness than the blue nodes (even though they
have the same degree). All shortest paths between any gray and any black node travel
through the red and the blue node, however, all shortest paths between any two
black nodes travel through the red but not through the blue node, hence its higher
betweenness. The networks in (C) illustrate the clustering coefficient, which is
regarded a measure of local efficiency. The numbers indicate the clustering coefficient
for the red node in the network. The clustering coefficient gives the ratio of
neighboring nodes that share a connection themselves over the total number of
connections that neighbors could share. In the first graph, none of the black nodes
(the neighbors) share a connection, hence the clustering coefficient of 0. In the last
network, all neighbors are directly connected to each other (six connections between
neighbors), hence the clustering coefficient of one.
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Fjell, and Walhovd (2011) have linked harm avoidance to the
integrity of cortico-limbic white matter tracts such as uncinate
fasciculus which connects mid-temporal structures including the
amygdala to anterior regions. In a similar vein, Montag, Reuter,
Weber, Markett, and Schoene-Bake (2012) report a link between a
composite measure of trait anxiety and the structural integrity of
the uncinate fasciculus as well. And Baur, Hänggi, Langer, and
Jäncke (2013) report that structural connectivity between the
amygdala and the anterior insula indexes trait anxiety. The idea
that mid-temporal to anterior connectivity is an essential brain
connectivity level correlate of trait anxiety and neuroticism has
also been proposed by Montag, Reuter, Jurkiewicz, Markett, and
Panksepp (2013) in a systematic review of the structural neuro-
imaging literature on anxiety.

Personality network neuroscience promises an integrative,
network level account of brain–personality relationships. The
connectivity studies reviewed so far have exclusively focused on
single brain regions and single brain connections in their study of
personality traits. However, they do point towards one large-scale
brain network called the insular salience network (Seeley et al.,
2007). This network centers around the anterior insula, includes
the anterior cingulate, parts of the basal ganglia, and cortical
regions along the operculum, and receives input from the
amygdala via the uncinate fasciculus. In a recent report from our
group, we examined whether information processing efficiency in
the insular salience network as a whole relates to trait anxiety
(Markett, Montag, Melchers, Weber, & Reuter, 2016b). We
modeled the entire insula network as weighted graph and com-
puted the network’s characteristic path length as a measure of
network efficiency. Characteristic path length is a summary
measure of all shortest-communication connections between all
network nodes in a given network (see Figure 4A). Using resting-
state functional connectivity data, we found that harm avoidance
as an index of trait anxiety related negatively to the insula
network’s information exchange efficiency. Such system-level
approaches have gained popularity in recent years. Beaty et al.
(2016) have used a similar strategy to ours to link efficiency of the
default mode network to openness to experience. Bey, Montag,
Reuter, Weber, and Markett (2015) analyzed functional con-
nectivity between large-scale functional brain networks and
showed that functional connectivity of the insular network as a
whole relates to individual differences in the susceptibility to
cognitive failure. Toschi, Riccelli, Indovina, Terracciano, and
Passamonti (2018) used a similar approach to large-scale func-
tional brain networks, but applied graph–theoretical assessment
of between-network connectivity to link organizational features of
the functional connectome to the Big Five personality traits. In
this work, conscientiousness was related to local aspects of the
fronto-parietal and the default mode network. And Kyeong, Kim,
Park, and Hwang (2014) examined functional connectivity
between all cortical and subcortical brain regions in a whole brain
parcellation scheme and showed that the intrinsic organization of
the functional connectome into large-scale network is different
depending on approach- and avoidance-related personality traits.
Whole brain connectomic data were also analyzed by Gao et al.
(2013). In a network analysis of functional connectivity between
90 brain regions from the automatic anatomical labeling atlas,
they found that extraversion relates positively to the global clus-
tering coefficient, a measure of the clustering in a network (see
Figure 4C). Brain networks of more extraverted people showed a
higher local clustering of brain connectivity across the entire
brain, indicating that such a global organization property carries

information of personality. In addition to this global association,
the authors also report relationships between both neuroticism
and extraversion and the betweenness centrality of several brain
regions (see Figure 4B). Betweenness centrality is a network
measure that quantifies how many shortest communication paths
within a network run through a given brain node. In other words,
the metric uses whole brain connectivity information to infer a
single region’s importance to network communication. A highly
interesting aspect of the Gao et al. (2013) paper is the attempt to
predict individual personality scores from topological aspects of
the brain network. A separate prediction model was set up for
each participant by estimating a regression function from the data
of all other participants (leave-one-out-validation). Prediction
accuracies for extraversion was 11.4% and 21.7% for neuroticism
across all participants. These numbers are of course not very high,
but given that only a subset of possible network aspects were
sampled in a cross-sectional design, it shows that network aspects
of the brain do carry relevant information on personality. A
further whole brain connectome study by Servaas et al. (2015)
gives a detailed perspective of the neurotic brain. In their study,
high neuroticism was associated with weaker functional connec-
tions throughout the entire brain. In consequence, functional
subnetworks were less clearly delineated and the whole brain
network had a higher resemblance to a network with random
connection wiring. The aforementioned studies on whole-brain
connectivity illustrate that global properties of the brain’s con-
nectivity architecture relate to personality traits, and emphasize
the importance of looking beyond connectivity of single brain
regions such as the amygdala, or single functional brain networks
such as the salience network. The discovery of large-scale con-
nectivity networks (see Figure 3) might suggest that each of these
network could have a circumscribed functional role, or might
present a trait system on its own. Mounting evidence suggest that
this is not the case, as behavior and behavioral dispositions are
realized by the joint effort of several functional networks (Barrett
& Satpute, 2013; Sylvester et al., 2012; Toschi et al., 2018; Tour-
outoglou, Lindquist, Dickerson, & Barrett, 2015). Personality
neuroscience will need to understand the interplay between brain
areas and between large-scale brain networks in order to derive
complete network accounts of a neuropsychological trait systems.

At present, the literature on the relationship between per-
sonality and network aspects of brain structure and function
places a strong emphasis on neuroticism and avoidance-related
personality traits, and to a lesser extent on extraversion and
approach-related traits. This focus might reflect a research bias in
favor of clinically relevant personality traits, but could also result
from more straightforward relationships between these person-
ality traits and aspects of brain organization that are easily
assessable with the field’s current methodological toolbox
(Bjørnebekk et al., 2012; Markett, Montag, & Reuter, 2016c).
Neuroticism and trait anxiety seem to be linked to several aspects
of brain connectivity, ranging from associations between single
brain areas and their connections, via the organization of single
brain networks, to organizational principles of whole-brain
connectivity. We believe that the evidence available thus far is
encouraging for further investigations into the connectomics of
personality. Further research will also want to reconcile the
mostly MRI-based connectomic findings with research from
other imaging modalities. There is a large body of resting-state
EEG studies that has repeatedly demonstrated a relationship
between frontal asymmetries in the alpha band and approach- and
avoidance-related personality traits (Davidson, 2004; Wacker,
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Chavanon, Leue, & Stemmler, 2008). Frontal asymmetries are
commonly interpreted in terms of hemispheric dominance. This
could actually reflect the functional interplay of bilateral brain
networks such as the fronto-parietal network or the insular
salience network. Most cortical regions show a high degree of
synchronization with their contralateral counterpart in resting-state
BOLD time series (Zuo et al., 2010), and a first report suggests a
relationship between novelty seeking, an approach-related person-
ality trait, and the lateralization of functional connectivity of the
anterior insula (Kann, Zhang, Manza, Leung, & Li, 2016).

As a last point, we want to come back to our initial proposal
that network maps of the brain might prove useful for the eva-
luation of distal influences on personality such as genetic and
environmental influences. An important first step would be to
establish not only correlates between brain networks and
personality but also links between brain networks and genetic
variation and activity, and between brain networks and
environmental influences. Studies have started to examine the
relationship between the organization of brain connectivity and
cortical gene expression (Forest et al., 2017; Romme, de Reus,
Ophoff, Kahn, & van den Heuvel, 2017; Wang et al., 2015) or
between brain connectivity and genetic variation (Markett et al.,
2016a, 2017a, 2017b). Other studies have focused on experience-
dependent changes in brain connectivity that might reflect
Hebbian plasticity (Dosenbach et al., 2007; Lewis et al., 2009;
Taubert, Villringer, & Ragert, 2012). We believe that this first
evidence is encouraging for future investigations and justifies
cautious enthusiasm that the connectome paradigm and a person-
ality network neuroscience can make contributions to personality
psychology that go beyond simple brain-personality associations.

6. Summary and outlook

In the present contribution, we have argued that network modeling of
brain connectivity data has considerable potential for personality
neuroscience. We have iterated the theoretical foundations of person-
ality neuroscience: that studying the human brain in the context of
personality research is more than another empirical layer of observa-
tion and can be very informative for reconciling genetic and envir-
onmental influences on personality. We have used the trait definition
to argue that more traditionally designed brain activation assays and
simple morphological studies are by themselves not sufficient to fully
map and understand the neural circuitry underlying personality traits
in the form of conceptual nervous systems. We have introduced the
connectome paradigm, described basic methodological approaches to
structural and functional connectivity, and their use in deriving net-
work models of the human brain. After these theoretical considera-
tions, we have provided a few examples of personality network
neuroscience studies that have been published in the last few years.

We hope that our readers found our argumentation compel-
ling and our introduction into personality network neuroscience
appealing. We hope that our ideas might inspire a road map for
the quest towards unraveling the causal basics of human per-
sonality. This being said, we have to acknowledge the many
challenges and open questions remain that will need to be solved
and answered in the future.

One question concerns the stability of the relationships with
brain networks and personality traits. As personality traits are
defined as relatively stable behavioral dispositions, any true
relationship between personality traits and network aspects of the
brain should show a similar degree of temporal stability. The
human brain is subject to plastic changes by experience and

learning (Kolb & Whishaw, 1998), which points to the question of
temporal stability in structural and functional networks. Studies
suggest stability of certain aspects of brain connectivity (Cao et al.,
2014; Poppe et al., 2013) while other studies have reported a
certain amount of plasticity in brain connectivity (Scholz et al.,
2009). Lifespan studies on personality indicate that personality
changes over the lifespan, particularly during maturation from
adolescence to early adulthood (Blonigen, Carlson, Hicks,
Krueger, & Iacono, 2008; Roberts, Caspi, & Moffitt, 2001), and
that some changes in traits depends on the personality profile at
younger age (Donnellan, Conger, & Burzette, 2007; Lönnqvist,
Mäkinen, Paunonen, Henriksson, & Verkasalo, 2008). Long-
itudinal studies on personality and brain connectivity are still
outstanding. Such longitudinal efforts should clarify which
aspects of brain networks show a similar stability with personality
traits and change accordingly when personality changes over the
lifespan (Specht et al., 2011).

A second question is the disentanglement of states and traits. Cole,
Bassett, Power, Braver, and Petersen (2014) report that the brain-
wide organization of functional connectivity into a set of functional
network modules is highly similar across different cognitive and
affective task states, and resembles the modular structure of the
resting state. On the other hand each task is characterized by subtle
yet specific changes to the modular network structure. This work
points at specific trait-like and state-like aspects of brain networks
whose contribution to the state-trait distinction in personality science
has to be assessed in future work. First studies on state-trait dis-
tinctions in brain networks indicate that changes in the brain’s
intrinsic architecture across several states depend on individual dif-
ferences (Geerligs, Rubinov, Cam-CAN, & Henson, 2015), that
individual differences in personality can predict the effect of state-
inductions on intrinsic resting-state connectivity (Servaas et al., 2013),
and that the distinction between structural and functional con-
nectivity is also relevant to the disentanglement of states and traits
(Baur et al., 2013).

A third question is the synthesis of brain connectivity data,
behavioral dispositions, and actual behavior. The vast majority of
cognitive and personality network neuroscience studies still focuses
on resting-state fMRI data and/or structural connectivity. More
recently, however, studies have started to explore changes in the
brain’s intrinsic functional architecture during behavior (Bolt, Nomi,
Rubinov, & Uddin, 2017; Cohen & D’Esposito, 2016; Cole et al.,
2014; Geerligs et al., 2015). One study that also included a person-
ality measure identified a network cluster of changed connectivity
within the limbic system during the processing of emotional facial
expressions. Connectivity within this limbic network cluster showed
a considerable test–retest reliability and correlated with trait anxiety
(Cao et al., 2016). A complete personality network neuroscience
account should not only describe neuropsychological trait systems in
the resting brain but also demonstrate how these systems respond to
stimulation and produce individual differences in behavior. Future
research can either focus on brain network properties that have been
linked to self-report personality scores, and test whether these net-
work properties change during trait-relevant stimulation and
behavior. Alternatively, brain regions with known functional
implications for trait-relevant behavior can be studied from a net-
work perspective. One example for such an endeavor would be the
study of functional and structural connectivity between brain areas
implicated in the anxiety/fear-related activation gradient from the
periaqueductal gray to anterior areas of the cortex (Mobbs et al.,
2009). Furthermore, we advocate to combine more real-life mea-
sures that go beyond self-report with neuroscientific data such as
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resting-state fMRI. In recent years, powerful smartphone technolo-
gies have started to allow researchers to record human behavior in
everyday life (Markowetz, Błaszkiewicz, Montag, Switala, &
Schlaepfer, 2014; Yarkoni, 2012). With the upcoming of the Internet
of Things, the combination of digital traces of a person with neu-
roscientific data will become a natural research area at the interface
between psychology, neuroscience, and computer science (“Psy-
choNeuroInformatics,” Montag et al., 2016). Of note, the feasibility
to combine brain imaging data with smartphone tracked variables
has been demonstrated recently (Montag et al., 2017).

Just like in other fields of psychology, a pressing issue of per-
sonality neuroscience is sample size, statistical power, and replic-
ability of individual differences findings. Many MRI studies suffer
from a lack of statistical power (Cremers, Wager, & Yarkoni, 2017)
and individual differences analyses of functional connectivity data
require large sample sizes (Kelly, Biswal, Craddock, Castellanos, &
Milham, 2012). Collaborations between personality researchers
across centers and open science data sharing efforts are needed to
comprehensively tackle the relationship between personality and the
human brain. Important first steps in this direction are currently
underway (see Mendes et al., 2017, for the description of a large
open science data set with a wealth of individual differences vari-
ables). In the cognitive neurosciences, the last years have seen the
rise of large neuroinformatics platforms (Poldrack & Yarkoni,
2016). A similar strategy for individual differences research would
be a desirable endeavor for future research.

Despite these open questions, network neuroscience approaches
have also promising prospects that go beyond fundamental research
on personality traits. An important application of connectomics in
general and resting-state fMRI in particular is neuroimaging in
populations that show lower levels of compliance to follow
instructions during complex task protocols (Fox & Greicius, 2010).
Resting-state and DTI protocols usually entail the minimum
instruction to lie still for some minutes, which can be more easily
followed by patients with psychiatric or neurodegenerative symp-
toms than complex behavioral task instructions. When sufficient
precautions are taken to minimize confounding head motion
(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), connectivity
MRI can reveal neural correlates of personality traits in impaired
patient populations. Personality traits can qualify as risk factors for
or endophenotypes of psychiatric disorders (Benjamin, Ebstein, &
Belmaker, 2001; Kendler, Neale, Kessler, Heath, & Eaves, 1993). A
more detailed account of the neural implementation of personality
traits could thus make important contributions to psychiatric
research and the clinical neurosciences.

In order to grow to its full potential, the connectome paradigm
will need to solve several methodological challenges. It has been
shown that methodological details such as thresholding connectivity
matrices and the resolution level of the whole brain parcellation
scheme can bias results and interpretation (de Reus & van den
Heuvel, 2013; van den Heuvel et al., 2017). Statistical issues include
the risk of alpha-error inflation due to the immense amount of data
in network maps and the formulation of appropriate null models of
brain connectivity to evaluate the statistical significance of topolo-
gical features of brain networks (Fornito, Zalesky, & Breakspear,
2013). Furthermore, biologically plausible and computationally
inexpensive methods for the estimation of effective connectivity are
needed, in order to assess the direction of functional connectivity
estimates. And finally, data processing pipelines need to be opti-
mized and unified to make the most of publicly available data sets
and in order to ease replicability of findings across centers (Yan,
Craddock, Zuo, Zang, & Milham, 2013).

A limitation of the present commentary is its narrow focus on
non-ability trait aspects of personality that relate to affective and
motivational behavior. Network aspects of individual differences in
cognition are just as relevant for personality network neuroscience
as the more narrow focus on personality taxonomies such as the Big
Five. Several studies have addressed network aspects of ability traits
such as working memory capacity, attentional ability, and general
intelligence (Hilger, Ekman, Fiebach, & Basten, 2017; Markett et al.,
2014, 2018; van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009).
This research can also be relevant for understanding more cognitive
aspects of the Big Five, such as conscientiousness, which is mostly
uncorrelated with cognitive ability (but see Chamorro‐Premuzic &
Furnham, 2004), but paradoxically related to similar brain regions
(Allen & DeYoung, 2017).

Despite of the many open questions and the early stage of
network neuroscience, we believe that this paradigmatic extension
of our methodological toolbox will prove to be fruitful for our field.
In a famous quote, personality psychologist Jeffrey Gray has posi-
tioned that “in the long run, any account of behaviour which does
not agree with the knowledge of the nervous and endocrine systems
which has been gained through the direct study of physiology must
be wrong” (1987, p. 241). Research from the past 10 years has
shown that the human brain is a network and that structural and
physiological network properties are relevant to its function.
Accounts of human personality that are not in line with this evi-
dence will at best remain incomplete.
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