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The sodium pump a3 subunit is associated with colorectal liver metastasis. However, the
underlying mechanism involved in this effect is not yet known. In this study, we found that
the expression levels of the sodium pump a3 subunit were positively associated with
metastasis in colorectal cancer (CRC). Knockdown of the a3 subunit or inhibition of the
sodium pump could significantly inhibit the migration of colorectal cancer cells, whereas
overexpression of the a3 subunit promoted colorectal cancer cell migration.
Mechanistically, the a3 subunit decreased p53 expression, which subsequently
downregulated PTEN/IGFBP3 and activated mTOR, leading to the promotion of
colorectal cancer cell metastasis. Reciprocally, knockdown of the a3 subunit or
inhibition of the sodium pump dramatically blocked this effect in vitro and in vivo via the
downregulation of mTOR activity. Furthermore, a positive correlation between a3 subunit
expression and mTOR activity was observed in an aggressive CRC subtype.
Conclusions: Elevated expression of the sodium pump a3 subunit promotes CRC
liver metastasis via the PTEN/IGFBP3-mediated mTOR pathway, suggesting that sodium
pump a3 could represent a critical prognostic marker and/or therapeutic target for
this disease.

Keywords: colorectal cancer, metastasis, Na+/K+-ATPase, mTOR, p53, PTEN (phosphatase and tensin homolog
deleted on chromosome 10), IGFBP3
INTRODUCTION

Colorectal cancer (CRC) is one of the most commonmalignancies and the third most common cause
of cancer-related mortality in the world (1, 2). Metastasis is the major cause of poor outcomes in CRC
patients. The liver is frequently the most common site of metastasis in more than 50% of patients
with CRC (3, 4). Surgical resection remains the only potential curative therapeutic option, but less
than 20% of patients are eligible for surgical resection because they do not meet the criteria (5).
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The underlying mechanisms of CRC liver metastasis are not well
understood, which limits the efficacy of chemotherapy.

Na+/K+-translocating adenosine triphosphatase (Na+/K+-
ATPase, also named sodium pump) belongs to the P-type
ATPase family that transports sodium and potassium across
the plasma membrane (6, 7). The sodium pump is an oligomeric
protein composed of a subunits, b subunits and FXYD proteins.
Humans express four isoforms of a subunits, three isoforms of b
subunits and seven isoforms of FXYD proteins (8–10). These
four a isoforms are expressed in a tissue-dependent manner in
mammalian cells. a1 is expressed in all cells, while a2 is
predominantly expressed in the heart, skeletal tissue, smooth
muscle and brain (11–13). a3 is detected in neurons and heart.
a4 is primarily expressed in testis (11, 12, 14). Numerous studies
have indicated that sodium pumps are abnormally expressed in
various cancers, including CRC, lung cancer, breast cancer, and
liver cancer (8, 15–17). The sodium pump is a main target of
cardiac glycosides, including bufalin and digoxin (18). Cardiac
glycosides, which are therapeutic agents for heart failure
treatment, are natural compounds derived from plants and
animals, such as Digitalis lanata and Bufo arenarum (19, 20).
These compounds display higher selectivity for the a2 and a3
isoforms over the a1 isoform (21). Previous studies by our group
and others have demonstrated that the a3 subunit is the most
highly expressed subunit in colorectal cancer (22, 23). Taken
together, cardiac glycosides may be potential therapeutic drugs
for CRC patients with high a3 expression.

The tumor suppressor protein p53 plays an important role in
the prevention of carcinogenesis. p53 regulates cell proliferation
and metastasis via regulation of its downstream targets PTEN,
IGFBP3, TSC2, AMPK1, or PHLDA3 (24, 25). PTEN, TSC2 and
AMPK1 are negative regulators of mTOR activation. IGFBP3
and PHLDA3 inactivate mTOR via PI3K/AKT (26, 27). mTOR is
a critical pathway related to metastasis (28). Current studies have
reported that more than 40-50% of CRC patients have wild-type
p53 (29, 30). In this study, we found that elevated expression of
sodium pump a3 promoted CRC liver metastasis via
downregulation of p53-PTEN/IGFBP3 and upregulation of
mTOR activity. Targeting sodium pumps with the cardiac
glycoside bufalin significantly attenuated CRC liver metastasis.
MATERIALS AND METHODS

Reagents and Antibodies
Bufalin (S7821) was obtained from Selleck Industries LLC
(Shanghai, China). Fetal bovine serum (FBS; 16000-044),
Dulbecco’s modified Eagle’s medium DMEM (C11995500bt),
McCoy’s 5A medium (16600082) and L15 medium (11415064)
were purchased from Gibco (Thermo Fisher Scientific, Inc.,
Waltham, MA, USA). Anti-mouse IgG-HRP (7076), anti-rabbit
IgG-HRP (7074), anti-mTOR (2972S), anti-p-mTOR [(Ser2448)
5536S], anti-p-AKT [(Ser473) 4060S], anti-PTEN (9188S), anti-
p-S6K [(Thr389) 9234S], anti-E-cadherin (14472S), and anti-p-
4EBP1 [(Thr37/46) 2855S] antibodies were obtained from Cell
Signaling Technology, Inc. (Danvers, MA, USA). Anti-vimentin
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(10366-I-AP), anti-IGFBP3 (10189-2-AP), anti-p53 (10442-I-
AP), anti-sodium pump a3 (10868-I-AP), and anti-b-actin
(60008-I-Ig) antibodies were obtained from Proteintech
(Wuhan, China). Anti-mouse Flag (F1804) antibody was
obtained from Sigma.

Human Subjects
In total, 91 human CRC tissue specimens and paired adjacent
paraffin tissue specimens were obtained from the Affiliated
Hospital of Jiangnan University, Jiangsu, P.R. China. The
tissue samples were used for immunohistochemical (IHC)
analyses. This study was approved by the Ethics Committee of
Affiliated Hospital of Jiangnan University, and all of the patients
provided informed consent. Detailed clinical and pathological
data were obtained from each patient.

Cell Culture
Human colon cancer HCT-116, HT29, SW620, and SW480 cells
and normal colon CCD841 cells were purchased from American
Type Culture Collection (ATCC). HCT-116 cells were cultured
in McCoy’s 5 A medium, HT29 and CCD841 cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM), and SW620
and SW480 cells were cultured in L15 medium. All the
experiments were carried out in medium containing 10% FBS,
100 U/ml penicillin and 100 mg/ml streptomycin (Invitrogen) at
37°C in 5% CO2.

Reverse Transcription PCR
Total RNA was extracted using RNAiso plus (9109, Takara).
Complementary DNA was synthesized using the Prime Script™

RT Reagent Kit with gDNA Eraser (RR047A, Takara) according
to the manufacturer’s instructions. Quantitative real-time PCR
(qPCR) was performed using TB Green™ Premix Ex Taq™ II
(Tli RNaseH Plus; RR820A, Takara). The PCR cycle parameters
were as follows: 95°C for 30 s, followed by 40 cycles at 95°C for 5
s and 60°C for 1 min. The results were obtained with CFX96™

Real-time System 3.0 software (Applied Bio-Rad) and further
analyzed by the 2–DDct method. Anti-b-actin was used as a
loading control. The results are shown as the fold-change relative
to the control group. The primer-specific sequences were
as follows:

a1- Forward: 5’- AGTACACGGCAGTGATCTAAAGG-3’;
a1- Reverse: 5’-CAGTCACAGCCACGATAGCAC-3’;
a2- Forward: 5’-GGAGATGCAAGATGCCTTTCA3’;
a2- Reverse: 5’-GCTCATCCGTGTCGAATTTGA3’;
a3- Forward: 5’- GACCTCATTTGACAAGAGTTCGC-3’;
a3-Reverse: 5’- GGGCAGACTCAGACGCATC-3’;
b1-Forward: 5’-CGGGAAAGCCAAGGAGGAG-3’
b1- Reverse: 5’-TCTGTGTTAATCCTGGCGGG-3’
b2-Forward: 5’-CGTGCTTTTGGGTGTGTGGA-3’
b2- Reverse: 5’-AGAAGAGGAGGATAAAGGCCCA-3’
b3-Forward: 5’-TCGAGTACTCCCCGTAACGA-3’
b3- Reverse: 5’-GAGCAAGATCAAACCCCAGC-3’
PTEN-Forward: 5’-CTCAGCCGTTACCTGTGTGT-3’;
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PTEN-Reverse: 5’-AGGTTTCCTCTGGTCCTGGT-3’;

TSC2-Forward:5’-TACGAGTGCAACCTGGTGTC-3’;

TSC2-Reverse:5’-GAGGCCATATTTGCGTGCAG-3’;

Ampk1-Forward:5’-AAAGTCGGCGTCTGTTCCAA-3’;

Ampk1-Reverse:5’-GGGCCTGCATACAATCTTCCT-3’;

IGFBP3-Forward:5’-TGTGGCCATGACTGAGGAAA-3’;

IGFBP3-Reverse:5’-TGCCGACCTTCTTGGGTTT-3’;

PHDLA3-Forward:5’-CAGTAGGGGCTGAGCATGAA-3’;

PHDLA3-Reverse: 5’-GCAGTCTGCAGAACCCAGAA-3’;

b-actin-Forward: 5’GAGAAAATCTGGCACCACACC-3’; and
b-actin-Reverse: 5’GGATAGCACAGCCTGGATAGCAA -3’;
Western Blotting
The procedure for Western blotting analysis was described in
a previous report (31). Briefly, cells were lysed with lysis
buffer (20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM
EDTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate,
1 mM DTT, 1 mM sodium orthovanadate, 1 lg/ml leupeptin,
1 mM phenylmethylsulfonyl fluoride) on ice for 1 h. The protein
concentration was determined with the Coomassie Protein
Assay reagent. Equal amounts of protein extracts (10-50 mg)
were separated by 10-12% sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis (PAGE) and transferred to
nitrocellulose filter (NC) membranes. The membranes were
blocked in 5% nonfat milk in Tris-buffered saline containing
0.1% Tween 20 (TBST) for 2 h at room temperature and then
incubated with primary antibodies (1:1000) overnight at 4°C.
After washing three times with TBST, the membrane was
incubated with a peroxidase-conjugated secondary antibody for
1 h, developed with ECL reagent and analyzed by densitometric
analyses using the Bio-Rad Imaging System. The intensity of
each band was quantified using ImageJ and normalized to
b-Actin. The data are expressed as relative changes.

Small Interfering RNA Transfection
The cells were transfected with a negative control siRNA or
siRNA targeting a3 or p53 at a 90 nM concentration for each
siRNA duplex in Opti-MEM via Lipofectamine 2000 according
to the manufacturer’s protocol. The siRNA oligos were
purchased from Shanghai Gene Pharma Co., Ltd. (Shanghai,
China), and their sequences were as follows: sia3#1, 5’-
ACGACAACCGAUACCUGCUGGUGAU-3’; sia3#2, 5’-GC
GUGCUUGGUUUCUGCCAUUAUUA-3’; sip53#1, 5’-GAAA
UUUGCGUGUGGAGUATT-3’; sip53#2, 5’-GACUCCAG
UGGUAAUCUACTT-3’; a nontarget siRNA (siControl), 5’-
UCUACGAGGCACGAGACUU-3’.

Transwell Assay
Cell migration and invasion were evaluated by Transwell assay.
Briefly, the cells were adjusted to a concentration of approximately
1×105 cells/ml in serum-free medium, 200 ml of the cell suspension
was added to the upper chamber with (for cell invasion) or
without (for cell migration) matrigel, and 600 ml of DMEM
containing 20% FBS was added to the lower chamber. The cells
Frontiers in Oncology | www.frontiersin.org 3
were incubated in the Transwells for 24 or 48 h. A cotton-tipped
applicator was used to carefully remove the cells that had not
migrated/invaded from the top of the membrane. The membrane
was washed twice with PBS, fixed with 4% formaldehyde for 15
min, and then stained with 0.5% crystal violet. The migrated cells
were observed and photographed under a light microscope.

Immunohistochemistry Staining
The procedure for immunohistochemistry staining was
described in a previous report (32). Paraffin-embedded tissues
were sectioned to a thickness of 3 mm. After routine
deparaffinization, rehydration, blocking with hydrogen
peroxide, and tissue antigen retrieval with a microwave, the
samples were incubated with rabbit anti-a3 polyclonal antibody
(sc-365744, 1:300, Santa Cruz Biotechnology) or rabbit anti-p-
4EBP1 antibody (#2855, 1:300, Cell Signaling Technology)
overnight at 4°C. The slides were stained with secondary
antibody, incubated with DAB (ZSGB-BIO, China), and then
counterstained with hematoxylin. The stained slides were
evaluated independently by 2 investigators who were unaware
of the clinical parameters.

Tumor Orthotopic Xenograft Mouse Model
To investigate the role of sodium pump a3 on the metastatic
effect of CRC in vivo, we established a liver metastasis model
using 8-week-old female, specific pathogen-free BALB/c nude
mice. All the mice were housed in a specific pathogen-free
environment in the Animal Laboratory Unit. HCT-116 cells
(5×106 cells in 100 ml serum-free DMEM medium) were
subcutaneously inoculated into the right flank of the nude
mice. After two weeks, the tumors were isolated and cut into
2-3 mm2 pieces and implanted into the cecum of 8-week-old
female nude mice to generate an orthotopic xenograft mouse
model. For the a3 decreased expression model, HCT-116 cells
stably expressing shRNA-control or shRNA a3 were used.
For the drug treatment model, HCT-116 cells were used to
generate an orthotopic xenograft mouse model, and the mice
were treated with the sodium pump inhibitor bufalin (1.5 mg/kg)
every other day for six weeks. Finally, the mice were euthanized,
and liver samples were collected. The metastatic nodules were
counted. All the animal experiments were approved by the
Institutional Animal Care and Use Committee of Third
Military Medical University.

Statistical Analysis
The Pearson c2 test or Fisher’s exact test was used to analyze the
correlation between a3 expression and the clinicopathological
features of the CRC patients. OS was estimated using the Kaplan-
Meier method. Student’s t-test was used for comparison of
two groups or one-way analysis of variance (ANOVA) for
comparison of more than two groups followed by Tukey’s
multiple comparison test. For multiple testing, a Bonferroni
post hoc test of p-values was used using GraphPad Prism 6
(GraphPad, Inc., San Diego, CA, USA). The data are expressed as
the mean ± SEM of at least three independent experiments. A
p value <0.05 was considered to be statistically significant.
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RESULTS

High Expression of a3 Is Associated With
Metastasis of CRC
To investigate the function of sodium pumps in CRC, we
examined the expression levels of the a and b isoforms of
sodium pumps in CRC cell lines by qPCR. We found that a3
Frontiers in Oncology | www.frontiersin.org 4
expression levels in HCT-116 cells were much higher than those
in other CRC cell lines (HT29, SW620 and SW480 cells) and the
normal colon cell line CCD841 (Figure 1A). Consistent with this
finding, the migration and invasion rates were significantly
higher in the HCT-116 cell line than in other colorectal cancer
cell lines (Figure 1B). We wanted to know whether the
expression level of a3 was associated with metastasis in CRC.
A B

D

E

F G

C

FIGURE 1 | Sodium pump a3 subunit promotes CRC cell migration. (A) The relative mRNA expression levels of sodium pump a and b subunits in colon cancer
HCT-116, HT29, SW620 and SW480 cells and normal colon CCD841 cells were examined by qPCR. b-actin was used as an endogenous control. (B) Transwell
assays were used to test the migration and invasion ability of HCT-116, HT29, SW480 and SW620 cells. Scale bar, 100 mm. (C, D) HCT-116 cells were transfected
with non-targeting siRNA (siCont) or siRNA targeting a3 (sia3) for 48 h. A portion of cells was harvested for Western blotting (C). The other portion was plated into
Transwell plates overnight, and migration and invasion were quantified after crystal violet (0.5% w/v) staining (D). n=3-4, biological replicates. (E) HCT-116 cells
were treated with bufalin (0, 50, or 100 nM) for 48 h and then plated into Transwell plates overnight. The migrated cells were quantified after crystal violet (0.5% w/v)
staining. n=3-4, biological replicates. (F, G) HT29 cells were transfected with empty vector or Flag-a3 plasmids for 48 h. A portion of cells was harvested for
Western blotting (F). The other portion was plated into Transwell plates overnight, and migration and invasion were quantified after crystal violet (0.5% w/v) staining (G).
n=3-4, biological replicates. Scale bar, 100 µm. The error bars represent SEM from two or three independent experiments. One-way ANOVA with Tukey’s multiple
comparisons test was used (B, D, E). Two-way ANOVA with Bonferroni’s multiple comparisons test was used (A). Unpaired student t-test was used in
(G), **p ≤ 0.01, ***p ≤ 0.001.
November 2021 | Volume 11 | Article 743824

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. a3-Mediated CRC Metastasis
We next knocked down a3 in HCT-116 cells with high a3
expression and found that knockdown of a3 could significantly
inhibit cell migration and invasion (Figures 1C, D). Consistent
with this finding, the sodium pump inhibitor bufalin also
blocked the migration of HCT-116 cells in a dose-dependent
manner (Figure 1E). Reciprocally, we transfected HT29 cells
with empty vector or pcDNA3.1-a3(Supplementary
Information). Overexpression of a3 in HT29 cells with low
a3 expression dramatically promoted cell migration and
invasion (Figures 1F, G). Taken together, the expression levels
of the sodium pump a3 subunit are positively associated with
metastasis of CRC.
The a3-p53-PTEN/IGFBP3-mTOR Axis Is
Associated With Metastasis of CRC
Previous studies indicated that p53 played a critical role in the
negative regulation of metastasis (33, 34). As HCT-116 cells
express wild-type p53, we therefore wanted to know whether
sodium pump a3 promotes CRC metastasis via downregulation
of p53-dependent pathways. The p53 downstream targets PTEN,
IGFBP3, TSC2, AMPK1 and PhLDA3 were analyzed by qPCR.
As shown in Figure 2A, silencing a3 in HCT-116 cells
upregulated the transcript levels of PTEN and IGFBP3 but not
the levels of TSC2, AMPK1 and PhLDA3, indicating that PTEN
and IGFBP3 may be involved in a3-mediated metastasis of CRC.
Reciprocally, overexpression of a3 in HT29 cells with low a3
expression downregulated the transcript levels of PTEN and
IGFBP3 (Figure 2B). Consistent with these findings, silencing a3
increased p53 expression and that of its downstream targets
PTEN and IGFBP3 at the protein level, which was followed by
downregulation of the active form of mTOR and AKT and
upregulation of the metastatic biomarker E-cadherin
(Figure 2C); however, overexpression of a3 attenuated these
actions (Figure 2C). Here, we further confirmed that p53
negatively regulated the PTEN/IGFBP3-mediated mTOR-E-
cadherin pathway in colon cancer cells (Figure 2D).
Furthermore, knockdown of p53 significantly attenuated the
effect of silencing a3 on the protein expression of PTEN/
IGFBP3/p-mTOR/p-AKT/E-cadher in and migrat ion
(Figures 2E, F). The mTOR inhibitors rapamycin and
sapanisertib dramatically inhibited the migration of HCT-116
cells (Figure 2G). Together, a3 promotes metastasis of CRC via
the p53-PTEN/IGFBP3-mTOR axis.

Bufalin Inhibits a3-Mediated CRC
Metastasis via the p53-PTEN/IGFBP3-
mTOR Pathway
To validate the mechanisms underlying the effects of sodium
pump a3 on the migration of CRC cells, we subsequently
examined the role of the sodium pump inhibitor bufalin on
cell migration. We first observed that bufalin increased the
expression of p53 and its targets PTEN and IGFBP3 and
decreased the expression p-AKT (Ser473), and p-mTOR
(Ser2448), which was followed by upregulation of E-cadherin
and downregulation of vimentin in a dose-dependent manner
Frontiers in Oncology | www.frontiersin.org 5
(Figure 3A). We next determined whether the role of bufalin in
CRC is dependent on p53. As shown in Figure 3B, silencing p53
partly blocked the bufalin-induced upregulation of PTEN and
IGFBP3 expression and then promoted AKT and mTOR
activation. Consistent with this finding, silencing p53
dramatically attenuated the bufalin-mediated inhibition of cell
migration in HCT-116 cells (Figure 3C). These data
demonstrated that bufalin could block the metastasis of CRC
via the p53-dependent PTEN/IGFBP3-mTOR pathway.
Knockdown of a3 or Targeting Sodium
Pumps Protects Against Liver Metastasis
of CRC In Vivo
To determine the role of sodium pump a3 in CRC liver
metastasis, we established an HCT-116 orthotopic xenograft
mouse model. As shown in Figure 4A, representative images
showed that knockdown of a3 could significantly block HCT-
116 cell growth at cecum wall and metastasis to liver compared
with the control group, as indicated by decreased primary tumor
weight and volume and metastatic nodules in the a3-knockdown
group (Figures 4B–D). The tissues were stained by H&E and
revealed the decreased CRC liver metastasis in the a3-
knockdown group (Figure 4E). Furthermore, the activity of
mTOR was analyzed in tissue samples. Knockdown of a3
significantly decreased mTOR activity, as indicated by
downregulation of p-mTOR and its target p-4EBP1
(Figure 4F). To validate these findings, we determined the
effect of the sodium pump inhibitor bufalin on HCT-116 cell
liver metastasis. We found that bufalin significantly inhibited
CRC cell growth and the metastasis of the tumor from the cecum
to the liver, as indicated by the decrease of tumor weight, tumor
volume, and metastatic nodules on liver after bufalin treatment
(Figures 5A–E). In addition, consistent with the knockdown
effect of a3, bufalin reduced the expression of p-mTOR and p-
4EBP1 (Figure 5F). Taken together, interfering with or targeting
a3 protects against CRC liver metastasis.

Correlation Between a3 Expression and
mTOR Activity in CRC Tissues
To determine whether a3 is related to CRC, we analyzed the
relationship between a3 expression and clinicopathologic
characteristics in 91 CRC patients. The results indicated that
a3 was highly expressed in 58.24% (53/91) of tumor tissues, and
its expression was positively associated with TNM stage and
metastasis of CRC patients (Figures 6A–C and Table 1).
Furthermore, we used IHC staining to measure a3 expression
in CRC tissues and correlated this staining with p-4EBP1
staining in the same 91 CRC tissues (Figure 6D). We found
that a3 and p4EBP1were stronger in CRC tumors with
metastasis than without metastasis. In total, 43.96% (40/91)
of CRC tissues exhibited a3-positive and p4EBP1-positive
staining, which was statistically significantly different
compared to the staining rate in the adjacent normal tissues,
suggesting possible mTOR activation by a3 in CRC (Figure 6E).
Taken together, our results demonstrated that elevated
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FIGURE 2 | a3 promotes CRC cell migration via p53-PTEN/IGFBP3-mediated mTOR. (A, B) The mRNA expression levels of p53 downstream targets PTEN, TSC2,
AMPK1, IGFBP3 and PhLDA3 were analyzed by qPCR in HCT-116 cells after knockdown of a3 for 48 h (A) or in HT29 cells upon overexpression of a3 for 48 h (B).
(C, D) HCT-116 or HT29 cells were transfected with the indicated plasmids or siRNAs for 48 h. The protein levels of a3, P53, PTEN, IGFBP3, p-AKT, mTOR,
p-mTOR, and E-cadherin were analyzed by Western blotting. (E, F) HCT-116 cells were transfected with the indicated siRNAs for 48 h. A portion of cells was
harvested for Western blotting (E). The other portions were replated into Transwell plates overnight and stained with crystal violet (0.5% w/v) (F). (G) HCT-116 cells
were treated with the mTOR inhibitors rapamycin (Rapa, 0.1 µM) and sapanisertib (Sapa, 0.5 µM) for 48 h, followed by crystal violet (0.5% w/v) staining to test cell
migration. Scale bar, 100 µm. The data are expressed as the mean ± SEM (n=3). Two-way ANOVA with Bonferroni’s multiple comparisons test was used in (A, B).
One-way ANOVA with Tukey’s multiple comparisons test was used in (F, G). *p ≤ 0.05, ***p ≤ 0.001.
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expression of a3 in the CRC of mice or patients promoted
metastasis via downregulation of p53-PTEN/IGFBP3 and
subsequent activation of mTOR, and bufalin inhibited this
action (Figure 6F).
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

Colorectal carcinoma is the 3rd most common morbidity and
the 4th leading cause of cancer-related death in the world (35).
A

B C

FIGURE 3 | Bufalin inhibits the migration of CRC cells via the p53-PTEN/IGFBP3-mTOR axis. (A) HCT-116 or HT29 cells were treated with the sodium pump
inhibitor bufalin (0, 10, 25, 50, 100, 200 nM) for 48 h and then harvested for Western blotting analysis. (B, C) HCT-116 cells were transfected with siRNAs targeting
p53 in the presence or absence of bufalin (25 nM) for 48 h. A portion of cells were harvested for Western blotting analysis. The other portions were plated into
Transwell plates overnight and then stained with crystal violet (0.5% w/v) for cell migration analysis. Scale bar, 100 mm. One-way ANOVA with Tukey’s multiple
comparisons test was used. *p ≤ 0.05, **p ≤ 0.01.
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Every year, approximately 1.2 million cases of colorectal
carcinoma (CRC) are newly diagnosed worldwide (36).
Metastasis is the process by which tumor cells spread from the
original site to the secondary sites, resulting in increased mortality
in CRC (37, 38). The unclear mechanisms of CRC metastasis
inhibit the development of treatment and prevention strategies.
Recent studies have reported that the sodium pump a3 subunit
exhibits increased expression in CRC and is associated with liver
metastasis (8), but the underlying mechanism is not yet known.

There are 50-60% CRC patients with p53 mutation (39). p53
plays a critical role in the regulation of cell migration (34, 34, 38).
Our study also demonstrated that p53 negatively regulated cell
Frontiers in Oncology | www.frontiersin.org 8
migration in CRC cells. p53 loss or mutation activates mTOR via
a reduction in PTEN accumulation and AKT activation in mouse
liver tumorigenesis (40). Consistent with this finding, we found
that p53 downregulated mTOR activity via PTEN/IGFBP3 in
CRC cells. Furthermore, we also found that the expression of p53
is negatively associated with the expression of sodium pump a3.
This finding is consistent with a previous report that the sodium
pump inhibitor bufalin upregulated p53 expression in 40-50%
CRC patients with wild-type p53 (41, 42).

Cardiac glycosides such as digoxin and bufalin, which are used
to treat heart diseases, have been demonstrated to kill various
cancers. Recent studies indicated that cardiac glycosides were
A

B D

E

F

C

FIGURE 4 | Knockdown of a3 protects against CRC liver metastasis in vivo. (A–F) An HCT-116 orthotopic xenograft mouse model was established using 8-week-old
female mice. Mice were observed for 6 weeks and then euthanized. Knockdown of a3 decreased liver metastasis of HCT116 cells (A). Arrows indicate metastatic
nodules. Dashed lines delineate primary xenograft colon tumor grown in the cecum wall. The primary tumor weight and volume were quantified (B, C). The nodule
number on the liver surface was also counted (D). n=7 for each group. Student t-test was used. *p < 0.05; **p < 0.01. The liver metastatic nodules were stained by
H&E (E). The scale bar represents 50 mm. The expression levels of a3, p-mTOR, and p-4EBP1 in liver tissues were analyzed by Western blotting (F).
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more susceptible to inhibiting sodium pump a3 subunit activity
than any other subunit (43). Here, we found that bufalin could
significantly inhibit cell migration in HCT-116 cells with high a3
expression, suggesting that bufalin may be a potential drug for
CRC cell metastasis. Regarding the anticancer mechanisms of
bufalin in CRC, our previous studies demonstrated that bufalin
induced cell cycle arrest at prometaphase and cell death via
autophagy or apoptosis (23, 44). In addition, our previous study
Frontiers in Oncology | www.frontiersin.org 9
indicated that sodium pump a3 and its inhibitor bufalin regulated
CRC cell proliferation via PI3K-Akt-Aurora A/B pathway (45).
Here, we reported that bufalin inhibited CRC liver metastasis via
the p53-PTEN/IGFBP3 axis, which enriched our current
understanding of the mechanism of bufalin in CRC. As
IGFBP3, a well known protein, negatively regulates Akt
activation (26, 27), it is possible that bufalin may regulate CRC
cell proliferation via p53-IGFBP3-Akt-Aurora A/B pathway.
A
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C

FIGURE 5 | Bufalin inhibits a3-mediated CRC liver metastasis in vivo. (A–F) HCT-116 orthotopic xenograft mice were treated with bufalin (1.5 mg/kg) every other
day for six weeks. Inhibition of the sodium pump by bufalin inhibited liver metastasis of HCT116 cells (A). Arrows indicate metastatic nodules. Dashed lines delineate
primary xenograft colon tumor grown in the cecum wall. The primary tumor weight and volume were quantified (B, C). The tumor nodule number on the liver surface
was counted (D). n=6 for each group. Student t-test was used. *p < 0.05. The liver metastatic nodules were stained by H&E (E). The scale bar represents 50 mm.
The expression levels of p-mTOR and p-4EBP1 in liver tissues were analyzed by Western blotting (F).
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Previous studies demonstrated that sodium pumps are
associated with cell metastasis in CRC (8), lung cancer (15), and
breast cancer (16). Sodium pump-mediated metastasis remains
unclear. Here, we reported that sodium pump a3 promoted CRC
liver metastasis via p53-PTEN/IGFBP3-mTOR. However, there are
2 major issues worthy of further investigation: 1) how a3 regulates
Frontiers in Oncology | www.frontiersin.org 10
p53 expression and 2) how activated mTOR promotes metastasis
and regulates EMT.

In conclusion, the sodium pump a3 subunit is highly expressed
in CRC tissues and positively associated with poor prognosis in
CRC patients. a3 promotes CRC liver metastasis via the p53-
PTEN/IGFBP3-mTOR axis, and the sodium pump inhibitor bufalin
A B

D

E F

C

FIGURE 6 | Correlation between a3 and mTOR activity in 91 CRC tissues. (A) Representative images of IHC staining for a3 in CRC tissues and matched adjacent
normal tissues. (B, C) The relationships between a3 and TNM stage (B) and metastasis (C) were determined. (D, E) The correlation between a3 and p-4EBP1 was
evaluated in 91 CRC tissues and matched adjacent normal tissues. (F) A model of CRC cell metastasis driven by elevated a3 expression via the p53-PTEN/IGFBP3-
mTOR axis, which is blocked by bufalin. Scale bar, 50 mm.
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can inhibit this action. a3 is a poor prognostic marker of CRC
and/or a potential therapeutic target for CRC patients with wild
type p53.
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