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ABSTRACT Inflammatory bowel diseases (IBD), namely, Crohn’s disease (CD) and ulcer-
ative colitis (UC), are lifelong and incurable chronic inflammatory diseases affecting
6.8 million people worldwide. By 2030, the prevalence of IBD is estimated to reach 1%
of the population in Western countries, and thus there is an urgent need to develop
effective therapies to reduce the burden of this disease. Microbiome dysbiosis is at the
heart of the IBD pathophysiology, and current research and development efforts for IBD
treatments have been focused on gut microbiome regulation. Diet can shape the intesti-
nal microbiome. Diet is also preferred over medication, is safe, and has been proven to
be an effective strategy for the management of IBD. Therefore, although often over-
looked, dietary interventions targeting the microbiome represent ideal treatments for
IBD. Here, I summarize the latest research on diet as a treatment for IBD from infancy to
adulthood, compile evidence of the mechanisms of action behind diet as treatment,
and, lastly, provide insights into future research focusing on culturally tailored diets for
ethnic minority groups with increased incidence of IBD yet underrepresented in nutrition
research.
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The incidence of inflammatory bowel disease (IBD) is on the rise (1). In the United
States alone, around 2.5 million people suffer from IBD, resulting in up to $31.6 bil-

lion in direct and indirect costs annually (2–4). Despite the multifactorial causality of
IBD, dysbiosis, epithelial barrier dysfunction, and immune disturbances have been sug-
gested as the cornerstones of disease onset and severity (5–9). Most of the current
treatments rely on pharmacological interventions that either dampen inflammation
(i.e., corticosteroids, immunosuppressants) or decrease the chance of bacterial breach
from the lumen to the underlying mucosa due to a dysfunctional epithelial barrier (i.e.,
antibiotics). These conventional treatments have remission rates lower than 50% and
usually fail to prevent recurrent flare-ups over time. More than one-third of patients
with IBD fail induction therapy, and up to 60% of primary responders lose response
over time (10–12). With a rising prevalence of IBD worldwide (13), there is an urgent
need to develop effective and sustainable therapies that can be used long-term.

Interestingly, a microbiome “imbalance” or dysbiosis is linked to barrier dysfunction
(14–17) and inflammation (18–21), which together are responsible for the IBD patho-
physiology (8, 22). Over the last decade or so, there has been an increasing enthusiasm
about clinical applications of diet as microbiome-targeted therapy as an adjunct treat-
ment of IBD. Diet is a modifiable, noninvasive, inexpensive behavior that is crucial in
shaping the intestinal microbiome (23–28). Dietary patterns have been associated with
increased IBD risk or with the characteristic dysbiosis found in IBD patients in several
large cohorts (29–33). Thus, diet can serve as a microbiome-targeted adjunct therapy
to assist in the management of IBD. To date, intervention studies have shown that diet,
in conjunction with medication, is effective in inducing IBD remission and can be toler-
ated without adverse effects (34–45). This review aims to summarize results from
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studies assessing (i) diet as therapy for IBD, (ii) its effect on the microbiome of patients
with IBD, and (iii) the microbiota-dependent mechanisms by which food affects IBD
outcomes.

DIETARY TREATMENT FOR IBD ACROSS THE LIFE SPAN
Early life. Since the pioneering analysis of the Swedish twin registry, mounting evi-

dence demonstrates a robust genetic basis of IBD (46). However, genetics explain only
a minority of the variance of disease risk, suggesting that a combination of genetics
and environmental factors will be more likely to explain disease pathogenesis. For
instance, infants born to mothers with IBD are at a substantially increased risk of devel-
oping the disease compared to infants born to fathers with IBD, particularly Crohn’s
disease (CD) (47). Akolkar et al. found that out of 135 families where both a parent and
a child had IBD, the parent-to-child transmission was linked to the mother in 69% of
cases and only 31% of the cases were linked to the father having IBD (48). A second
study found a similar trend, with mother-to-child transmissions accounting for 63% of
Crohn’s disease cases (49). Finally, studies of children who subsequently developed IBD
showed an increased risk (7 to 8 times higher) of Crohn’s disease if the mothers also
suffered from the disease (47, 50).

Hence, besides genetics, a possible explanation of the higher proportion of mother-
to-child than father-to-child transmissions is that environmental factors during preg-
nancy might affect the risk of developing IBD. Accumulating evidence suggests that
the “inherited” neonate microbiome from the mother can exert marked effects on the
immune and metabolic programming of the offspring, with long-term health-related
consequences including the predisposition to IBD (51–54). Environmental factors dur-
ing pregnancy, including mode of delivery, perinatal diet, and perinatal antibiotic use,
drive the composition of the “inherited” neonate microbiome (55, 56). For instance,
infants born by cesarean exhibit a neonate microbiome with low diversity and late col-
onization of Bacteroidetes that is associated with reduced Th1 cell responses in the first
2 years of life (57). Activation of Th1 triggers the cellular immune response, inhibits
macrophage activation, and stimulates B cells to produce IgM and IgG1 antibodies. In
addition, experiments in mice have demonstrated that the neonate microbiome can
prevent the accumulation of invariant natural killer T cells (iNKT), which results in
decreased disease severity in models of IBD (58).

Infants born to mothers with IBD exhibit a higher abundance of Gammaproteo-
bacteria species and depletion of Bifidobacterium species than those born from moth-
ers without IBD (59). Furthermore, maternal IBD status is a significant predictor of the
overall b-diversity of the neonate microbiome and of the abundance of bifidobacteria
and Gammaproteobacteria over time. Infants born to mothers with IBD had higher lev-
els of fecal calprotectin (FC), an inflammatory marker that robustly correlates with bar-
rier damage and massive neutrophil infiltration in IBD patients (60–65). The levels of
fecal calprotectin in those babies are higher as early as 2 months and up to 36 months of
age than the levels in babies born to healthy mothers (59, 66). Specific bacteria were corre-
lated with fecal calprotectin levels in the infants; namely, Bifidobacterium (depleted in
infants born from mothers with IBD), Faecalibacterium, and Alistipes showed negative corre-
lations, and Streptococcus was positively correlated with fecal calprotectin levels within
3 months of birth (66). Experiments with germfree mice inoculated with stools of mothers
with IBD showed that mice developed an altered immune maturation. Particularly, mice
inoculated with stools of mothers with IBD showed significantly lower levels of switched
memory B cells (CD191 CD271 IgM2 IgD2) and regulatory T cells (CD31 CD41 FoxP31)
than did germfree mice inoculated with stools from pregnant controls (59). The long-term
consequences of elevated fecal calprotectin levels or/and an altered immune maturation
at an early age are uncertain and hard to evaluate. Nonetheless, restoration of the micro-
biome in mothers with IBD or their infants can retune the microbiome-dependent immune
and metabolic programming of the offspring.
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Diet can rapidly and predictably change the microbiome (23). It has been demon-
strated that perinatal diet is linked to the “inherited” neonate microbiome (67–69).
Lundgren et al. analyzed the stool microbiome of 145 infants enrolled in the New
Hampshire Birth Cohort Study and compared it to the dietary information obtained
during pregnancy from their mothers using a food frequency questionnaire (67). They
found that the microbiome of infants born vaginally grouped into three clusters, each
cluster dominated by either (i) Bifidobacterium, (ii) Streptococcus and Clostridium, or (iii)
Bacteroides. The odds of belonging to the Streptococcus- and Clostridium-dominated
cluster was 2.73 times greater for each additional maternal serving of fruit per day.
Other foods consumed during pregnancy are associated with specific members of the
microbiome in the offspring. For example, high dairy intake during pregnancy was pos-
itively associated with Clostridium neonatale, Clostridium butyricum, and Staphylococcus
and negatively related to Lachnospiraceae species (67). Another study of mothers in
the Spanish-Mediterranean area (n = 116 mothers) showed that the maternal micro-
biome of this cohort could be grouped into two clusters: Prevotella-dominated cluster I
and Ruminococcus-dominated cluster II (69). Mothers in the Ruminococcus-dominated
cluster II reported higher intakes of total dietary fiber, monounsaturated omega-3 fatty
acids, and polyphenols, while mothers in the Prevotella-dominated cluster I reported
higher consumption of carbohydrate and saturated fatty acids (SFA). The authors
found that maternal clustering of the microbiome correlated with the neonatal micro-
biome composition (n = 86 dyads). Infants born from mothers in the Prevotella-domi-
nated cluster I exhibited a higher abundance of Firmicutes spp. than those born from
mothers in the Ruminococcus-dominated cluster II. Besides the neonatal microbiome, clus-
tering of the maternal microbiome was also linked to the risk of being overweight.
Validated anthropometrical measurements such as weight-for-length (WFL) and body
mass index (BMI) Z-scores were collected from infants up to 18 months of age to assess
the risk of being overweight. Infants belonging to mothers in the Prevotella-dominated
cluster I—with higher consumption of carbohydrate and SAF—and born by cesarean sec-
tion exhibited significantly higher BMI and WFL Z-scores at 18 months than infants from
vaginal births from mothers classified in the Ruminococcus-dominated cluster II—with
higher intakes of total dietary fiber, monounsaturated omega-3 fatty acids, and polyphe-
nols (69). Later, Selma-Royo et al. reported a subsequent study including 73 dyads from
the same Spanish cohort (68). Here, they showed that intake of SFA and monounsaturated
fatty acids (MUFA) during pregnancy significantly affects the overall structure of the off-
spring microbiome. Particularly, infants of mothers with high SFA and MUFA intakes
showed enrichment in Firmicutes (i.e., Coprococcus, Blautia, Roseburia, Ruminococcaceae,
and Lachnospiraceae) and depletion in Proteobacteria (i.e., Klebsiella, Escherichia). Con-
versely, intakes of vegetable-derived proteins and fiber during pregnancy negatively cor-
relate with enrichment of the Firmicutes species mentioned above in the offspring (68).

To the best of my knowledge, only one study in Norway has delved into the dietary
patterns of pregnant women with IBD (70). The authors of the study enrolled 183
mothers with CD, 240 mothers with ulcerative colitis (UC), and 83,565 mothers without
IBDs. They found that mothers with IBD had low adherence to a “traditional dietary
pattern,” characterized by consumption of lean fish, fish products, potatoes, rice por-
ridge, cooked vegetables, and gravy. High adherence to the traditional dietary pattern
was associated with improved pregnancy outcomes, namely, a lower risk for “small for
gestational age” outcome (70).

My laboratory, in collaboration with researchers at Icahn School of Medicine at Mount
Sinai, is currently testing a dietary intervention in mothers with IBD to revert dysbiosis dur-
ing pregnancy and, in consequence, the “inherited” neonate microbiome and early inflam-
mation seen in infants born to mothers with IBD (45).

Pediatrics. Exclusive enteral nutrition (EEN) is the primary therapy used to induce
remission in pediatric IBD patients, particularly CD (71). This therapy consists of replac-
ing foods with commercial formulas (elemental or polymeric) to provide total calories,
complete macronutrients, and micronutrients to pediatric patients with active disease.
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EEN induces remission in 80 to 85% of pediatric patients, similar to those treated with
corticosteroids (72). Compared to steroid treatment, several studies have demon-
strated that EEN is superior in inducing mucosal healing in pediatric patients (73–77).
However, a meta-analysis confirmed that corticosteroid therapy in adults with active
disease may be more effective in inducing remission than EEN (78). Thus, EEN is used
primarily in pediatric patients.

EEN drives microbiome changes. Specifically, EEN results in a reduction of bacterial di-
versity along with a decreased abundance of specific short-chain fatty acid (SCFA)-produc-
ing bacteria thought to be beneficial (i.e., Faecalibacterium, Ruminoccocus, Blautia, and
Subdoligranulum) (79, 80). Moreover, EEN stabilizes the microbiota-dependent metabolism
of bile acids (BAs) (80). BAs play a central role in modulating intestinal immune responses
and possess antimicrobial activity that can inhibit bacterial overgrowth (81). The liver pro-
duces primary BAs from cholesterol, and the gut microbiome can modify these com-
pounds into a myriad of secondary BAs that greatly increase their diversity and biological
function (82–85). A recent study investigated the BA proportions in fecal samples obtained
from 17 CD children before and after EEN treatment. Six of the 17 children did not sustain
remission while on EEN treatment and experienced a relapse requiring escalation of medi-
cal therapy (e.g., oral corticosteroids, biologic therapy, or surgery). The six children experi-
encing relapses showed an accumulation of primary BAs in stool before EEN treatment,
suggesting depletion of bacteria capable of generating secondary BAs. Those children
exhibited a significantly higher abundance of multiple bacteria species unable to modify
BAs (i.e., Bacteroides plebeius, Bacteroides ovatus, Bacteroides dorei, Bacteroides thetaiotaomi-
cron, Ruminococcus gnavus, Escherichia coli, Clostridium bolteae, and Veillonella sp.).
Conversely, children with EEN-sustained remission (n = 7) exhibited accumulation of micro-
biome-dependent secondary BAs before EEN and at any given time point (86). Samples
from children with EEN-sustained remission showed enrichment of bacterial species with
the genetic capacity to modify primary BAs into secondary BAs (i.e., Bacteroides vulgatus,
Bacteroides uniformis, Faecalibacterium, Subdoligranulum, and Alistipes sp.) (86). This sug-
gests that microbiota-dependent production of secondary BAs is necessary for EEN-de-
pendent sustained remission.

Other diets tested as a therapy for pediatric patients include the specific carbohy-
drate diet (SCD) (36, 41), the modified SCD (mSCD) (36), Crohn’s disease treatment with
eating (CD-TREAT) (42), and the Crohn’s disease exclusion diet (CDED) (34, 40, 44).

The SCD is one of the most studied diets in the IBD population. SCD focuses on
removing grains (i.e., wheat, oats, barley, corn, quinoa, and rice) and milk products
(except for hard cheeses and fully fermented yogurts) and replacing any added sugar
with honey. Hence, SCD is centered on low complex carbohydrates that can serve as
food sources for beneficial bacteria in the colon, thus reverting dysbiosis and reduc-
ing inflammation (41). The first study in children with CD (n = 7) showed improve-
ment of inflammatory markers after several months of SCD treatment (41). A few ret-
rospective studies have also confirmed that pediatric patients with CD or UC
experienced a reduction of disease activity after SCD treatment (87, 88). Later, a pro-
spective study of children with mild to moderate IBD showed that adding a 12-week
treatment with SCD along with concurrent medication induced remission in 8 of the
12 patients included in the study (89). Despite the small sample size and high inter-
personal variability, children in the study showed changes in the microbiome, with
Bacteroides and Parabacteroides having the largest decrease in median abundance
and Eubacterium, Ruminoccocus, and Subdoligranulum the largest increase (89). Of
note, depletion of Eubacterium, Ruminoccocus, and Subdoligranulum has been associ-
ated with dysbiosis in IBD patients (90). A more recent randomized trial compared
the SCD, the mSCD (integrating some initially excluded foods, such as potatoes, rice,
quinoa, and oats), and whole foods (eliminating wheat, corn, sugar, milk, and food
additives) (36). Here, researchers found that all the children (n = 10) completing
12 weeks on any one of the treatments achieved remission. As expected, children
exhibited a microbiome shift that was primarily patient specific (36).
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Of note, nutritional deficiencies are common in IBD individuals (i.e., low in calcium, iron,
vitamins B6, B9, and B12, vitamin D, and others) (91–93). In children with IBD, these defi-
ciencies can lead to growth failure and malnutrition, which are among the major complica-
tions of the disease (94). Both EEN and SCD are restrictive diets that are recommended for
short-term consumption, as nutritional deficiencies may arise (95, 96).

On that note, investigators in the United Kingdom created a less-restrictive diet for
pediatric patients, CD-TREAT (42). CD-TREAT is a diet based on solid food, aimed to re-
capitulate the nutrient composition and effects of EEN in the microbiome. An initial
study on healthy volunteers (n = 25) demonstrated that CD-TREAT is better tolerated
than EEN, with similar effects on the microbiome composition and metabolic function
(42). Specifically, individuals on either CD-TREAT or EEN showed marked reductions of
short-chain fatty acid (SCFA)-producing bacteria, along with lower concentrations of
SCFAs in feces. The microbial genetic capacity for BA modification was not assessed in
this study. CD-TREAT was then tested in an open-label trial on 5 children with CD who
had mild to moderate active luminal disease. Four children completed the study. After
4 weeks on CD-TREAT, 3 patients demonstrated a clinical response (weighted pediatric
Crohn’s disease activity index [wPCDAI] score change, .17.5) and 2 were in clinical
remission (wPCDAI score, ,12.5). At 8 weeks, all the patients showed a clinical response
and 3 entered clinical remission (42).

Another whole-food diet, the CDED, was designed to exclude potentially proinflam-
matory food ingredients, such as gluten, dairy products, gluten-free baked goods and
bread, animal fat, processed meats, products containing emulsifiers, canned goods,
and all packaged/processed products (44). CDEDs have been tested coupled with par-
tial enteral nutrition (CDED1PEN) but not alone. The first report showed that 33 of 47
children (70%) treated with CDED1PEN for 6 weeks achieved clinical remission (44). In
a second study, researchers compared EEN to CDED1PEN and found that the latter is
better tolerated by pediatric patients (73.6% versus 97.5%) (34). At week 6, 30 (75%) of
40 children treated with CDED1PEN were in corticosteroid-free remission versus 20
(59%) of 34 children given EEN. The authors assessed the microbiome compositions of
28 pediatric patients on the CDED1PEN and 32 on the EEN. They observed a signifi-
cant reduction of Actinobacteria and Proteobacteria species and an increased abun-
dance of Clostridia sp. after 6 weeks on either diet. At week 12, patients on the
CDED1PEN maintained the dominance of Clostridia and the decrease of Proteobacteria
with a minor rebound of Actinobacteria, while patients on the EEN reverted to the pre-
treatment microbiome composition (34). The latest multicenter randomized trial of
CDED1PEN versus EEN in children with mild to moderate CD showed that either treat-
ment resulted in 63% and 67% remission (pediatric Crohn’s disease activity index
[PCDAI], ,10) rates after 3 and 6 weeks of treatment, respectively (40). See Table 1 for a
summary of the trials discussed above.

Adults. “What to eat?” is the most frequent question asked by IBD patients of their
treating physicians. Only recently has diet been recognized as a cost-effective strategy
to induce remission in adult patients with IBD (37, 38, 43, 97). See Table 1 for a sum-
mary of the trials discussed below.

A recent randomized trial that included interventions with either the SCD or the
Mediterranean diet (MD) has demonstrated a remarkable effect of diet in inducing
remission in adults with Crohn’s disease (43). After only 6 weeks, 47% of the patients
on the SCD (n = 99) and 44% on the MD (n = 92) achieved symptomatic remission
(Crohn’s disease activity index [CDAI], ,150), with up to 35% showing reduction in
fecal calprotectin (FC) levels (reduction of FC to ,250 mg/g and by .50% from screen-
ing among those with a screening FC level of .250 mg/g). At week 12, 42% and 40%
on the SCD and MD, respectively, achieved or maintained symptomatic remission. The
fecal calprotectin response was observed only in 26% and 8% of patients on the SCD
and MD, respectively (43). The authors reported no significant changes in microbiome
diversity at 0, 6, or 12 weeks post-dietary treatment, with patients in either diet group
having comparable richness and Shannon’s diversity indices (43).
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The low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols
(low FODMAP) diet has also been tested to manage irritable bowel syndrome-like
symptoms in patients with IBD (38, 98–101). A randomized 6-week trial comparing
the low FODMAP diet with a standard diet showed that patients (either CD or UC) on
the low FODMAP diet modestly reduced their disease activity while those on the stand-
ard diet experienced no change in symptoms. Moreover, fecal calprotectin decreased
only in the patients adopting the low FODMAP diet (100).

For ulcerative colitis, a catered nutritious low-fat, high-fiber diet (LFD) has been
shown to improve the overall quality of life, lower inflammatory markers, and decrease
dysbiosis (97). Fritsch et al. carried out a parallel-group crossover study to compare the
effect of an LFD (10% of calories from fat) with that of an improved standard American
diet (iSAD), which included higher quantities of fruits, vegetables, and fiber than a typi-
cal SAD with 35 to 40% of calories from fat. Patients with UC in remission or with mild
disease (n = 17) were randomized to either diet for 4 weeks; after a 2-week washout
period, patients were switched to the opposite diet. Although there were no significant
differences in disease activity scores after each dietary intervention, which were low at
baseline (mean partial Mayo score of 0.9), all patients remained in remission during the
trial. Based on the validated short IBD questionnaire and the 36-Item Short Form
Health Survey scores, participants in either diet group experienced increased quality of
life compared to baseline measurements. Inflammatory markers such as serum amyloid
A decreased significantly only in participants on the LFD, while microbe-derived
metabolite SCFAs, particularly acetate, significantly increased with either dietary treat-
ment. The LFD prompted a significant increase in Bacteroidetes and a decrease in
Actinobacteria. In comparison to participants on the iSAD, participants on the LFD
showed a significant increase in Faecalibacterium prausnitzi, a potent butyrate-produc-
ing bacterium commonly depleted in patients with IBD (90, 102–113).

Olendzki et al. have designed the IBD anti-inflammatory diet, or IBD-AID, to revert
dysbiosis in IBD patients (37, 45). The IBD-AID promotes the intake of probiotic foods
(independent of commercial supplements) to promote the establishment of commen-
sal bacteria, prebiotic foods to feed commensal bacteria, and beneficial foods to meet
dietary requirements, and the replacement of adverse foods thought to foster patho-
genic microbiota and induce gastrointestinal symptoms (26, 37, 45, 114–119). The IBD-
AID can be prepared at home, might be healthfully consumed by the entire family
long-term, and can be adapted to meet other nutritional concerns as needed. In a ret-
rospective study, both Crohn’s disease (n = 8) and ulcerative colitis (n = 3) patients
adopting the IBD-AID experienced a reduction of disease activity and lowered their
medication intake after only 4 weeks on the diet. Of the Crohn’s disease patients, the
disease activity at baseline measured with the Harvey-Bradshaw index (HBI) averaged
11 (range, 1 to 20), and after dietary intervention, the HBI averaged 1.5 (range, 0 to 3).
The ulcerative colitis patients had a mean baseline disease activity score, measured by
the modified Truelove and Witts severity index (MTLWSI), of 7 (range 6 to 8), and their
mean follow-up score was 0. The mean decrease in the HBI was 9.5, and the mean
decrease in the MTLWSI was 7 (37). After the IBD-AID intervention, patients exhibited
an increased abundance of potent butyrate-producing Faecalibacterium prausnitzii,
Eubacterium eligens, and Roseburia hominis (120), all of which are commonly depleted
in patients with IBD (90, 102–113).

MOLECULAR MECHANISM OF DIET-MICROBIOME INTERACTION LEADING TO
AMELIORATION OF IBD

The precise knowledge of the mechanisms by which food affects IBD will catalyze
personalized nutritional therapy, sensitivity to differences in IBD clinical manifestations,
host genotype, gut microbiome composition, and genetic capabilities. Compiling in
vitro and in vivo evidence has shed light on the mechanisms by which diet decreases
manifestations of the disease. A recent review summarizes studies with models of
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diseases detailing mechanistic findings (121). Here, I focus on the diet-microbiome
interactions that affect the epithelial barrier permeability and the immune response in
IBD.

Dysbiosis and the epithelial barrier. Dysbiosis in patients with IBD features a
depletion of the commensal Clostridia and an expansion of Enterobacteriaceae species
known to impact barrier function (90, 103–113, 122–125). Disruption of the epithelial
barrier in IBD leads to the breach of bacteria and foreign antigens from the lumen into
the underlying mucosa (8, 126–128). Once the epithelial barrier is infringed, a potent
inflammatory response is activated, furthering the epithelial damage (129). Barrier dys-
function precedes IBD onset (130–139). Moreover, intestinal permeability is a robust
predictor of poor outcomes and disease recurrence (132, 140–143). The gut micro-
biome is crucial in supporting a functioning epithelial barrier. For instance, the micro-
biome-derived SCFAs acetate, propionate, and butyrate represent the primary energy
source for enterocytes (144), can act on genes involved in tight junction to seal the
paracellular space (14, 145–147), increase oxygen consumption in the intestinal epithe-
lium, which in turn stabilizes the hypoxia-inducible factor (HIF), a transcription factor
responsible for maintaining barrier integrity (148), and sets an anti-inflammatory tone
in the gut mucosa (14–17).

Plant-based foods, rich in fiber, are linked to increased abundance of SCFA-produc-
ing bacteria in IBD patients (32, 149). Conversely, fiber-deprived diets can cause a dys-
functional epithelial barrier. Schroeder et al. showed that mice fed a Western-like diet
(high-fat/low-fiber) have an increased mucosal permeability and a reduced growth
rate of the mucus layer (150). Transplantation of the microbiome of mice fed with
chow into the mice fed a Western-like diet restores mucosal permeability and mucus
growth. This highlights the importance of diet-dependent changes of the microbiome
in mucosal barrier integrity and permeability (150). In a separate study, a low-fiber diet
caused mucosal epithelial erosion, which in turn promoted lethal fulminant colitis in
mice (151). Mice on low-fiber diets showed an expansion of mucus-foraging bacteria,
such as Akkermansia muciniphila (152) and Bacteroides caccae (153), in comparison to
mice on fiber-rich diets. The expansion of these mucolytic bacteria resulted in a perme-
able, eroded, thinner epithelial layer, with mice exhibiting intestinal inflammation (i.e.,
neutrophil infiltration, shorter colon length) and increased susceptibility to Citrobacter-
induced colitis (151).

A high-fat diet also impairs barrier function, leading to susceptibility to colitis. A study
from Xie et al. demonstrated that the 3-week offspring of mice fed a high-fat diet during
pregnancy and lactation exhibited an abnormal epithelial layer with shorter villi, decreased
crypt depth, and reduced number of proliferating cells, which in turn led to a lower num-
ber of differentiated intestinal cells, in comparison to animals fed a low-fat control diet
(154). These morphological defects were accompanied by increased barrier permeability
(measured by fluorescein isothiocyanate [FITC] in the serum) and decreased expression of
tight junction proteins claudin 1 (CLDN), CLDN3, ZO-1, and occludin. Similarly, patients
with severe IBD exhibit a compromised epithelial barrier with low levels of tight junction
proteins, specifically occludin (155–158).

Comparisons of the gut microbiome of the offspring also revealed striking differences.
Offspring of mice fed a high-fat diet had a lower alpha diversity than controls, an increased
abundance of Akkermansia muciniphila, Peptostreptococcaceae, and Streptococcus, and a
decreased abundance of butyrate-producing bacteria such as Lachnospiraceae incertae
sedis and Prevotellaceae. Not surprisingly, the offspring of mice fed a high-fat diet and
treated with dextran sodium sulfate (DSS; a sulfated polysaccharide widely used to repro-
ducibly induce experimental acute and chronic colitis) exhibited more severe colitis than
their counterparts (154). Similarly, adult mice fed a high-fat diet exhibited a significantly
reduced expression of the tight junction protein occludin, which in turn compromised the
epithelial barrier, leading to translocation of endotoxin (159).

In an elegant animal study, researchers tested the effect of over 40 diets, with vari-
ous concentrations, combinations, and sources of macronutrients, on the microbiome,

Minireview Infection and Immunity

May 2022 Volume 90 Issue 5 10.1128/iai.00583-21 9

https://journals.asm.org/journal/iai
https://doi.org/10.1128/iai.00583-21


intestinal permeability, and colitis severity (160). They found that mice on diets high in
protein (sources included chicken, beef, and egg whites) had increased intestinal per-
meability, weight loss, and severe colitis than mice on high-fiber diets. The effect of a
high-protein diet (particularly casein) on colitis severity was mediated by the gut
microbiome, since a high-casein diet reduces survival in comparison to a low-casein
diet in specific-pathogen-free (SPF) mice but not in germfree animals. Moreover,
casein-driven changes in gut microbial density were significantly associated with the
severity of colitis seen in mice. Conversely, fiber-rich diets (particularly, the soluble fiber
psyllium) increased the survival of mice treated with DSS (by at least 15 days compared
to those on high-protein diets) and reduced colitis severity and the disruption of the
epithelial permeability. The effects of dietary psyllium on colitis severity were both de-
pendent and independent of the microbiome (160).

Another important food component to consider is dietary emulsifiers (i.e., carboxy-
methylcellulose, polysorbate 80, carrageenan, etc.). Emulsifiers are a ubiquitous com-
ponent of processed food with detrimental effects on barrier function (161–164). Mice
with chronic exposure to dietary emulsifiers exhibit erosion of the intestinal mucus
layer and, in consequence, an enrichment of mucosa-associated inflammation-promot-
ing Proteobacteria species (162, 163). More recently, a study showed that emulsifiers
not only alter the mucosa-associated microbiota but also directly induce the expres-
sion of bacterial virulence genes to trigger chronic inflammation in mice (165).

In sum, evidence in animal models supports the importance of fiber-rich/low-fat/
low-protein, emulsifier-restrictive diets to strengthen epithelial barrier function, which
can contribute to resistance to colitis.

Dysbiosis and the immune response. The immune signature of IBD features an
exacerbated epithelial infiltration of innate immune cells (i.e., neutrophils, macro-
phages, and dendritic cells) accompanied by an excessive activation of effector T cells
(Th1, Th2, Th17, and T follicular helper [Tfh] cells) and/or altered tolerance mechanisms
mediated by regulatory T cells (Tregs). Particularly, forkhead box protein P3 (FOXP31)
regulatory T cells or FOXP31 Treg cells, located in the gut lamina propria, function as
key regulators of intestinal inflammation in IBD (166–170). It has been established that
Clostridia species, missing in IBD patients, are responsible for the activation of potent anti-
inflammatory FOXP31 Treg cells (18, 171, 172). Although there is an overall increase of
Clostridia in patients adopting some of the IBD-friendly diets aforementioned, the impact
of the diet-dependent Clostridia enrichment on Treg activation has not been studied in IBD
patients undergoing dietary treatment. Yet, this provides a plausible hypothesis as one of
the mechanisms behind those diets.

In a recent study, Song et al. aimed to investigate the diet-microbiome interactions
that lead to the induction of Tregs (173). They compared induction of Tregs in three
groups of mice: (i) specific-pathogen-free (SPF) mice fed a nutrient-rich diet, (ii) SPF
mice fed a minimal diet, and (iii) germfree mice fed a nutrient-rich diet (173). Lower
induction of Tregs was observed in SPF mice fed a minimal diet and germfree mice on
a nutrient-rich diet, supporting the notion that both a rich diet and a functional micro-
biome are necessary for Treg induction. Moreover, investigators demonstrated that
specific combinations of murine primary and secondary BAs added to the drinking
water of SPF mice fed a minimal diet and germfree mice on a nutrient-rich diet
restored Treg induction comparable to that of SPF mice fed a nutrient-rich diet.
Deletion of either gene involved in BA deconjugation (bile salt hydrolase [BSH]) or the
entire BA metabolic pathway in Bacteroides reduced the Treg induction. When suscep-
tibility to colitis was tested, SPF mice on the minimal diet—with a lower proportion of
colonic Tregs—exhibited higher weight loss and more severe colitis than SPF mice fed
a rich diet. Although supplementation of primary and secondary BAs increased Treg
cell counts in SPF mice on the minimal diet, after colitis onset, BA supplementation did
not improve colitis in these mice. This highlights the importance of an initial BA-acti-
vated Treg pool to confer resistance to chemically induced colitis (173).
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Devkota et al. found that mice on a diet high in saturated milk fat promoted taurine
conjugation of BAs in the liver, which in turn increased the availability of organic sulfur
that can be used by the taurine-respiring sulfidogenic organism Bilophila wadsworthia
(174). B. wadsworthia is considered a pathobiont with a high capacity to reduce sulfites.
The expansion of this bacterium was associated with a proinflammatory TH1 immune
response and with a greater number of genetically susceptible IL-102/2 mice developing
colitis. In support of these findings, data from human subjects have shown that consump-
tion of highly saturated fats (mainly animal fat) significantly increases taurine conjugation
of BAs, production of fecal sulfide, and abundance of B. wadsworthia (23, 175–177).

Similarly, Sinha et al. demonstrated that microbiome-dependent BA modification
causes intestinal inflammation in murine models of colitis (178). Here, investigators per-
formed metabolomic analyses of stools from ulcerative colitis-pouch patients and found
that there was a reduction in secondary BAs in ulcerative colitis-pouch patients, namely,
lithocholic acid (LCA) and deoxycholic acid (DCA), while the accumulation of primary BAs
was significantly higher than that in a control group. This metabolic profile was accompa-
nied by a reduction of Ruminococcaceae sp. (involved in secondary BA production [179,
180]). Mice supplemented with secondary BAs showed a significant decrease in chemo-
kines and cytokines, linked to inflammation, and an overall reduction of intestinal inflam-
mation. The authors tested a chemically induced model of colitis (DSS and 2,4,6-trinitro-
benzenesulfonic acid [TNBS]) as well as T cell transfer (CD45RBhi) murine models of colitis
supplemented with the secondary BAs LCA and DCA. In every model of colitis, they
observed a reduction of colitis as measured by weight loss, colon length, gross colon mor-
phology, leukocyte infiltration, histology, and fecal lipocalin 2 when treated with secondary
BAs. This effect was abrogated in mice lacking the G protein-coupled receptor TGR5, a
transmembrane BA receptor. It has been demonstrated that secondary BA TGR5 agonists,
DCA and LCA, can inhibit the production of tumor necrosis factor alpha (TNF-a) in CD141

macrophages (181). Of interest, TNF-a is a proinflammatory mediator that plays an integral
role in the pathogenesis of IBD.

Microbiome-derived SCFAs, favored by fiber-rich diets, also play a fundamental role in
mediating the immune tone. In mice, fiber intake during pregnancy increases levels of bu-
tyrate in the blood of the offspring with concomitant increased numbers of peripheral and
thymic Treg (182). Moreover, it has been shown that EEN supplemented with a multifiber
mix prompted an expansion of mucosal CD41 Foxp31 Tregs along with an increase in
concentrations of total SCFAs, i.e., acetate, propionate, and butyrate, in colitis-susceptible
mice (IL-102/2) (183). In addition, fiber supplementation reduced disease pathology and
restored barrier function in IL-102/2 mice (183). In contrast, mice on a high-fat diet exhib-
ited reduced thymocyte counts and increased apoptosis of developing T cell populations
(184). Butyrate can also activate Treg function. By acting on Treg, microbiome-derived
butyrate reduces levels of proinflammatory cytokines, including TNF-a, interleukin 6 (IL-6),
IL-1b , and MCP1/CCL2 (185–187). Moreover, microbe-derived butyrate promotes mono-
cyte-to-macrophage differentiation via histone deacetylase inhibition. The macrophages
differentiated by the addition of butyrate showed an enhanced antimicrobial activity,
which in vivo increased colonization resistance to enteropathogens (188).

In vitro studies have demonstrated that other SCFAs, specifically acetate and propio-
nate, promote differentiation of naive CD41 T cells into Th17 cells with concomitant
induction of IL-17A, IL-17F, RORa, RORgt, T-bet, and IFN-g (189, 190). These SCFA effects
on T cells combine histone deacetylase inhibitor-dependent and -independent mecha-
nisms (189, 190).

In sum, increased evidence points at the pivotal role of diet-dependent changes of
the microbiome in the immune response leading to/preventing colitis.

FUTURE CONSIDERATIONS: CULTURALLY TAILORED DIETARY INTERVENTION FOR
UNDERREPRESENTED IBD PATIENTS

Historically, IBD is known to affect more people of Caucasian origin than other ethnic
groups; however, there is emerging evidence that the prevalence of IBD in Hispanics

Minireview Infection and Immunity

May 2022 Volume 90 Issue 5 10.1128/iai.00583-21 11

https://journals.asm.org/journal/iai
https://doi.org/10.1128/iai.00583-21


may be increasing, along with that in the general U.S. population (191, 192). Currently,
Hispanics and Latinx account for over 18% of the U.S. population (193, 194). Foreign-
born Hispanics in the United States are diagnosed at an older age and present more
cases of ulcerative colitis than U.S.-born Hispanics and non-Hispanic whites (195). A
meta-analysis also showed that Crohn’s disease behavior between non-Hispanic whites
and Hispanics is similar, but Hispanics had a tendency of less upper gastrointestinal
involvement (196). Growing evidence demonstrates that Hispanics change their diet
upon immigration to the United States, reporting low consumption of total vegetables,
legumes, whole grains, and sea plant protein (197). Similarly, Asians, the fastest-growing
racial group in the United States (194), have been increasingly diagnosed with IBD in the
United States and around the world (198, 199). Recent studies have demonstrated that
Asians exhibit different IBD clinical phenotypes, including ocular manifestations and
more fistulizing perianal Crohn’s disease, than their Caucasian counterparts (198, 199). A
comprehensive study confirmed that U.S. immigrants (of Asian origins) suffer an immedi-
ate loss of gut microbiome diversity along with a reduction of microbial capacity for fiber
degradation (200). Instead, the microbiome of Asian immigrants is characterized by an
enrichment of United States-associated bacterial strains displacing native strains along
with the genetic capabilities (200). Like Hispanics, Asian immigrants rapidly change their
diet upon arrival in the United States, which partially explains the shift in the microbiome
seen in this population (200).

The lack of inclusion of underrepresented ethnic minorities in IBD studies has ignited
efforts led by patient advocates and IBD specialists of South Asian descent, such as the
South Asian IBD Alliance (SAIAI) (201). The alliance aims to promote “the need for culturally
competent, evidence-based, patient-centric care via advocacy, education, and training” to
improve the care of South Asian patients with IBD across the globe (201).

Despite the increased incidence of IBD in these minority groups, research aimed at
these populations, including research on diet as therapy for IBD, is lacking. In addition,
ethnic minority groups frequently experience low-quality care at hospitals due to a
combination of factors, including lack of insurance, economic and language barriers,
and racial bias in pain assessment and treatment recommendations, to name a few
(202–204). Culturally tailored interventions can close the gap in the paucity of research
and help improve health care equity and quality for minority populations with IBD
(205–208).

Culturally tailored interventions are frequently implemented in the context of behav-
ioral health trials, with proven success to encourage healthy behaviors (including healthy
eating) and to address health disparities affecting minority groups with chronic diseases
(206, 209–211). A recent meta-analysis of 33 culturally tailored trials highlighted three
key aspects of successful interventions (212), as follows. (i) “Linguistic tailoring” aims to
address not only the language but also the literacy needs of the target population.
Moreover, linguistic tailoring should also consider the inclusion of bilingual staff to
remove language barriers between patients/participants, research staff, and health care
providers. (ii) “Sociocultural tailoring” aims to incorporate cultural values, unique experi-
ences, religious beliefs, and behaviors of the target group. (iii) “Constituent-involving
strategies” aims to build on a sense of collectivism and existing kinship networks by
including members of the target community in the research and intervention activities,
from actively participating in the study design to their involvement in delivering the
intervention (212, 213).

In the case of nutrition, culturally tailored interventions also need to be adapted to
the unique culinary preferences and access to foods of the target community. By doing
so, the interventions will be relevant to understudied minority groups with high IBD
prevalence and in need of attainable strategies to improve their quality of life.

Another challenge for culturally tailored dietary interventions is long-term compli-
ance. Examples from data about dietary recommendations in Australia (214) demon-
strate that it is not enough to solely suggest that people consume more beneficial
foods. Therefore, culturally tailored dietary interventions also need to provide patients
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with culinary training aimed at building skills and confidence in food preparation in
the kitchen (215).
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