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SUMMARY

Sepsis is a leading cause of death among inpatients at hospitals. However, with
early detection, death rate can drop substantially. In this study, we present the
top-performing algorithm for Sepsis II prediction in the DII National Data Science
Challenge using the Cerner Health Facts data involving more than 100,000 adult
patients. This large sample size allowed us to dissect the predictability by age-
groups, race, genders, and care settings and up to 192 hr of sepsis onset. This
large data collection also allowed us to conclude that the last six biometric re-
cords on average are informative to the prediction of sepsis. We identified bio-
markers that are common across the treatment time and novel biomarkers that
are uniquely presented for early prediction. The algorithms showed meaningful
signals days ahead of sepsis onset, supporting the potential of reducing death
rate by focusing on high-risk populations identified from heterogeneous data
integration.

INTRODUCTION

Sepsis is a life-threatening condition that occurs when the body’s response to an infection causes tissue

damage, organ failure, or death (Singer et al., 2016). In the U.S., nearly 1.7 million people develop sepsis

and 270,000 people die from it each year (CDC, 2020a). Additionally, over one-third of people who die in

U.S. hospitals have sepsis (CDC, 2020b). Internationally, an estimated 30million people develop sepsis and

6 million people die from sepsis each year (Kumar et al., 2019), and an estimated 4.2 million newborns and

children are affected (Demirer et al., 2019). Due to its high mortality rate, fast deterioration, and difficulty in

treatment, sepsis has become a major public health concern around the world. It accounts for more than

$23.66 billion (6.2%) of total US hospital costs in 2013 (Torio and Moore, 2016).

Death rate of sepsis can be significantly reduced by early diagnosis. It is estimated that for every hour sepsis

goes undiagnosed, the death rate increases between 4 and 8% (Kumar et al., 2006; Seymour et al., 2017).

Though the sepsis research community has been indefatigably working on establishing models predicting

sepsis onset, three important questions remain. First, how far in advance can sepsis be detected and what is

the corresponding accuracy? Second, howmuch data do we need to gather so that we can confidently pre-

dict a person will develop sepsis? Third, how does model performance differ among genders, races, age-

groups, and care settings? Furthermore, it is yet to be discovered whether novel biomarkers can be

revealed by the state-of-the-art machine learning techniques and whether a more rationally weighted strat-

egy could be used to predict sepsis.

In this study, we address the above challenges by taking advantage of a large, heterogeneous cohort of 100,000

patients collected from a various set of care settings. Among the patients, 31,377 patients were septic, and

others were matched non-septic individuals based on gender, age, admission type, and length of hospital

stay. Previous large-scale studies include Barton et al. that used 3,679 patients with sepsis up to 48 hr of septic

onset (Barton et al., 2019), Nemati et al. that used�5800 patients (Nemati et al., 2018), andMao et al. that used

4107 patients (Mao et al., 2018). There were other studies that used a less number of patients (hundreds) with

sepsis (Le et al., 2019; Schamoni et al., 2019). A recent community benchmark study used 2,921 patients with

sepsis for the training set (Reyna et al., 2019). The other large-scale study is Komorowski et al. (47,220 septic pa-

tients), and it focused on predicting treatment outcome instead of detecting sepsis (Komorowski et al., 2018).

Theother large study isDelahanty et al. (2019)which included54,661patientswith sepsis andexaminedgradient

1Department of
Computational Medicine and
Bioinformatics, Michigan
Medicine, University of
Michigan, Ann Arbor, MI,
USA

2Department of Internal
Medicine, Michigan
Medicine, University of
Michigan, Ann Arbor, MI,
USA

3UTHealth School of
Biomedical Informatics
(SBMI), University of Texas,
Houston, TX, USA

4Lead contact

*Correspondence:
gyuanfan@umich.edu

https://doi.org/10.1016/j.isci.
2021.102106

iScience 24, 102106, February 19, 2021 ª 2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:gyuanfan@umich.edu
https://doi.org/10.1016/j.isci.2021.102106
https://doi.org/10.1016/j.isci.2021.102106
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102106&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


boosted trees in predicting sepsis (Delahanty et al., 2019).Overall, the size of this study is satisfactory to evaluate

predictionmodeling of sepsis, which also allowed us to examine the performance and predictive features up to

hundreds of hours ahead of sepsis onset. The validity of this study is further supported by a community-wise

benchmark study, DII National Data Science Challenge, which used this data set to benchmark performance,

and the results presented here are based on the top-ranking algorithm. We dissected the model performance

by genders, races, age-groups, and, most importantly, care settings. Then, we determined biomarkers

(including early biomarkers) for predicting sepsis onset, as well as patterns related to forecasting time and seg-

ments of the data that are needed to build the model.

RESULTS

Non-linear model capturing changes over time to predict sepsis

The data were obtained from the DII National Data Science Challenge, which originally came from the

Cerner Health Facts database (Table S1). The total patient number is 106 million, and the hospitalization

population is 297 thousands. Among the hospitalized patients, we selected patients who were hospitalized

for at least 8 hr before sepsis onset, and consequently, anyone that was septic prior to admission was also

excluded. Seven thousand seven hundred thirty two septic examples were excluded due to insufficient

observation windows. Furthermore, we dropped patients who did not have medication, labs, or events re-

cords. Otherwise, missingness can be a confounding factor in studying predictive factors. The negative ex-

amples are sub-sampled by propensity score matched to the patients with sepsis based on age, gender,

race, admission type, and length of stay. Because the data we will take to predict sepsis are up to 4 hr

before sepsis onset, we also truncated the negative examples at their respective matched sepsis onset

time of patients with sepsis—4 hr (Figure 1). According to the matched pairs, we truncated the vital data

with the same length from admission to sepsis onset (and later to 4 hr, 5 hr, 6 hr, etc ahead of sepsis onset

time). Otherwise, the length of hospital stay will bias the analytic results. This step allows a reasonable num-

ber of examples for training, as well as a matched population. The selected cases include a mixture of care

settings (17,870 urgent care cases, 1,089 from trauma centers, 63,769 from emergency care centers, 20,888

from elective treatment, and 2,675 unknowns). Among them, 31,377 patients were septic.

Other than typical sepsis diagnosis criteria, the data also required the inclusion of patients (septic or non-

septic) to be those that must have a minimum of eight hours of hospitalization records. The rationale

behind the choice of eight hours is that we attempt to construct a model that can be used in clinical settings

to predict sepsis ahead of its onset. Features that are available for constructing models can be categorized

into two types: demographic data including gender, race, admission type, admission source, care settings,

and age-group (Table S1, Figure 1), and longitudinal data including event time and different types of bio-

metrics, such as albumin, alkaline phosphatase, heart rate, blood pressure (Table S1, Figure 1). Outcome is

indicated by a binary label of 1 for septic or 0 for non-septic. This data set followed the Sepsis-II definition

(Gül et al., 2017; Obonyo et al., 2018; Patki, 2018) (see challenge webpage [https://sbmi.uth.edu/dii-

challenge/usecase.htm]:). SIRS (systemic inflammatory response syndrome) was defined as meeting the

2/4 criteria within G3 hr from the point the suspect infection (when the microbiology order was placed).

Based on discussion with the Cerner clinical and statistical consultants, concerns were raised regarding

retrospectively recalculating a Sepsis-III score or other scores without bias, due to inconsistency of old

data with the new definition that leaves many samples in the database unqualified. The clinical and statis-

tical consultant recommended that using Sepsis-II corresponding to the years of collection was more

appropriate. We acknowledge that this presents a limitation of this study, in which Sepsis-III was not

used. As the data of this long-spanning study were collected during the period of Sepsis-II, we focus on

Sepsis-II in this analysis.

We one-hot encoded categorical, demographic information into 43 discrete features (Figure 1, Tables S1 and

S2). For the longitudinal data, each time point, which we will term as ‘‘record’’ in the rest of this paper, is repre-

sented by a vector representing measurements of diverse biometrics (Figure 1). This results in 144 features for

each record. Although the data are produced at a resolution of 30min, many of the time points have no biomet-

ricmeasurement available (missing data).We startedwith a basemodel taking the last eight records, which were

recorded a median of 65 hr before sepsis onset—4 hr, ranging from 0 (in case of only one record) to 700 hr. This

gives us a total of 1195 features (144X8+43) for each patient. The features are listed in Table S3.

Apart from the above basic predictive features, we included the following clinically relevant features (Figures 1

and 2A, Table S2). First, we recorded the first available measurement for each feature, as well as their
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corresponding time of records relevant to sepsis onset. These features were included to approximate the base-

line biometric values since these values could be quite different for every patient. Second, we calculated the

slope of each biometric by dividing between the difference of the first and last available measurement by the

time difference. These features provide information of the changes over time. Third, the mean and standard de-

viation of non-missingentries are recordedas additional features. This set of additional features profile thewhole

time series of a patient. Fourth, using themean and standard deviation of each feature, we normalized observed

features and created a new set of features, of whichwe took the last eight records.When the training set and test

Figure 1. Overview of model construction for selecting patients, predicting sepsis onset, and feature importance

analysis

We removed the hospitalized patients without sufficient observation time and selected negative examples according to

matched age, gender, hospital stay time, and admission type. Data were truncated by the matched sepsis onset time—

4 hr. Input data can be categorized into two sets: demographics and time series records. All demographic features are

categorical, and thus we one-hot encoded them into multiple binary features. For time series data, the last eight points of

records were included in the baseline model. A variety of additional features including slope, mean, maximal and minimal

values for each feature, and first time observations were included as additional features. Diverse base learners were

compared for their classification performance. We further tested how much time ahead the model can predict sepsis and

the number of useful records for good model performance. Lastly, feature importance was analyzed using SHAP values

(the SHAP figure is only for illustration purposes, modified from [https://github.com/slundberg/shap]), and grouped by

time points and feature categories. See also Tables S1 and S2.
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set are drawn from the same population, the fourth set of features may not add additional value. We included

this set of features to account for batch effect and potentially improve the robustness of the model when deliv-

ered to new cohorts. Through five-fold cross-validation, we found the above features progressively improved the

model performance from area under the receiver operating characteristic curve (AUC) = 0.78178 to AUC =

0.84854 (specificity = 0.77 at 0.8 recall and specificity = 0.827 at 0.7 recall, Figure 2B, p < 1e-5). The partial

AUC above 0.8 recall (pAUC80) is 0.128, compared to a random baseline of 0.02 (Figures 2 and 3); the partial

AUC above 0.7 recall (pAUC70) is 0.181, compared to a random baseline of 0.045. The most useful additional

features are slope and baseline observations, reflecting the importance of capturing changes of biometrics in

predicting sepsis.

We further explored a range of base learners and compared their performance in learning information from

the above features (Figures 2C and 3A). Overall, we found LightGBM showed the best performance (AUC =

0.84854), followed by gradient boosting trees (0.81904, p < 1e-5) and random forest (0.80312). The other

base learners did not show as competitive performance as the above: linear regression (0.7779), Naive

Bayes (0.53812), quadratic discriminant analysis (0.58206). LightGBM further demonstrated advantage in

training speed (Figure S1). Thus, in the following analysis, we focused on the property of the LightGBM

models built with all features described above. Of note, none of the linear or posterior inference models

demonstrated satisfactory performance, which corroborates that the relationships between the features

are largely non-linear and thus simplistic cutoffs on biometrics to predict sepsis onset are not ideal. This

effect prompted us to further categorize and investigate the predictive features in later sections.

Figure 2. Post-processing of features can improve model performance.

(A) Illustration of primary features and additional features: missing values are removed from calculating the mean,

standard deviation, first available values, and time for each longitudinal feature.

(B) Performance improvement by adding derived features separately to the base model.

(C) Performance using different base learners on the features. In the boxplots in (B) and (C), center lines refer to median

performance, bounds of box refer to the first quartile and the third quartile of the data, whiskers refer to min and max of

the data (except outliers), and spheres refer to outliers which are defined as data points belowQ1 - 1.5IQR or beyondQ3 +

1.5IQR.

See also Figure S1, Table S2.
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Determination of how much time ahead and the number of observations is needed for sepsis

prediction in different clinical settings

One critical, unanswered question is how far in advance sepsis can be detected or whether we can prioritize

at-risk populations. This data set provides a valuable resource to examine this question for a large time

range. To determine this duration, we progressively cut the data toward the beginning of the records

from four hours from sepsis onset to 192 hr (8 days, Figure 4A), at which we still have a reasonable number

of patients with sepsis (2579 patients with sepsis and 8679 total patients, Figure S2). Certainly, for days of

records, we may no longer directly predict sepsis but more focus on prioritization of at-risk population. Of

note, the control examples are cut off correspondingly from the end by record hours. As expected, the

Figure 3. Evaluation by specificity and pAUC

Specificity and pAUC at 80% recall for different (A) base learners, (B) feature sets, (C) age-groups, (D) admission types, (E) gender, (F) race. See also Figure S8.
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Figure 4. Performance comparison in different time and population settings

(A) We first tested how many hours ahead we can predict sepsis onset by progressively cutting off data according to

record time.

(B) Model performance by cutting the records according to how many hours ahead of sepsis onset to be included. The

performance drops as we attempt to make predictions earlier, i.e., more hours ahead of sepsis.

(C) Illustration of selecting last n records for model input.

(D) Performance improves as more records ahead of sepsis were included.

(E) Model performance by patients from different admission types.

(F) Model performance by different age-groups.

(G) Model performance by different genders.

(H) Model performance by different races. In the boxplots in (B) to (H), center lines refer to median performance, bounds

of box refer to the first quartile and the third quartile of the data, whiskers refer to min and max of the data (except

outliers), and spheres refer to outliers which are defined as data points below Q1 - 1.5IQR or beyond Q3 + 1.5IQR.

See also Figures S2, S3, and S8.
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performance of the model drops as we include less proximate information of the records from 0.84854 (4 hr

ahead) to 0.70818 (192 hr ahead). At 12 hr ahead, the performance was 0.8078, at 24 hr ahead, the perfor-

mance was 0.78836, and at 48 hr ahead, the performance was 0.77628 (Figure 4B). These performances indi-

cate that meaningful models can be established for identifying sepsis at least 1-2 days ahead of onset.

We next examined the minimal number of longitudinal records that are needed to predict sepsis well. The

rationale behind this analysis is to infer the amount of information we lost if we limit our view to the number

of records we look at, as clinicians might focus on the 1-2 most recent records. We thus started with taking

one, two, three, and progressively increasing the number of biometric records we include in themodel (Fig-

ure 4C). We found that until the six records, the model still makes meaningful additions in performance. We

focused on examining themodels without additional features so that the effect of derived features from the

entire time course will not affect this evaluation. Using the last record only, the model had an average AUC

of 0.73382; using the last two records, the average AUC was 0.74764 (p < 1e-5, compared to using the last

one); using the last three records, the average AUC was 0.75974 (p = 1e-5 compared to using the last two);

using the last four records, the average AUC was 0.76654 (p = 0.0001, compared to using the last three);

using the last five records, the average AUC was 0.7707 (p = 0.0281, compared to using the last four);

and using the last six records, the average AUC was 0.77964 (p < 1e-5, compared to using the last five),

and using the last seven records, the average AUC was 0.77762, which is slightly worse than last six records

(p = 0.1797, Figure 3D). Certainly, all these are significantly worse (p < 1e-5) than taking into account addi-

tional features (AUC: 0.84854), which capture the dynamics and overall profiles of patients.

Sepsis prediction model performance is robust across care settings, age-groups, genders,

and races

Previous meta-analysis has shown that diagnostic tests for sepsis gathered from different admission types

and care settings are drastically different in their accuracy, ranging 0.68–0.99 in ICUs, 0.96–0.98 in hospitals,

and 0.87–0.97 in emergency departments (Fleuren et al., 2020). It is therefore natural to hypothesize that

prediction models may also differ in their accuracy by the data collection source. We thus separated the

test set by the data source and evaluated the performance by admission types. Records resulted from elec-

tive procedures showed the best performance of AUC = 0.8528 (specificity = 0.780 at 0.8 recall, pAUC80 =

0.132), followed by urgent care (AUC = 0.849, specificity = 0.771 at 0.8 recall, pAUC80 = 0.129) and emer-

gency admission (AUC = 0.8473, specificity = 0.754 at 0.8 recall, pAUC80 = 0.127); records from trauma cen-

ter (AUC = 0.8343, pAUC80 = 0.129) showed slightly weaker performance (Figures 3D, 4E, and S8)

Wewenton toevaluate theperformance separatedbydifferent age-groupsandoverall foundminimaldifference.

Performance is lower for the youngagegroup,possiblydue tosmaller sample size,<20 (AUC=0.833, specificity=

0.731 at 0.8 recall, pAUC80= 0.124), 20�30 (AUC=0.836, specificity = 0.749 at 0.8 recall, pAUC80= 0.119), 30�40

(AUC=0.840, specificity= 0.752 at 0.8 recall, pAUC80=0.124) andgenerally performance increasesas thepatient

populationgets older, 40�50 (AUC=0.847, specificity=0.780at 0.8 recall, pAUC80=0.123), 50�60 (AUC=0.849,

specificity = 0.763 at 0.8 recall, pAUC80 = 0.129), and 60�70 (AUC = 0.844, specificity = 0.762 at 0.8 recall,

pAUC80 = 0.126), 70�80 (0.847, specificity = 0.777 at 0.8 recall, pAUC80 = 0.128), >80 (0.851, specificity = 0.776

at 0.8 recall, pAUC80 = 0.131) (Figures 4F, 3C, and S8). There was no difference between females (AUC =

0.850, specificity = 0.776 at 0.8 recall, pAUC80 = 0.128) and males (AUC = 0.846, p = 0.0506, specificity = 0.764

at 0.8 recall, pAUC80 = 0.127) (Figures 4G, 3E, and S8). The model performs slightly worse for Asian (AUC =

0.836, 2% of total population, p = 0.0263 and p = 0.1129, respectively, specificity = 0.755 at 0.8 recall,

pAUC80 = 0.117) than African American (AUC = 0.852, specificity = 0.788 at 0.8 recall, pAUC80 = 0.130, 18% of

total population) andCaucasians (0.844, specificity = 0.763 at 0.8 recall, pAUC80 = 0.127, 73%of total population,

), possibly related to a much smaller population size for Asian (Figures 4H, 3F, and S8).

Game theory-based feature analysis reveals important players in predicting sepsis onset

The above described model integrates discrete demographic and clinical features. This allows us to inves-

tigate the important factors predicting sepsis. A technical challenge in finding independent contribution is

addressed by a recent advance in game theory application: an improved SHapley Additive exPlanation

(SHAP) analysis, which substantially improved the speed of calculation and made the Shapley values

feasible to obtain for large-scale feature analysis (Lundberg et al., 2018; Shapley, 1988). Mimicking the

process of finding out the contribution of players in a football game, the SHAP analysis assigns the inde-

pendent contribution of each of the features considering the existence of other features. This feature

contribution analysis can be carried out for the prediction of an individual patient (Figure S3 for examples)
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or summarized for each feature. Compared to direct correlation analysis, SHAP analysis is more capable of

addressing confounding features as a consequence of shared patterns with another important feature.

We implemented SHAP analysis with LightGBM and identified the most important features for predicting

sepsis. The top features are the most recent records of heart rate and respiration rate, followed by temper-

ature and end-tidal CO2, i.e.,parameters related to cardiovascular and respiratory functions (Figures 5A and

S4, Table S3). This is not a circulation in feature analysis, as we are restricting the data input far before the

actual sepsis diagnosis; especially, as will be shown later, these factors remain to be important when we are

looking aheadmuch time. This indicates that themodel is capable of capturing and integrating early signs of

sepsis before a diagnosis using the SIRS criteria can bemade. Being in the coronary care unit was identified

as an important risk factor among the demographic information (Figures 5B, S4, and S5, Table S3).

Because SHAP values are directly additive, we can combine the features in several ways to either eliminate the

time factor in featureanalysis. Specifically,wecombined theSHAPvaluesof longitudinaldataby the typeofmea-

surement (TableS4, FigureS6). The top featuresareagroup that related toheart rate (HR_monitored (4.4e-3),HR

(2.9e-3), HR_Apical (9.4e-4), peripheral pulse (2.3e-4), pulse (1.7e-4)), a group related to respiration function

(respiration rate (2.7e-3), end-tidal CO2 (2.8e-4), oxygen saturation/SPO2 (2.2e-4), partial pressure of CO2/

PCO2 (1.4e-4), partial pressure of oxygen/PaO2 (1.1e-4), tidal volume (1.3e-4)), a group related to body temper-

ature (temperature (6.6e-4), oral temperature (3.6e-4)), important biometrics (white blood cell (2.0e-4), Braden

scale (1.9e-4),Glasgowcomascore (1.7e-4)) (Figure 5C). Again, themajority of theparameters are closely related

to respiratory function and heart rate and lastly body temperature, which by itself is a sepsis diagnosis criterion.

Wenext combined the absolute shap values of longitudinal data by theproximity to sepsis onset—4hr, in order

to study the relative contribution of all features related to a specific record.As expected, themost recent record

ismostpredictiveof sepsis, showinganaverageSHAPvalueof3.6e-4, and itdeclinesgradually as the recordsgo

Figure 5. SHAP analysis identifies important features for predicting sepsis onset

(A) Top 10 features for predicting sepsis onset.

(B) Ten most important demographic features for predicting sepsis onset.

(C) Ten most important biometrics features for predicting sepsis onset.

(D) Difference in the importance of records collected at different proximity to sepsis onset—4 hr. The smaller the record number, the closer the record is to

sepsis onset.

See also Figures S4 and S5, Tables S3 and S4.
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further away from the onset of sepsis (Figure 5D). Records from fourth to eighth records ahead of sepsis are of

almost the same SHAP values, indicating that these biometrics represent certain baseline characteristics that

put thepatients at risk. Yet, at least the second (1.7e-4) and third (1.1e-4) records shouldbe seriously considered,

as theSHAP values are at a similar scale for themost recent records. This result is consistentwith theprogressive

cut experiment we carried out in the previous sections and supports that longitudinal analysis of biometric data

is necessary to establish accurate models for sepsis prediction.

Identification of predictive features for sepsis onset depending on how much time ahead we

make the predictions

To investigate whether the predictive features will change as we change the numbers of hours ahead of

sepsis as the input data, we separately calculated the feature importance at each time point from 4 hrs

ahead of sepsis onset till 192 hrs ahead of sepsis onset. At each hour cutoff, we carried out 5-fold cross-vali-

dation and correspondingly generated five sets of SHAP values for each feature. We then took the average

of the five SHAP values as the importance for each feature. The SHAP values are additive, while the contri-

butions of standard deviation, mean, slope, and others may be either negative or positive (depending on

the correlation direction). Thus, we next mapped the processed features back to their original features and

took the sum of the absolute value for each group to represent the original feature importance. For

example, the time series, the mean, the standard deviation, the normalized values of HR will be grouped

into one single feature importance for HR. This process was repeated for the models of 4 hrs ahead till

192 hrs ahead (Figure 6A). For each time point cutoff, we took the top 5 features, and this gave us a total

of 7 features across all time points: HR, monitored HR (HR_Monitored), intensive care setting, respiration

rate, hematocrit (HCT), Caucasian, and diastolic blood pressure (DBP).

We found that although the majority of these top features appear to be important throughout the time

course (e.g., HR, respiration rate), others showed dynamics in their importance in predicting sepsis. For

example, HCT only becomes an important predictive feature when the time cutoff is above 136 hr. DBP

has a stable increase in its importance as we require further time ahead to make predictions. The impor-

tance of intensive care setting quickly drops as the time cutoff approaches sepsis onset (around 48 hr)

(Figure 6B). These observations support dynamic changes of predictive features for sepsis onset, from

predicting which population is at risk to which individuals’ biometrics reflect potential sepsis onset. As in

clinical settings, it is impossible to know ahead of time how far away a patient is to sepsis onset; this result

suggests the importance to consider both early features and late features mentioned above in analysis.

DISCUSSION

In this study, we presented the top-performing algorithm in the DII National Data Science Challenge for

sepsis prediction, involving the largest sepsis detection study to date (with over 30,000 patients with

sepsis). This data set gave us the unique opportunity to dissect the model performance, depending on

a variety of care settings, genders, races, and age-group factors. We found being Asian is the only factor

that negatively affects model performance, while performances of different care settings do not differ

Figure 6. Change of feature importance with numbers of hours ahead of sepsis onset

(A) Calculation of grouped feature importance for each hour cutoff. Different colors of SHAP values represent different

groups of features.

(B) Dynamics of feature importance according to the numbers of hours ahead of sepsis onset.
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statistically. This result is rather surprising considering that physicians’ diagnosis for sepsis was reported to

differ in accuracy in different care settings (Fleuren et al., 2020).

Furthermore, this large-scale data collection allowed us to estimate the number of useful records to make

reliable predictions. We found the records are useful until the six records prior to sepsis onset—4 hr. This

has important clinical decision implications, highlighting the importance to examine longitudinal changes

of a patient in determining his/her risk in developing sepsis. Indeed, we found that the slope of biometrics

was one of the top contributing processed features. Additionally, we step wisely estimated the predictabil-

ity by time ahead of onset by progressively removing the records prior to onset and thus provided a refer-

ence to confidence of the predictions. We found even back to 24-48 hr ahead, the performance of the

model remains strong, and up to eight days, we can still prioritize at-risk population, which supports the

notion of early detection of sepsis to reduce death rate.

Respiratory function, HR, and body temperature as expected are the three major features for early sepsis

prediction throughout the time course, even much earlier than a formal sepsis diagnosis. Previous studies

have pointed to the importance of HR variability for prioritizing patients at high risk of sepsis (Aboab et al.,

2008; de Castilho et al., 2018; Tang et al., 2009). We found that a fast HR is a strong indicator of sepsis. Simi-

larly, fast respiration rate is indicative of sepsis onset. For very early time points, variation of HCT appeared

as a strong, novel biomarker for sepsis onset prediction.

We would like to point out several limitations and future directions of the study. First, one potential limitation is

the usage of Sepsis II criteria in this study. The primary reasons we chose Sepsis II instead of Sepsis III are the

relative amount of data available and the clinical usage of this model. Sepsis III requires organ failure (SOFA cri-

terion). Validation of the performance using similarly collected Sepsis III data is an important next step. Second,

although the data set is large and the data source is heterogeneous in this study, it will be informative to further

validate the models using independent cohorts. Third, while this study focused on cross-validation evaluation,

new insights might be brought in if perspective data can be collected and used for validation.

Previous studies have reported a range of performance, which are reexamined in this study. First, there is a

strong variation in reported accuracies, ranging from �0.65 to 0.9 (e.g., reported results in (Barton et al.,

2019; Gwadry-Sridhar et al., 2011; Liu et al., 2019; Mao et al., 2018; Michelson et al., 2019; Nemati et al.,

2018; Taylor et al., 2016)). It is unclear if these differences come fromalgorithms, populations, the time frame

of the data, or care settings. Using the top-performing algorithm in a benchmark study, we dissected each of

the above factors using a very large data set and now give an estimation of the expected performance by

care settings, genders, age-groups, races, numbers of hours ahead, and number of records. We conclude

that the time frame of the data appears as a major influential factor, while predictive features may change

along the time course. This information can serve as an important reference for future studies and

applications.

Limitations of studies

We would like to point out several limitations and future directions of the study. First, one potential limi-

tation is the usage of Sepsis II criteria in this study. The primary reasons we chose Sepsis II instead of Sepsis

III are the relative amount of data available and the clinical usage of this model. Sepsis III requires organ

failure (SOFA criterion). Validation of the performance using similarly collected Sepsis III data is an impor-

tant next step. Second, although the data set is large and the data source is heterogeneous in this study, it

will be informative to further validate the models using independent cohorts. Third, while this study

focused on cross-validation evaluation, new insights might be brought in if perspective data can be

collected and used for validation.

Resource Availability

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Yuanfang Guan (gyuanfan@umich.edu).

Material availability

This study did not generate new unique reagents.
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Data and code availability

Code is available at [https://github.com/GuanLab/sepsis].

Methods

All methods can be found in the accompanying Transparent methods supplemental file.
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Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102106.
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Methods 

Dataset source 

Cerner Health Facts® is a database that comprises de-identified EHR data from over 600 participating 
Cerner client hospitals and clinics in the United States and represents over 106 million unique patients 
(“Cerner,” n.d.). With this longitudinal, relational database—reflecting data from 2000-2016—researchers 
can analyze detailed sets of de-identified clinical data at the patient level. Types of data available include 
demographics, encounters, diagnoses, procedures, lab results, medication orders, medication 
administration, vital signs, microbiology, surgical cases, other clinical observations, and health systems 
attributes (see Table S1 for demographics, and Table S3 for complete list of biometrics included in this 
study). 
 

Machine learning implementation and parameters 

As the feature extraction methods have been laid out in the result session, here we will focus on 
presenting the parameters used in each of the base learners. The final model used LightGBM as a base 
learner, ‘gbdt’ as boosting type, ‘regression’ as objectives, and number of leaves equal to 150, a learning 
rate of 0.05, and regulatory alpha as 2. We run the models for 1000 boosting rounds. The above parameters 
were identified through an intensive grid search during cross-validation. Minor adjustment of these 
parameters does not affect the performance substantially.  

The random forest model used a maximal depth of 10, and a total of 200 estimators. The gradient 
boosting model used a learning rate of 0.1 and a total of 200 estimators. All other base learners used default 
parameters and were implemented using the scikit-learn package (Garreta and Moncecchi, 2013).  
 

Cross-validation and performance measurement 

We carried out five-fold cross-validation to evaluate and compare the performance of diverse models. 
Briefly, the dataset was randomly separated into five parts. In each iteration, four of the five parts are used 
as training examples, and the other part is used as testing examples. The performance was evaluated using 
the area under the receiver operating characteristic (AUROC). 
 

Challenge final model assembly 

In the result session, we focused on presenting the best-performing single model in predicting sepsis. 
Additionally, we identified a set of models that perform similarly to the best single model, but complement 
the single model and improve its performance if these models are assembled together. These models are 
often small variations of the original model.  

The first variation is filling in the missing values as -5000 (compared to the original model where the 
NaNs are not filled and ignored in determining the tree-splitting), and removing the slope features. The 
second variation is removing the slope features. The next few variations are the above models running on 
data imputed with missing time points. For example, if between 0.5 and 1.5 hours, the 0.5 hour is missing, 
we impute this value as additional features. In supplementary Figure S7, we presented the performance of 
each of the models and their assembled performance.  

https://paperpile.com/c/3tz1Bt/EJoDA
https://paperpile.com/c/3tz1Bt/EJoDA
https://paperpile.com/c/3tz1Bt/z9kXA


 

 

Evaluation metrics and statistical significance tests 

We used three metrics in this paper to evaluate the performance: Area under the Receiver Operating 
Characteristics curve (AUC) as a global measurement, and specificity at 70% and 80% recall and partial 
AUC above 70% and 80% recall as evaluations of the predictive values of the models.  

AUC is calculated using all individuals by taking various thresholds of false positive rate (FPR, or 1-
specificity) and generating corresponding true positive rate (TPR, or recall). Recalls come from TPTP+FN, 
and specificity come from TNTN+FP. By connecting the points created at different thresholds, we draw a 
curve, which is the Receiver Operating Characteristics curve, and then we calculated the area under this 
curve as the AUC values reported in this study. Additionally, we reported specificity at 80% recall (in the 
paper) and specificity at 70% recall (in the supplementary materials). 

Precisions come from TPTP+FP. 

We presented and compared the AUC values of two methods in multiple places of this paper, or those 
of two sets of feature input, or those of two populations. In order to estimate the statistical significance of 
the differences in AUCs for each pair, we used a non-parametric approach to estimate the significance level. 
Specifically, we bootstrapped the examples for 10,000 times, and computed the number of times (n) of 
approach A out-performing approach B, if B is overall the better-performing one, and used p = n/10000 as 
the significance values. We used p = 0.05 as the significance cutoff throughout the paper.  

In order to further assess the ability of the model to exclude negative examples while picking up positive 
ones, we also calculated partial AUC, which is calculated by taking the area under the curve above a 
specified level of recall. In this study, we used partial AUC at 80% recall (pAUC80) in the paper and partial 
AUC at 70% recall (pAUC70) as additional information in the supplementary materials. 
 
  



 

Figure S1. Training time of different models.  Related to Figure 2. 
 

  



 

Figure S2. Numbers of total patients and sepsis patients at various hours ahead of sepsis onset. For non-
septic patients, we truncated the hours to the same according to their specific propensity score-matched 
sepsis examples. Related to Figure 4. 
 

 
  



 

Figure S3. Example single patient feature contribution plots. Related to Figure 4. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
  



 

Figure S4. Top 50 most important features for sepsis onset prediction, separated by the occurrence of the 
record. HR_monitored was labelled as monitored heart rate in the Cerner data, and HR was labelled as the 
apical heart rate in the Cerner data. Related to Figure 5. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

Figure S5. SHAP importance of demographic features for sepsis onset prediction. Related to Figure 5. 
 

 
  



 

Figure S6. Top 50 most important biometrics features for sepsis onset prediction. For each type of 
feature, we combined the SHAP values across records in the time series data. Related to Figure 5. 
 

 
  



 

Figure S7. Imputation methods and their effect on model performance. Related to Figure 2. 

 

 



 

Figure S8. Specificity and pAUC at 70% recall for different demographic groups and admission types.  
Related to Figure 3-4. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S1. Demographic summary of Cerner data used in this study. Related to Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S2. Model feature engineering methods. Related to Figure 1-2. 

Aspects of Feature 
Engineering 

Specific Method Detailed Description/Explanation 

categorical data one-hot binary 
encoding 

Transformed into a set where the number of features is the 
number of total categories 

numbered 
categories 

Some base learners (LightGBM) have a default method for 
categorical data. For each feature, the categories were 
translated as different numbers and the categorical features 
were specified. 

Missing data 

 

(*can apply 
different methods 
for missing data 
point and missing 
event time) 

0 use 0 

Large negative use an arbitrary negative number with large absolute value (e.g. 
-2048, -5000) 

NaN use default indication of missing value (numpy.nan). 

Interpolation use predicted/interpolated value (e.g. average) 

Features Last n events Extract the last n records before sepsis onset. This ensures 
rawest information fed into the training step. 

Last t time Containing empty time when data is not available. This 
emphasizes data availability. 

First available 
record 

Recording the first available data of each feature, as well as the 
time of the first occurrence 

Slope  Calculate the difference between the last available data and 
divide by the time difference. 

Fractional max-
pooling 

Split the timeline into n parts (time points are rounded to 0.5), 
and extract the maxpool of each feature for each part. This takes 
in the full-time length. 

Basic stats Mean, standard deviation of the patient data. 

Count of 
missing 

Count the number of missing values of each column. 

 

 



 

Table S3. SHAP values for all features. Related to Figure 5.  

 
  



 

Table S4. SHAP values grouped by longitudinal parameters. Related to Figure 5.  
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