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Now that the human genome is completed, the characterization of the proteins encoded by the sequence remains a challenging
task. The study of the complete protein complement of the genome, the “proteome,” referred to as proteomics, will be essential if
new therapeutic drugs and new disease biomarkers for early diagnosis are to be developed. Research efforts are already underway to
develop the technology necessary to compare the specific protein profiles of diseased versus nondiseased states. These technologies
provide a wealth of information and rapidly generate large quantities of data. Processing the large amounts of data will lead to
useful predictive mathematical descriptions of biological systems which will permit rapid identification of novel therapeutic targets
and identification of metabolic disorders. Here, we present an overview of the current status and future research approaches in
defining the cancer cell’s proteome in combination with different bioinformatics and computational biology tools toward a better
understanding of health and disease.

TECHNOLOGIES FOR PROTEOMICS

2D gel electrophoresis

Two-dimensional gel electrophoresis (2DE) is by far
the most widely used tool in proteomics approaches for
more than 25 years [1]. This technique involves the sep-
aration of complex mixtures of proteins first on the basis
of isoelectric point (pI) using isoelectric focusing (IEF)
and then in a second dimension based on molecular mass.
The proteins are separated by migration in a polyacry-
lamide gel. By use of different gel staining techniques
such as silver staining [2], Coomassie blue stain, fluores-
cent dyes [3], or radiolabels, few thousands proteins can
be visualized on a single gel. Fluorescent dyes are being
developed to overcome some of the drawbacks of silver
staining in making the protein samples more amenable
to mass spectrometry [4, 5]. Stained gels can then be
scanned at different resolutions with laser densitometers,
fluorescent imager, or other device. The data can be ana-
lyzed with software such as PDQuest by Bio-Rad Labora-
tories (Hercules, Calif, USA) [6], Melanie 3 by GeneBio
(Geneva, Switzerland), Imagemaster 2D Elite by Amer-
sham Biosciences, and DeCyder 2D Analysis by Amer-
sham Biosciences (Buckinghamshire, UK) [7]. Ratio anal-
ysis is used to detect quantitative changes in proteins be-
tween two samples. 2DE is currently being adapted to
high-throughput platforms [8]. For setting up a high-
throughput environment for proteome analysis, it is es-
sential that the 2D gel image analysis software supports

robust database tools for sorting images, as well as data
from spot analysis, quantification, and identification.

ProteinChips

While proteomics has become almost synonymous
with 2D gel electrophoresis, there is a variety of new meth-
ods for proteome analysis. Unique ionization techniques,
such as electrospray ionization and matrix-assisted laser
desorption-ionization (MALDI), have facilitated the char-
acterization of proteins by mass spectrometry (MS) [9,
10]. These techniques have enabled the transfer of the
proteins into the gas phase, making it conducive for their
analysis in the mass spectrometer. Typically, sequence-
specific proteases are used to break up the proteins into
peptides that are coprecipitated with a light-absorbing
matrix such as dihydroxy benzoic acid. The peptides are
then subjected to short pulses of ultraviolet radiation
under reduced pressure. Some of the peptides are ion-
ized and accelerated in an electric field and subsequently
turned back through an energy correction device [11].
Peptide mass is derived through a time-of-flight (TOF)
measurement of the elapsed time from acceleration-to-
field free drift or through a quadrupole detector. A pep-
tide mass map is generated with the sensitivity to detect
molecules at a few parts per million. Hence a spectrum
is generated with the molecular mass of individual pep-
tides, which are used to search databases to find match-
ing proteins. A minimum of three peptide molecular
weights is necessary to minimize false-positive matches.
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The principle behind peptide mass mapping is the match-
ing of experimentally generated peptides with those de-
termined for each entry in a sequence. The alternative
process of ionization, through the electrospray ioniza-
tion, involves dispersion of the sample through a cap-
illary device at high voltage [11]. The charged peptides
pass through a mass spectrometer under reduced pressure
and are separated according to their mass-to-charge ratios
through electric fields. After separation through 2DE, di-
gested peptide samples can be delivered to the mass spec-
trometer through a “nanoelectrospray” or directly from a
liquid chromatography column (liquid chromatography-
MS), allowing for real-time sequencing and identification
of proteins. Recent developments have led to the MALDI
quadrupole TOF instrument, which combines peptide
mapping with peptide sequencing approach [12, 13, 14].
An important feature of tandem MS (MS-MS) analy-
sis is the ability to accurately identify posttranslational
modifications, such as phosphorylation and glycosylation,
through the measurement of mass shifts.

Another MS-based proteinChip technology, surface-
enhanced laser desorption-ionization time of flight mass
spectrometry (SELDI-TOF-MS), has been successfully
used to detect several disease-associated proteins in com-
plex biological specimens, such as cell lysates, seminal
plasma, and serum [15, 16, 17]. Surface-enhanced laser
desorption-ionization (SELDI) is an affinity-based MS
method in which proteins are selectively adsorbed to a
chemically modified surface, and impurities are removed
by washing with buffer. The use of several different chro-
matographic arrays and wash conditions enables high-
speed, high-resolution chromatographic separations [14].

Other technologies

Arrays of peptides and proteins provide another bio-
chip strategy for parallel protein analysis. Protein assays
using ordered arrays have been explored through the de-
velopment of multipin synthesis [18]. Arrays of clones
from phage-display libraries can be probed with antigen-
coated filters for high-throughput antibody screening
[19]. Proteins covalently attached to glass slides through
aldehyde-containing silane reagents have been used to de-
tect protein-protein interactions, enzymatic targets, and
protein small molecule interactions [20]. Other meth-
ods of generating protein microarrays are by printing the
proteins (ie, purified proteins, recombinant proteins, and
crude mixtures) or antibodies using a robotic arrayer and
a coated microscope slide in an ordered array. Protein so-
lutions to be measured are labeled by covalent linkage of a
fluorescent dye to the amino groups on the proteins [21].
Protein arrays consisting of immobilized proteins from
pure populations of microdissected cells have been used
to identify and track cancer progression. Although pro-
tein arrays hold considerable promise for functional pro-
teomics and expression profiling for monitoring a disease
state, certain limitations need to be overcome. These in-
clude the development of high-throughput technologies

to express and purify proteins and the generation of large
sets of well-characterized antibodies. Generating protein
and antibody arrays is more costly and labor-intensive rel-
ative to DNA arrays. Nevertheless, the availability of large
antibody arrays would enhance the discovery of differen-
tial biomarkers in nondiseased and cancer tissue [22].

Tissue arrays have been developed for high-
throughput molecular profiling of tumor specimens
[23]. Arrays are generated by robotic punching out of
small cylinders (0.6 mm × 3–4 mm high) of tissue from
thousands of individual tumor specimens embedded in
paraffin to array them in a paraffin block. Tissue from
as many as 600 specimens can be represented in a single
“master” paraffin block. By use of serial sections of the
tissue array, tumors can be analyzed in parallel by im-
munohistochemistry, fluorescence in situ hybridization,
and RNA-RNA in situ hybridization. Tissue arrays have
applications in the simultaneous analysis of tumors from
many different patients at different stages of disease.
Disadvantages of this technique are that a single core is
not representative because of tumor heterogeneity and
uncertainty of antigen stability on long-term storage
of the array. Hoos et al [24] demonstrated that using
triplicate cores per tumor led to lower numbers of lost
cases and lower nonconcordance with typical full sections
relative to one or two cores per tumor. Camp et al [25]
found no antigenic loss after storage of an array for 3
months. Validation of tissue microarrays is currently on-
going in breast and prostate cancers and will undoubtedly
help in protein expression profiling [23, 25, 26]. A major
advantage of this technology is that expression profiles
can be correlated with outcomes from large cohorts in a
matter of few days.

PROTEOMICS IN CANCER RESEARCH

Cancer proteomics encompasses the identification
and quantitative analysis of differentially expressed pro-
teins relative to healthy tissue counterparts at different
stages of disease, from preneoplasia to neoplasia. Pro-
teomic technologies can also be used to identify mark-
ers for cancer diagnosis, to monitor disease progression,
and to identify therapeutic targets. Proteomics is valuable
in the discovery of biomarkers because the proteome re-
flects both the intrinsic genetic program of the cell and the
impact of its immediate environment. Protein expression
and function are subject to modulation through tran-
scription as well as through posttranscriptional and post-
translational events. More than one RNA can result from
one gene through a process of differential splicing. Addi-
tionally, there are more than 200 posttranslation modifi-
cations that proteins could undergo, that affect function,
protein-protein and nuclide-protein interaction, stability,
targeting, half-life, and so on [27], all contributing to a
potentially large number of protein products from one
gene. At the protein level, distinct changes occur during
the transformation of a healthy cell into a neoplastic cell,
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ranging from altered expression, differential protein mod-
ification, and changes in specific activity, to aberrant lo-
calization, all of which may affect cellular function. Iden-
tifying and understanding these changes are the underly-
ing themes in cancer proteomics. The deliverables include
identification of biomarkers that have utility both for early
detection and for determining of therapy.

Although proteomics traditionally dealt with quanti-
tative analysis of protein expression, more recently, pro-
teomics has been viewed to encompass the structural
analysis of proteins [28]. Quantitative proteomics strives
to investigate the changes in protein expression in differ-
ent states, such as in healthy and diseased tissue or at dif-
ferent stages of the disease. This enables the identifica-
tion of state- and stage-specific proteins. Structural pro-
teomics attempts to uncover the structure of proteins and
to unravel and map protein-protein interactions.

MS has been helpful in the analysis of proteins from
cancer tissues. Screening for the multiple forms of the
molecular chaperone 14-3-3 protein in healthy breast ep-
ithelial cells and breast carcinomas yielded a potential
marker for the noncancerous cells [29]. The 14-3-3 form
was observed to be strongly down regulated in primary
breast carcinomas and breast cancer cell lines relative to
healthy breast epithelial cells. This finding, in the light of
the evidence that the gene for 14-3-3 was found silenced in
breast cancer cells [30], implicates this protein as a tumor
suppressor. Using a MALDI-MS system, Bergman et al [6]
detected increases in the expressions of nuclear matrix, re-
dox, and cytoskeletal proteins in breast carcinoma relative
to benign tumors. Fibroadenoma exhibited an increase in
the oncogene product DJ-1. Retinoic acid-binding pro-
tein, carbohydrate-binding protein, and certain lipopro-
teins were increased in ovarian carcinoma, whereas
cathepsin D was increased in lung adenocarcinoma.

Imaging MS is a new technology for direct mapping
and imaging of biomolecules present in tissue sections.
For this system, frozen tissue sections or individual cells
are mounted on a metal plate, coated with ultraviolet-
absorbing matrix, and placed in the MS. With the use
of an optical scanning raster over the tissue specimen
and measurement of the peak intensities over thousands
of spots, MS images are generated at specific mass val-
ues [31]. Stoeckli et al [32] used imaging MS to exam-
ine protein expression in sections of human glioblastoma
and found increased expression of several proteins in the
proliferating area compared with healthy tissue. Liquid
chromatography—MS and tandem MS (MS-MS) were
used to identify thymosin ß.4, a 4964-d protein found
only in the outer proliferating zone of the tumor [32].
Imaging MS shows potential for several applications, in-
cluding biomarker discovery, biomarker tissue localiza-
tion, understanding of the molecular complexities of tu-
mor cells, and intraoperative assessment of surgical mar-
gins of tumors.

SELDI, originally described by Hutchens and Yip [33],
overcomes many of the problems associated with sample

preparations inherent with MALDI-MS. The underlying
principle in SELDI is surface-enhanced affinity capture
through the use of specific probe surfaces or chips. This
protein biochip is the counterpart of the array technol-
ogy in the genomic field and also forms the platform for
Ciphergen’s ProteinChip array SELDI MS system [14]. A
2DE analysis separation is not necessary for SELDI anal-
ysis because it can bind protein molecules on the basis of
its defined chip surfaces. Chips with broad binding prop-
erties, including immobilized metal affinity capture, and
with biochemically characterized surfaces, such as anti-
bodies and receptors, form the core of SELDI. This MS
technology enables both biomarker discovery and pro-
tein profiling directly from the sample source without
preprocessing. Sample volumes can be scaled down to
as low as 0.5 µL, an advantage in cases in which sam-
ple volume is limiting. Once captured on the SELDI
protein biochip array, proteins are detected through the
ionization-desorption TOF-MS process. A retentate (pro-
teins retained on the chip) map is generated in which the
individual proteins are displayed as separate peaks on the
basis of their mass and charge (m/z). Wright et al [15]
demonstrated the utility of the ProteinChip SELDI-MS in
identifying known markers of prostate cancer and in dis-
covering potential markers either over- or underexpressed
in prostate cancer cells and body fluids. SELDI analyses
of cell lysates prepared from pure populations from mi-
crodissected surgical tissue specimens revealed differen-
tially expressed proteins in the cancer cell lysate when
compared with healthy cell lysates and with benign pro-
static hyperplasia (BPH) and prostate intraepithelial neo-
plasia cell lysates [15]. SELDI is a method that provides
protein profiles or patterns in a short period of time from
a small starting sample, suggesting that molecular finger-
prints may provide insights into changing protein expres-
sion from healthy to benign to premalignant to malignant
lesions. This appears to be the case because distinct SELDI
protein profiles for each cell and cancer type evaluated,
including prostate, lung, ovarian, and breast cancer, have
been described recently [34, 35]. After prefractionation,
a SELDI profile of 30 dysregulated proteins was observed
in seminal plasma from prostate cancer patients. One of
the seminal plasma proteins detected by comparing the
prostate cancer profiles with a BPH profile was identi-
fied as seminal basic protein, a proteolytic product of se-
menogelin I [14].

BIOINFORMATICS TOOLS

Bioinformatics tools are needed at all levels of pro-
teomic analysis. The main databases serving as the tar-
gets for MS data searches are the expressed sequence
tag and the protein sequence databases, which contain
protein sequence information translated from DNA se-
quence data [11]. It is thought that virtually any pro-
tein that can be detected on a 2D gel can be identi-
fied through the expressed sequence tag database, which
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contains over 2 million cDNA sequences [36]. A modifi-
cation of sequence-tag algorithms has been shown to lo-
cate peptides given the fact that the expressed sequence
tags cover only a partial sequence of the protein [37].

Data mining for proteomics

A number of algorithms have been proposed for
genomes-scale analysis of patterns of gene expression, in-
cluding expressed sequence tags (ESTs) (simple expedi-
ent of counting), UniGene for gene indexes [38]. Going
beyond expression data, efforts in proteomics can be ex-
pressed to fill in a more complete picture of posttranscrip-
tional events and the overall protein content of cells. To
address the large-in-scale data, this review addresses pri-
marily those advances in recent years.

Concurrent to the development of the genome se-
quences for many organisms, MS has become a valuable
technique for the rapid identification of proteins and is
now a standard more sensitive and much faster alternative
to the more traditional approaches to sequencing such as
Edman degradation.

Due to the large array of data that is generated from
a single analysis, it is essential to implement the use
of algorithms that can detect expression patterns from
such large volumes of data correlating to a given biologi-
cal/pathological phenotype from multiple samples. It en-
ables the identification of validated biomarkers correlat-
ing strongly to disease progression. This would not only
classify the cancerous and noncancerous tissues accord-
ing to their molecular profile but could also focus atten-
tion upon a relatively small number of molecules that
might warrant further biochemical/molecular character-
ization to assess their suitability as potential therapeutic
targets. Data screened is usually of large size and has about
100 000–120 000 variables.

Biologists are not prepared to handle the huge data
produced by the proteins or DNA microarray projects
or to use the “eye” to visualize and interpret the output,
therefore to detect pattern, visualize, classify, and store the
data, more sophisticated tools are needed. Bioinformatics
has proved to be a powerful tool in the effective genera-
tion of primarily predictive proteomic data from analysis
of DNA sequences. Proteomics studies applications and
techniques, includes profiling expression patterns in re-
sponse to various variables and conditions and time cor-
relation analysis of protein expression.

Intelligent data mining facilities are essential if we are
to prevent important results from being lost in the mass of
information. The analysis of data can proceed with differ-
ent levels. One level of differential analysis where genes are
analyzed one by one independently of each other to detect
changes in expression across different conditions. This
is challenging due to the amount of noise involved and
low repetition characteristic of microarray experiments.
The next level of analysis involves visualizing and fea-
ture discovery. Basic statistical tools and statistical infer-
ences include cluster analysis, Bayesian modeling, classifi-

cation, and discrimination, neural networks, and graph-
ical models. The basic idea behind those approaches is
to visualize the correlations in the data to allow the data
to be examined for similarity and detection of impor-
tant expression patterns (principal component analysis)
to learn (classification, neural networks, support vector
machine), to predict (prediction, regression, regression
tree), to detect feature discovery, and to test hypotheses re-
garding the number of distinct clusters contained within
the data (hierarchical clustering, Bayesian clustering, k-
means, mixture model with Gibbs sampler or EM algo-
rithm).

These algorithms can quickly analyze gels to identify
how a series of gels are related, for example, confirming
separation of clusters into healthy (control), diseased, and
treatments clusters, or perhaps pointing to the existence
of a cluster which has not previously been considered,
which is a population of cells exhibiting drug resistance
[39, 40].

Principal component analysis

Principal component analysis (PCA) can be an effec-
tive method of identifying the most discriminating fea-
tures in a data set. This technique usually involves find-
ing two or three linear combinations of the original fea-
tures that best summarize the types of variation in the
data. If much of the variation is captured by these two or
three most significant principal components, class mem-
bership of many data points can be observed. One may
use the principal-component solution to the factor model
for extracting factors (components). This is accomplished
by the use of the principal-axis theorem, which says that
for a gene-by-gene (n× n) correlation matrix R, there ex-
ists a rotation matrix D and diagonal matrix Λ such that
DRDt = Λ. The principal form of R is given as

R(n×n) = DΛDt
(n×n)

=




d11 d12 · · · d1m

d21 d22 · · · d2m

...
... · · · ...

dn1 dn2 · · · dnm




×




λ1 0 · · · 0

0 λ2 · · · 0
...

... · · · ...

0 0 · · · λm







d11 d12 · · · d1m

d21 d22 · · · d2m

...
... · · · ...

dn1 dn2 · · · dnm


 ,

(1)

where columns of D and Dt are the eigenvectors and diag-
onal entries of Λ are the eigenvalues. Components whose
eigenvalues exceed unity, λj > 1, are extracted from Λ and
sorted such that λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 1. The “loading”
or correlation between genes and extracted components is
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represented by a matrix in the form

L(n×m) =




√
λ1d11

√
λ2d12 · · · √

λmd1m√
λ1d21

√
λ2d22 · · · √

λmd2m
...

... · · · ...√
λ1dn1

√
λ2dn2 · · · √

λmdnm


 , (2)

where rows represent genes and columns represent com-
ponents, and, for example,

√
λ1d11 is the loading (correla-

tion) between gene 1 and component 1. CLUSFAVOR al-
gorithm proposed by Leif [41] performs PCA along with
hierarchical clustering (see “Hierarchical clustering and
decision tree” section) with DNA microarray expression
data. CLUSFAVOR standardizes expression data and sorts
and performs hierarchical and PCA of arrays and genes.
Applying CLUSFAVOR, principal component method is
used and component extraction and loading calculations
are completed, a varimax orthogonal rotation of com-
ponents is completed so that each gene mostly loads on
a single component [42]. The result reported in [41]
mixing hierarchical clustering and PCS was summarized
through a colored tree, where genes that load strongly
negative (less than −0.45) or strongly positive (greater
than 0.45) on a single component are indicated by the
use of two arbitrary colors in the column for each com-
ponent whereas genes with identical color patterns in one
or more columns were considered as having similar ex-
pression profiles within the selected group of genes.

Unsupervised learning based on normal mixture models

Unsupervised clustering is used to detect pattern, fea-
ture discovery, and also to match the protein sequence
to the database sequences. Unsupervised learning enables
pattern discovery by organizing data into clusters, using
recursive partitioning methods. In the last 25 years it has
been found that basing cluster analysis on a probability
model can be useful both for understanding when exist-
ing methods are likely to be successful and for suggesting
new methods [43, 44, 45, 46, 47, 48, 49]. One such proba-
bility model is that the population of interest consists of K
different subpopulations G1, . . . , GK and that the density
of a p-dimensional observation x from the kth subpopu-
lation is fk(x, θk) for some unknown vector of parameters
θk (k = 1, . . . , K). Given observations x = (x1, . . . , xn), we
let ν = (ν1, . . . , νn)t denote the unknown identifying la-
bels, where νi = k if xi comes from the kth subpopulation.
In the so-called classification maximum likelihood proce-
dure, θ = (θ1, . . . , θK ) and ν = (ν1, . . . , νn)t are chosen to
maximize the classification likelihood:

p
(
θ1, . . . , θK ; ν1, . . . , νn|x

) = n∏
i=1

fνi
(

xi|θνi

)
. (3)

Normal mixture is a traditional statistical tool which
has successfully been applied in gene expression [50]. For

multivariate data of a continuous nature, attention has fo-
cused on the use of multivariate normal components be-
cause of their computational convenience. In this case, the
data x = (x1, . . . , xn) to be classified are viewed as coming
from a mixture of probability distributions, each repre-
senting a different cluster, so the likelihood is expressed
as

p
(
θ1, . . . , θK ;π1, . . . , πK |x

) = n∏
i=1

K∑
k=1

πk fk
(

xi|θk
)
, (4)

where πk is the probability that an observation belongs to
the kth components (πk ≥ 0;

∑K
k=1 πk = 1).

In the theory of finite mixture, recently, methods
based on this theory performed well in many cases and
applications including character recognition [51], tissue
segmentation [52], application to astronomical data [53,
54, 55] and enzymatic activity in the blood [56].

Once the mixture is fitted, a probabilistic clustering of
the data into a certain number of clusters can be obtained
in terms of the fitted posterior probabilities of component
membership for the data. The likelihood ratio statistic,
Bayesian information criteria (BIC), Akaike information
criteria (AIC), information complexity criteria (ICOMP),
and others are used to choose the number of clusters if
there is any. A mixture of t-distribution may also be used
instead of mixture of normals in order to provide some
protection against atypical observations, which are preva-
lent in microarray data.

McLachlan et al [50] proposed a model-based ap-
proach to the clustering of tissue samples on a very large
number of genes. They first select a subset of genes rel-
evant for the clustering of the tissue samples by fitting
mixtures of t distributions to rank the genes in order of
increasing size of the likelihood ratio statistic for the test
of one versus two components in the mixture model. The
use of t component distributions was employed in the
gene selection in order to provide some protection against
atypical observations, which exit in genomics and pro-
teomics data. In this case, the data x to be classified is
viewed as coming from a mixture of probability distribu-
tions (4), where fk(x|θk = (µk,Σk, γk)) is a t density with
location µk, positive definite inner product matrix Σk, and
γk degrees of freedom is given by

Γ((γk + p)/2)
∣∣Σk

∣∣−1/2

(
3.14× γk

)1/2
Γ
(
γk/2)

{
1 + δ(x,µk;Σk

)
/γk
}(1/2)(γk+p) , (5)

where δ(x,µk;Σk) = (x− µk)tΣk(x− µk) denotes the Ma-
halanobis squared distance between x and µk. If γk > 1, µk
is the mean of x and γk > 2, γk(γk−2)−1Σk is its covariance
matrix.

McLachlan approach was demonstrated on two well-
known data sets on colon and leukemia tissues. The algo-
rithm proposed is used to select relevant genes for cluster-
ing the tissue samples into two clusters corresponding to
healthy and unhealthy tissues.
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Weighted voting (WV)

The weighted voting (WV) algorithm directly applies
the signal-to-noise ratio to perform binary classification.
For a chosen feature x of a test sample, it measures its dis-
tance with respect to decision boundary b = (1/2)(µ1 +
µ2), which is located halfway between the average expres-
sion levels of two classes, where µ1 and µ2 are the centers
of the two clusters. If the value of this feature falls on one
side of the boundary, a vote is added to the correspond-
ing class. The vote V(x) = P(g, c)(x − b) is weighted by
the distance between the feature value and the decision
boundary and the signal-to-noise ratio of this feature de-
termined by the training set. The vote for each class is
computed by summing up the weighted votes,V(x), made
by selected features for this class. In this contest, Yeang et
al [57] performed multiclass classification by combining
the outputs of binary classifiers. Three classifiers includ-
ing weighted voting were applied over 190 samples from
14 tumor classes where a combined expression dataset
was generated. Weighted Voting is a classification tool
which, based on the already known clusters, proposes a
rule of classification of the data set and then predicts the
allocation of new samples to one of the established clus-
ters.

k-nearest neighbors (kNN)

The kNN algorithm is a popular instance-based
method of cluster analysis. The algorithm partitions data
into a predetermined number of categories as instances
are examined, according to a distance measure (eg, Eu-
clidean). Category centroids are fixed at random positions
when the model is initialized, which can affect the cluster-
ing outcome.

kNN is popular because of its simplicity. It is widely
used in machine learning and has numerous variations
[58]. Given a test sample of unknown label, it finds the k
nearest neighbors in the training set and assigns the label
of the test sample according to the labels of those neigh-
bors. The vote from each neighbor is weighted by its rank
in terms of the distance to the test sample.

Let Gm = (g1m, g2m, . . . , gqm), where gim is the log ex-
pression ratio of the ith gene in the mth specimen; m =
1, . . . ,M (M = number of samples in the training set). In
the kNN method, one computes the Euclidean distance
between each specimen, represented by its vector Gm, and
each of the other specimens. Each specimen is classified
according to the class membership of its k-nearest neigh-
bors. In a study undertaken by Hamadeh et al [59], the
training set comprised of RNA samples derived from liv-
ers of Sprague-Dawley rats exposed to one of 3 peroxi-
some proliferations. In this study, M = 27, q = 30, and
k = 3. A set of q (q = 30) genes was considered discrim-
inative when at least 25 out of 27 specimens were cor-
rectly classified. A total of 10,000 such subsets of genes
were obtained. Genes were then rank-ordered according
to how many times they were selected into these subsets.

The top 100 genes were subsequently used for prediction
purposes.

kNN can also be used for recovering missing values in
DNA microarray. In fact, hundreds of genes can be ob-
served in one particular experiment. Arrays are printed
with approximately 1 kilobase of DNA, corresponding to
the coding region of a particular gene, per spot. Labelling
of cDNA is done to determine where hybridization oc-
curs. Hybridization is viewed either by fluorescence or ra-
dioactive intensity. One drawback of these techniques is
the scanning of hybridization intensities. A certain thresh-
old value must be met in order for a value to be returned
as a valid measurement. If a value is below this thresh-
old, it is returned as missing data. This missing data dis-
rupts the analysis of the experiment. For instance, if a gene
is printed in a duplicate, over a series of arrays, and one
spot on one array is below the threshold, the gene is dis-
regarded across all arrays. The loss of this gene expression
data is costly because no experimental conclusions can be
made from the loss of expression of this gene over all ar-
rays [60].

Artificial neural network (ANN)

Unsupervised neural networks provide a more robust
and accurate approach to the clustering of large amounts
of noisy data. Neural networks have a series of properties
that make them suitable for the analysis of gene expres-
sion and proteins patterns. They can deal with real-world
data sets containing noisy, ill-defined items with irrele-
vant variables and outliers, and whose statistical distribu-
tion does not need to be parametric. Multilayer percep-
trons [61] provide a nonlinear mapping where the real-
valued input x is transformed and mapped to get a real-
valued output y:

x −→ W× x −→ h −→ y, (6)

where W is the weight matrix, called first layer, h is a non-
linear transformation, y is a finished node. The following
is an example of a two-layer neural network:

x =



x1

x2

x3

x4


 −→ W× x =




4∑
i=1

αixi

4∑
i=1

βixi




=
(
α1

α2

)
−→



h
(
α1
) = 1

1 + e−α1

h
(
α2
) = 1

1 + e−α2


 ,

y =
2∑
i=1

wihi

(7)

if 0 < y < 1, then we have a classification case with two
groups. Technically, classification, for example, is achieved
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128 subjects
(% lymphocytes)

>19.5≤19.5

A. Class 2 (node)
1 class 1

45 class 2

82 subjects
Reactivity to pokeweed mitogen

≤9.9165 >9.9165

15 subjects
Scaled number of T8 Cells

≤0.3705 >0.3705

D. Class 1 (node)
59 class 1
8 class 2

B. Class 1 (node)
3 class 1
2 class 2

C. Class 2 (node)
1 class 1
9 class 2

Figure 1. An example of neural network black box: a four-dimensional data input x is first transformed by W, then by h in order to
give a grouping variable y as an output.

by comparing y = h(x) with a threshold, we suppose here
0 for simplicity, if h(x) > 0, observation x belongs to the
cluster 1, if h(x) < 0, then x belongs to cluster 2. The
weights W are estimated by examining the training points
sequentially.

ANN has been applied to a number of diverse areas for
the identification of “biologically relevant” molecules, in-
cluding pyrolysis mass spectrometry [62] and genomics
microarraying of tumor tissue [63]. Ball et al [64] uti-
lized a multilayer perceptron with a back propagation al-
gorithm for the analysis of SELDI mass spectrometry data.
This type of ANN is a powerful tool for the analysis of
complex data [65]. Wei et al [66] used the same algo-
rithm for data containing a high background noise. ANN
can be used to identify the influence of many interacting
factors [67] that makes it highly suitable for the study of
first-generation SELDI-derived data. It can be used for the
classification of human tumors and rapid identification of
potential biomarkers [64]. ANN can produce generalized
models with a greater accuracy than conventional statis-
tical techniques in medical diagnostics [68, 69] without
relying on predetermined relationships as in other model-
ing techniques. Usually, the data needs to be trained when
using ANN to predict tumor grade; also the choice of the
number of layers has to be proposed. Currently, ANN does
not propose criteria for choosing the number of layers
which should be investigator-proposed. A criteria has to
be developed for the ANN to choose the adequate num-
ber of layers.

For the probabilistic modeling, usually the normality
is assumed, whereas in the ANN the data is distribution-
free, which makes the ANN a powerful tool for data anal-
ysis [70].

Hierarchical clustering and decision tree

The basic idea of the tree is to partition the input space
recursively into two halves and approximate the function

in each half by the average output value of the samples
it contains [71]. Each bifurcation is parallel to one of the
axes and can be expressed as an inequality involving the
input components (eg, xk > a). The input space is divided
into hypertangles organized into a binary tree where each
branch is determined by the dimension (k) and boundary
(a) which together minimize the residual error between
model and data.

Example

In a study undertaken by Robert Dillman at the Uni-
versity of California, San Diego Cancer Center [72], 21
continuous laboratory variables related to immunocom-
petence, age, sex, and smoking habits in an attempt to dis-
tinguish patient with cancer. Prior probabilities are cho-
sen to be equal: π(1) = π(2) = 0.5, and C(1|2), the cost
of misclassification, was calculated. The tree in Figure 1
summarizes the classification of 128 observations into two
classes: supposedly healthy and unhealthy.

Currently, hierarchical clustering is the most popu-
lar technique employed for microarray data analysis and
gene expression [73]. Hierarchical methods are based on
building a distance matrix summarizing all the pairwise
similarities between expression profiles, and then gener-
ating cluster trees (also called dendrograms) from this
matrix. Genes which appear to be coexpressed at various
time points are positioned close to one another in the tree
whose branches lengths represent the degree of similarity
between expression profiles.

Decision trees [74] were used to classify proteins as
either soluble or insoluble, based on features of their
amino acid sequences. Useful rules relating these features
with protein solubility were then determined by tracing
the paths through the decision trees. Protein solubility
strongly influences whether a given protein is a feasible
target for structure determination, so the ability to predict
this property can be a valuable asset in the optimization of
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high-throughput projects. These techniques have already
been applied to the study of gene expression patterns
[73]. Neverthless, classical hierarchical clustering presents
drawbacks when dealing with data containing a nonnegli-
gible amount of noise. Hierarchical clustering suffers from
a lack of robustness and solutions may not be unique and
dependent on the data order. Also, the deterministic na-
ture of hierarchical clustering and the impossibility of re-
evaluating the results in the light of the complete data can
cause some clusters of patterns to be based on local deci-
sions rather than on the global picture.

Self-organizing mapping (SOM)

The self-organizing feature map (SOM) [75] consists
of a neural network whose nodes move in relation to cat-
egory membership. As with k-means, a distance measure
is computed to determine the closest category centroid.
Unlike k-means, this category is represented by a node
with an associated weight vector. The weight vector of the
matching node, along with those of neighboring nodes,
is updated to more closely match the input vector. As
data points are clustered and category centroids are up-
dated, the positions of neighboring nodes move in rela-
tion to them. The number of network nodes which con-
stitute this neighborhood typically decreases over time.
The input space is defined by the experimental input
data, whereas the output space consists of a set of nodes
arranged according to certain topologies, usually two-
dimensional grids. The application of the algorithm maps
the input space onto the smaller output space, produc-
ing a reduction in the complexity of the analyzed data set
[76, 77]. Like PCA, the SOM is capable of reducing high-
dimensional data into a 1- or 2-dimensional representa-
tion. The algorithm produces a topology-preserving map,
conserving the relationships among data points. Thus, al-
though either method may be used to effectively parti-
tion the input space into clusters of similar data points,
the SOM can also indicate relationships between clus-
ters.

SOM is reasonably fast and can be easily scaled to
large data sets. They can also provide a partial structure
of clusters that facilitate the interpretation of the results.
SOM structure, unlike the case of hierarchical cluster, is a
two-dimensional grid usually of hexagonal or rectangular
geometry, having a number of nodes fixed from the be-
ginning. The nodes of the network are initially random
patterns. During the training process, that implies slight
changes in the nodes after repeated comparison with the
data set, the node changes in a way that captures the dis-
tribution of variability of the data set. In this way, similar
gene, peak, protein profile patterns map close together in
the network and, as far as possible from the different pat-
terns.

A combination of SOM and decision tree was pro-
posed by Herrero et al [78]. The description of the algo-
rithm is given as follows: given the patterns of expression
that has to be classified, if two genes are described by their

expression patterns as g1(e11, e12, . . . , e1n) and g2(e21, e22,
. . . , e2n) and their distance d1,2 =

√∑
(e1i − e2i)2, the ini-

tial system of the SOM is composed of two external el-
ements, connected by an internal element. Each cell is a
vector with the same size as the gene profiles. The entries
of the two cells and the node are initialized. The network
is trained only through their terminal neurons or cells.
The algorithm proceeds by expanding the output topol-
ogy starting from the cell having the most heterogeneous
population of associated input gene profiles. Two new de-
scendents are generated from this heterogeneous cell that
changes its state from cell to node. The series of opera-
tions performed until a cell generates two descendents is
called a cycle. During a cycle, cells and nodes are repeat-
edly adapted by the input gene profiles. This process of
successive cycles of generation of descendant cells can last
until each cell has one single input gene profile assigned
(or several, identical profiles), producing a complete clas-
sification of all the gene profiles. Alternatively, the expan-
sion can be stopped at the desired level of heterogeneity in
the cells, producing in this way a classification of profiles
at a higher hierarchical level.

Kanaya et al [79] use SOM to efficiently and compre-
hensively analyze codon usage in approximately 60,000
genes from 29 bacterial species simultaneously. They
showed that SOM is an efficient tool for characteriz-
ing horizontally transferred genes and predicting the
donor/acceptor relationship with respect to the trans-
ferred genes. They examined codon usage heterogeneity
in the E coli O 157 genome, which contains the unique
segments including O-islands [81] that are absent in E coli
K 12.

Support vector machine (SVM)

SVM originally introduced by Vapnik and cowork-
ers [82, 83] is a supervised machine learning technique.
SVMs are a relatively new type of learning algorithms
[84, 85] successively extended by a number of researchers.
Their remarkably robust performance with respect to
sparse and noisy data is making them the system of choice
in a number of applications from text categorization to
protein function prediction. SVM has been shown to per-
form well in multiple area of biological analysis includ-
ing evaluating microarray expression data [86], detect-
ing remote protein homologies, and recognizing transla-
tion initiation sites [87, 88, 89]. When used for classifi-
cation, they separate a given set of binary-labeled train-
ing data with a hyperplane that is maximally distant from
them known as “the maximal margin hyperplane.” For
cases in which no linear separation is possible, they can
work in combination with the technique of “kernels” that
automatically realizes a nonlinear mapping to a feature
space.

The SVM learning algorithm finds a hyperplane (w,b)
such that the margin γ is maximized.The margin γ is de-
fined as a function of distance between the input x, labeled
by the random variable y, to be classified and the decision
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boundary (〈w, φ(x)〉 − b):

γ = min
x

sign
{〈

w, φ(x)
〉− b

}
, (8)

where φ is a mapping function from the input space to the
feature space.

The decision function to classify a new input x is

f (x) = sign

( m∑
i=1

αiyi
〈
φ(xi), φ(x)

〉− b

)
. (9)

When the data is not linearly separable, one can use
more general functions that provide nonlinear decision
boundaries, like polynomial kernels

Kij =
〈
φ(xi), φ(x j)

〉 = (〈xi, x j〉 + 1
)p

(10)

or Gaussian kernels Kij = e−‖xi−x j‖/σ2
, where p and σ are

kernel parameters.
To apply the SVM for gene classification, a set of ex-

amples was assembled containing genes of known func-
tion, along with their corresponding microarray expres-
sion profiles. The SVM was then used to predict the
functions of uncharacterized yeast open reading frames
(ORFs) based on the expression-to-function mapping es-
tablished during training [86]. Supervised learning tech-
niques appear to be ideal for this type of functional classi-
fication of microarray targets, where sets of positive and
negative examples can be compiled from genomic se-
quence annotations.

Boolean network

The basis for the Boolean networks was introduced by
Turing and von Neumann in the form of automata the-
ory [90, 91]. A Boolean network is a system of n inter-
connected binary elements; any element in the system can
be connected to a series I of other k elements, where k
(and hence I) can vary. For each individual element, there
is a logical or Boolean rule B which computes its value
based on the values of elements connected with one. The
state of the system S is defined by the pattern of states
(on/off or 0/1) of all elements. All elements are updated
synchronously, moving the system into its next state, and
each state can have only one resultant state. The total sys-
tem space is defined as all possible N combinations of the
values of the n elements in S.

One of the important types of information underly-
ing the expression profile data is the regulatory networks
among genes, which is called also “genetic network.”
Modeling with the Boolean network [92, 93, 94, 95] has
been investigated for inferences of the genetic networks.
Tavazoie et al [96] proposed an approach that combines
cluster analysis with sequence motif detection to deter-
mine the genetic network architecture. Recently, an ap-
proach to infer the genetic networks with Bayesian net-
works was proposed [97] but still a little has been done in
this area using Boolean network.

Combination of cluster analysis and a graphical
Gaussian modeling (GGM)

GGM is an algorithm that was proposed by Toh and
Horimoto [98] to cluster expression profile data. GGM is
a multivariate analysis to infer or test a statistical model
for the relationship among a plural of variables, where a
partial correlation coefficient, instead of a correlation co-
efficient, is used as a measure to select the first type of
interaction [99, 100]. In GGM, the statistical model for
the relationship among the variables is represented as a
graph, called the “independence graph,” where the nodes
correspond to the variables under consideration and the
edges correspond to the first type of interaction between
variables. More specifically, an edge in the independence
graph indicates a pair of variables that are conditionally
dependent. GGM was applied for the expression profile
data of 2467 Saccharomyces cerevisiae genes measured un-
der 79 different conditions [73]. The 2467 genes were clas-
sified into 34 clusters by a cluster analysis, as a preprocess-
ing for GGM. Then the expression levels of the genes in
each cluster were averaged for each condition. The aver-
aged expression profile data of 34 clusters were subjected
to GGM and a partial correlation coefficient matrix was
obtained as a model of the genetic network of the S cere-
visiae.

Other probabilistic and clustering methods
and applications

To try to make a sense to microarray data distribu-
tions, Hoyle et al [101] proposed a comparison of the en-
tire distribution of spot intensities between experiments
and between organisms. The novelty of this study is by
showing that there is a close agreement with Benford’s law
and Zipf ’s law [102, 103] which is a combination of log-
normal distribution of large majority of the spot intensity
values and the Zipf ’s law for the tail.

In addition to the clustering methods that we have de-
scribed, there exist numerous other methods. Bensmail
and Celeux [104] used model-based cluster analysis to
cluster 242 cases of various grades of neoplasia which were
collected and diagnosed in a subsequently taken biopsy
[105]. There were 50 cases with mild displasia, 50 cases
with moderate displasia, 50 cases with severe displasia, 50
cases with carcinoma in situ, and 42 cases with invasive
carcinoma. Eleven measurements were used in this study,
7 are ordinal and 4 are numerical. Using eigenvalue de-
composition regularized discriminant analysis algorithm
(EDRDA), 14 models were investigated and their perfor-
mance was measured by their error rate of misclassifica-
tion with cross-validation. Each model describes a specific
orientation, shape, and volume of the cluster defined by
the spectral decomposition of the covariance matrix Σk

related to each cluster:

Σk = λkDkAkD
t
k, (11)
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Table 1. Summary of the 14 models presented in Bensmail and Celeux [104].

Model 1 = [λDADt
]

Model 2 = [λkDADt
]

Model 3 = [λDAkDt
]

Model 4 = [λkDAkDt
]

Model 5 = [λDkAD
t
k

]
Model 6 = [λkDkAD

t
k

]
Model 7 = [λDkAkD

t
k

]
Model 8 = [λkDkAkD

t
k

]
Model 9 = [λI] Model 10 = [λkI] Model 11 = [λB] Model 12 = [λkB]

Model 13 = [λBk

]
Model 14 = [λkBk

]

Table 2. Summary of the properties of the most commonly applied algorithms for data analysis.

Time/space Strengths Weaknesses

PCA

(
p(p + 1)/2

)
Dimension reduction Circular shape

p: no. of variables

Unsupervised learning
normal mixture

(
kp2n

)
/ O(kn)

Clustering and prediction Normality assumptionp: no. of variables

k: no. of clusters

Weighted voting
(kp)

Tailored weights
Binary classificationp: no. of variables

Weights flexibility
k: no. of clusters

kNN

(tkn)
Image processing Known meank: no. of clusters
Handling missing data Known number of classesn: no. of observations

t: no. of iterations

ANN
O(n)

Nonlinear/Noisy data Black box behavior
n: no. of observations

Hierarchical/tree
O
(
n2
)

Readability of results
Numerical data only

n: no. of observations No scaling of data

SOM
O(n)

Topology preserving
Trained on normal data
No reliabilityn: no. of observations

Computationally tractable

Handling high dimension

SVM
O
(
n2
)

Easy training
Need to a kernel function

n: no. of observations Handling high-dimensional data

Boolean network

O
(
n(d)

)
Defining relationships

No handling of missing data
Trained on large datan: no. nodes

d: max(indegree)

GGM

O
(
kp2

)
Probabilistic model

Conditional probabilityk: no. of clusters
Graphical model

p: no. of variables

Model-based

O
(
kp2n

)
Geometry of the clusters Normality

k: no. of clusters

n: no. of observations

p: no. of variables

where λk = |Σk|1/p describes the volume of the cluster Gk,
Dk, the eigenvectors matrix, describes the orientation of
the cluster Gk, and Ak, the eigenvalues matrix, describes
the shape of the cluster Gk. Table 1 summarizes the four-
teen models.

This methodology seems very promising since it took
in consideration the characteristics of the clusters (shape,

volume, and orientation) and then proposed a flexible
way of discriminating the data by proposing a panoply
of rules varying from the simple one (linear discrimi-
nant rule) to the complex one (quadratic discriminant
rule). This methodology can easily be applied to discrim-
inate/classify peaks of protein profiles when they are ap-
propriately transformed. Since EDRDA is based on the
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assumption that the data is distributed according to a
mixture of Gaussian distributions, some extent to which
different transformations of gene expression or protein
profiles sets satisfying the normality assumption may
be explored. Three commonly used transformations can
be applied: logarithm, square root, and standardization
(wherein the raw expression levels for each gene [protein
profile] are transformed by substracting their mean and
dividing by their standard deviation) [106]. Other more
interesting transformations may be investigated including
kernel smoother.

The summary of the above-described methods for
clustering, classification, and prediction of gene expres-
sion and protein profiles sets is presented in Table 2. We
present the algorithms, their performance, their strengths,
and weaknesses. Over all, some methods are efficient for
some applications such as imputing data but performs less
in clustering. Probabilistic methods such as model-based
methods and mixture models are interesting to look at af-
ter transforming the data sets because they are a natural
fit to cluster data sets with underlying distribution. Non-
probabilistic methods such as the Neural network and the
Kohonen mapping may be interesting when the data con-
tains an important amount of noise.

CONCLUSION

The postgenomic era holds phenomenal promise for
identifying the mechanistic bases of organismal develop-
ment, metabolic processes, and disease, and we can con-
fidently predict that bioinformatics research will have a
dramatic impact on improving our understanding of such
diverse areas as the regulation of gene expression, protein
structure determination, comparative evolution, and drug
discovery.

Software packages and bioinformatic tools have been
and are being developed to analyze 2D gel protein pat-
terns. These software applications possess user-friendly
interfaces that are incorporated with tools for lineariza-
tion and merging of scanned images. The tools also help
in segmentation and detection of protein spots on the im-
ages, matching, and editing [107]. Additional features in-
clude pattern recognition capabilities and the ability to
perform multivariate statistics. The handling and analy-
sis of the type of data to be collected in proteomic inves-
tigations represent an emerging field [Bensmail H, Hes-
pen J. Semmes OJ, and Haudi A. Fast Fourier trans-
form for Bayesian clustering of Proteomics data (unpub-
lished data).]. New techniques and new collaborations be-
tween computer scientists, biostatisticians, and biologists
are called for. There is a need to develop and integrate
database repositories for the various sources of data being
collected, to develop tools for transforming raw primary
data into forms suitable for public dissemination or for-
mal data analysis, to obtain and develop user interfaces to
store, retrieve, and visualize data from databases and to
develop efficient and valid methods of data analysis.
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