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Abstract

Being able to assess the phenotypic effects of mutations is a much required capability in pre-

cision medicine. However, most of the currently available structure-based methods actually

predict stability changes caused by mutations rather than their pathogenic potential. There

are also no dedicated methods to predict damaging mutations specifically in transmem-

brane proteins. In this study we developed and applied a machine-learning approach to dis-

criminate between disease-associated and benign point mutations in the transmembrane

regions of proteins with known 3D structure. The method, called BorodaTM (BOosted

RegressiOn trees for Disease-Associated mutations in TransMembrane proteins), was

trained on sequence-, structure-, and energy-derived descriptors. When compared with the

state-of-the-art methods, BorodaTM is superior in classifying point mutations in transmem-

brane regions. Using BorodaTM we have conducted a large-scale mutation analysis in the

transmembrane regions of human proteins with known 3D structures. For each protein we

generated structural models for all point mutations by replacing each residue to 19 possible

residue types. We classified ~1.8 millions point mutations as benign or diseased-associated

and made all predictions available as a Web-server at https://www.iitm.ac.in/bioinfo/

MutHTP/boroda.php.

Introduction

Due to the advent of the next generation sequencing technologies and their quick foray into

the clinical practice, predicting the phenotypic consequences of missense mutations has argu-

ably become the most active and demanded area of applied bioinformatics. This is evidenced

by the astronomic citation counts of the leading computational methods for this purpose, such

as PolyPhen [1] and SIFT [2], and also by the fact that in silico tools have been officially made

part of the standards and guidelines for the interpretation of sequence variants [3]. Virtually

every medically oriented exome, genome, or transcriptome sequencing study is faced with the
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daunting task of selecting a small number of substitutions associated with a given phenotype

from a vast amount of benign variants for subsequent experimental validation.

A large variety of algorithms for performing this task is currently available (reviewed in

[4]), with most of them falling into one of the two distinct categories. The first (and by far the

largest) group of methods attempts to predict mutation effects from amino acid sequences

based on a broad spectrum of features, of which physicochemical properties of amino acids,

evolutionary conservation, predicted structural properties, such as solvent accessibility, co-evo-

lution with other residues, and functional annotation belong to the most frequently used ones.

Integrated consensus classifiers as well as databases of pre-computed predictions are readily

available [5]; [6]. The second group of methods assesses the consequences of residue substitu-

tions based on three-dimensional structures of proteins, often in combination with sequence-

derived attributes. The obvious disadvantage of this type of methods is that they are only appli-

cable to the minority of proteins for which an experimental atomic structure or at least a high-

quality homology model is available. On the up side, structure-based prediction methods are

more accurate and potentially able to provide a mechanistic understanding of the damaging

effect at the molecular level, which sequence-based methods generally cannot do. Structure-

based methods typically analyze the influence of mutations on protein stability by predicting

free energy changes (ΔΔG) using either energy functions or machine learning [7]. For example,

CUPSAT [8] and I-Mutant2.0 [9] predict experimentally measured ΔΔG values at around 80%

accuracy by employing coarse-grained atom and torsion angle potentials and a support vector

machine, respectively. A recently published method, STRUM [10], assesses stability changes

upon mutation and identifies disease-associated mutations based on predicted low-resolution

protein models, i.e. when a 3D structure is actually not available. These and other methods do

not explicitly predict the pathogenicity of mutations, although they are frequently used for this

purpose based on the assumption that disease relevant mutations exert a more drastic effect on

protein structure than benign mutations do and that changes of stability directly affect protein

function. Although there is some correlation between disease-associated mutations and change

in protein stability, many disease-related variants do not affect protein stability [11].

None of the methods discussed above explicitly take into account the folding arrangements

of proteins and the overall structural context in which mutations occur. In particular, no spe-

cialized methods exist to predict mutation effects in transmembrane proteins, which constitute

approximately 25–30% of proteins in each living cell [12] and a major proportion of all drug

targets. Membrane proteins reside in the lipid environment and therefore evolve under

markedly different structural constraints compared to globular proteins, with disease-causing

mutations primarily occurring in buried positions of transmembrane helices [13]. According

to the MutHTP database [14])over 170,000 disease-relevant mutations in transmembrane pro-

teins have been accumulated in the public repositories of variation data, and 392 of them are

associated with proteins of known 3D structure, which makes it possible to develop prediction

models specific to transmembrane proteins. In this study we developed a machine-learning

approach to discriminate between disease-associated and benign point mutations in trans-

membrane proteins with known 3D structure. The method, called BorodaTM (BOosted

RegressiOn trees for Disease-Associated mutations in TransMembrane proteins), was trained

on sequence-, structure-, and energy-derived descriptors. When compared with the general

purpose state-of-the art methods, BorodaTM is superior in classifying point mutations in

transmembrane proteins. In a large-scale modelling study, we applied BorodaTM to classify

each of the 19 possible amino acid substitutions in each sequence position for all human trans-

membrane proteins with a known 3D structure obtained from the PDBTM database. These

predictions are available via the MutHTP database at https://www.iitm.ac.in/bioinfo/

MutHTP/boroda.php.
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Methods

Mutations in human transmembrane proteins with known topology

Human mutation data was obtained from the manually curated UniProtKB/Swiss-Prot variant

database [15]. Benign polymorphisms were distinguished from disease-associated mutations

based on the keywords “Polymorphism” and “Disease” in the “Type of variant” field. Variants

annotated as “Unclassified” were ignored. Topology data for human transmembrane proteins

with known three-dimensional structure was obtained from the Human Transmembrane Pro-

teome (HTP) database [16]. Although a useful mapping of human variation on membrane

protein sequences already exists [17], we chose to re-create such mapping independently in

order to extract from the HTP database a number of required annotation attributes: Swiss-

Prot accession number, sequence position of the mutation, amino acid change, specific evi-

dence used to determine protein topology, location of the mutation with respect to the mem-

brane (”M”-membrane, “L”-membrane reentrant loop, “I”-inside, “O”-outside, “S”-signal, and

“T”-transit), as well as the identifiers of three-dimensional structures according to the Protein

Data Bank [18]. Only point mutations located in the transmembrane regions of proteins were

considered in this study. This yielded a preliminary dataset of 3888 point mutations, including

2309 disease-associated and 1579 benign mutations, associated with known structures. A non-

redundant dataset reflecting variation in the transmembrane regions was created by excluding:

i) those proteins that share more than 50% sequence identity, and ii) those proteins that share

more than 75% structural similarity, as measured by the TMalign software [19]. This proce-

dure yielded the final dataset of 392 disease-associated and 154 benign mutations in 64 pro-

teins with the number of transmembrane alpha helices (TMs) ranging from 1 to 13 (see S1

Table).

Due to the stringent criteria we used to select these 64 proteins from more than 5000 mem-

brane proteins contained in the human proteome (availability of known 3D structure,

sequence redundancy, availability of mutation data, etc), but also due to the fact that proteins

get chosen for crystallographic analysis based on subjective (medical interest) or objective

(crystallization potential) criteria, this dataset would be expected to be biased in terms of its

functional repertoire. Interestingly, however, we did not find any significant bias in terms of

“Molecular Function”, as defined by the Gene Ontology [20], with the exception of “Trans-

membrane receptor activity” (see Supplementary file). Gene Ontology terms from the Cellular

Components and Biological Processes subontologies enriched in our dataset are mostly related

to cellular localization and some regulatory functions. Such biases can only be addressed in the

future once more mutation and structural data become available.

Descriptors of mutations

Each point mutation was represented by a vector in a multidimensional feature space, where

each vector coordinate corresponds to a certain characteristic of the mutation. We will refer to

such vectors as mutation descriptors. Our method incorporates sequence-, structure-, and

energy-based descriptors initially used in the CompoMug method [21] to assess stability-

enhancing effects of point mutations in G protein-coupled receptors. Recently, we also showed

that leveraging such a broad spectrum of complementary features allows to derive more pow-

erful prediction models [22].

Sequence-based characteristics of mutations. We used the AAindex database [23] as a

source of physico-chemical properties of amino acids and selected a set of 12 characteristics:

hydrophilicity (KUHL950101), amphiphilicity (MITS020101), bulkiness (ZIMJ680102), polar-

ity (GRAR740102), polarizability (CHAM820101), isoelectric point (ZIMJ680104), accessible

Disease mutations in membrane proteins
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surface area in a tripeptide (CHOC760101), number of hydrogen bond donors (FAUJ880109),

net charge (KLEP840101), radius of gyration of the side chain (LEVM760105), amino acid

composition (CEDJ970103), and side-chain contribution to protein stability (TAKK010101).

These properties were determined both for the wild-type and the mutant type of amino acid

residues, resulting in 24 descriptor coordinates. Mutations were further characterized by four

substitution scores: the Blosum62 substitution score, which is widely used in protein sequence

analysis [24]; the PHAT score, which is analog to the Blosum62 score computed specifically

for the membrane proteins [25]; and the two SLIM scores, which, in contrast to other substitu-

tion matrices, takes into account asymmetry in the observed mutations [26]. Altogether, 28

sequence-based descriptor components were derived.

Structure-based characteristics of mutations. Given the atomic structures of the wild-

type proteins, we created structural models of the mutated proteins. The corresponding side

chains were replaced and then all the neighboring side chains in the 5Å proximity were sub-

jected to Monte-Carlo optimization in order to remove energetic stress caused by the point

mutation. Main chain conformation was kept fixed. Subsequently we calculated for each muta-

tion three sets of structure-based characteristics. The first set of characteristics reflects the sec-

ondary structure type of the mutated position and is encoded as a 6-bit categorical variable,

with each bit representing α-helix, 3/10-helix, π-helix, β-strand, β-bridge, or coil. The second

set of characteristics is related to the residue exposure to solvent. We computed the solvent

accessible surface area (SASA) and the relative SASA, which is the ration of the actual and the

maximum possible SASA for a given residue. A 3-bit categorical variable was defined, where

each bit represents buried (relative SASA < 0.17), exposed (relative SASA > 0.43), or partially

exposed (0.17 < relative SASA < 0.43) residues [22, 27]. The third set of characteristics is

related to the contacts formed between the wild-type and mutated residues and the residues in

their 5Å proximity. These include the total contact area, the total volume of the side chain, the

number of hydrogen bonds, and the packing density, defined as the ratio of the molecular sur-

face area and the solvent accessible surface area. We also recorded the number of polar,

charged, aromatic, aliphatic, and special contacts formed by the mutated residue. Polar con-

tacts comprise interactions with Asn, Gln, Thr, Ser, Tyr, and His residues, charged contacts—

with Lys, Arg, Asp, and Glu residues, aliphatic contacts—with Ala, Leu, Ile, Val, and Met resi-

dues, aromatic contacts—with Phe, Trp, Tyr, and His residues, and special contacts—with

Cys, Pro, and Gly residues. We used the ICM-Pro software (Molsoft L.L.C) to perform struc-

ture analysis and the CompoMug scripts [21] to compute structure-based characteristics. Alto-

gether, 44 structure-based descriptor components for each mutation were computed.

Energy-based characteristics of mutations. For each mutated residue in the wild-type

and mutant-type structural models we computed the electrostatic, Van-der-Waals, hydrogen-

bond, entropic, and solvation energy, as well as the total energy as the sum of all individual

energy terms. In addition, we calculated the total energies for all residues in the 5Å neighbor-

hood from the target residue and used their sum normalized by the number of residues as an

additional characteristic. Energy calculations were also conducted by ICM-Pro and Compo-

Mug. Altogether, for the wild-type and mutant-type structural models we computed 24

energy-based components for the descriptor.

Machine learning

The training matrix for machine learning was constructed by computing descriptors for each

point mutation in the training dataset, and by labelling the descriptor with +1, if the corre-

sponding point mutation is associated with a pathology, or with -1 otherwise. Identification of

disease-associated mutations is thus cast as a binary classification problem, where the derived

Disease mutations in membrane proteins
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prediction model assigns labels +1 and -1 for a given point mutation to be disease-associated

or benign, respectively. To train the prediction model we used the XGBoost software (http://

xgboost.readthedocs.io/en/latest/), which provides a fast and powerful implementation of the

gradient boosting decision tree algorithm [28]. We used a cross-validation procedure along

with the t-statistic criterion to obtain the optimal number of estimators for the classifier, i.e.
the number of decision trees in the model. Specifically, the entire dataset was randomly split

into training (90%, 362 and 129 of disease-associated and benign mutations, respectively) and

test (10%, 30 and 25 of disease-associated and benign mutations, respectively) data. Then a

5-fold cross validation was performed 20 times on the training set, and the t-statistic criterion

was used to determine the optimal number of estimators for the prediction model. The test set

was then used to estimate the performance of the prediction models obtained during the

cross-validation step. The maximum number of features to consider when splitting a node in

the tree was set to be equal to the square root of the descriptor size and no restraints were

imposed on the depth of the tree. In addition, descriptors were normalized to have a zero

mean and a unit variance. To cope with the imbalance in the training data we also weighted

the descriptors by the factor of N−1/(N−1+N+1) and N+1/(N−1+N+1) for the disease-associated

and benign mutations, respectively, where N+1 is the number of disease associated mutations,

and N−1 is the number of benign mutations.

To evaluate the prediction power of the derived classifiers we calculated several standard

characteristics:

• accuracy: TPþTN
TPþTNþFPþFN

• precision: TP
TPþFP

• recall: TP
TPþFN

• f-measure: 2 Precision�Recall
PrecisionþRecall

• Matthews correlation coefficient (MCC): TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞ�ðTPþFNÞ�ðTNþFPÞ�ðTNþFNÞ
p

where TP (true positives) is the number of correctly classified disease-associated mutations,

TN (true negatives) is the number of correctly classified benign mutations, FP (false positives)

is the number of disease-associated mutations misclassified as benign, and FN (false negatives)

is the number of benign mutations misclassified as disease-associated.

To evaluate the feature importance in the obtained prediction models we calculated a fea-

ture gain (FG) by averaging gains on each branch of the tree, which are defined as:

FG ¼
1

2

faðGjmLÞ
2

HjmL þ l
þ

faðGjmRÞ
2

HjmR þ l
�

faðGjmÞ
2

Hjm þ l

 !

� g

where fα(x) = {x+α, if x<−α;x−α, if x>α; 0, otherwise}; γ, λ, and α are the penalization, L2 regu-

larization, and L1 regularization terms, respectively; j and m stand for the current branch and

estimate, respectively; G and H are the gradient and the Hessian of the loss function. All calcu-

lations were performed with the scikit-learn python modules [29].

Results

Prediction model

Our dataset consists of 392 disease-associated and 154 benign point mutations located in 64

transmembrane proteins. For each point mutation in our dataset we computed descriptors,

generated the training and test datasets, and determined the optimal number of estimators

Disease mutations in membrane proteins
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using the t-statistic criterion, as described in the Methods section. The number of estimators

was set to the values between 1 and 100 to derive 100 prediction models. The performance of

each model was assessed relative to the prediction model with 50 estimators (Fig 1A). As

expected, the prediction power grows with the number of used estimators, achieving the best

performance with 93 estimators in terms of t-statistics. Then we evaluated the performance of

the best 25 prediction models on the test set and identified the optimal number of estimators

in terms of the performance characteristics (see the Methods section). As seen in Fig 1B, mod-

els corresponding to 76, 77, and 78 estimators have the highest characteristics on the test set, as

compared to the other models. We selected 77 as the optimal number of estimators. The per-

formance metrics of the prediction model with 77 estimators for the train, test, and entire data-

sets are presented in Table 1. The model performs well on the training set, implying that the

constructed features capture relevant information to describe disease-associated point muta-

tions. Furthermore, the obtained model also performs well on the test set, implying that there

is no significant overfitting to the training data. However, we would like to note that due to the

Fig 1. Evaluation of the derived prediction models. A) T-statistics calculated for the derived prediction models with 1, 2, . . ., 100 estimators w.r.t. the prediction model

with 50 estimators. B) Performance metrics on the test set for the best 25 prediction models in terms of t-statistics.

https://doi.org/10.1371/journal.pone.0219452.g001
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imbalance in the training set (392 disease-associated vs 154 benign mutations), there might be

a bias towards prediction of disease-associated mutations, compared to the benign mutations.

Indeed, precision is very high on the training set (99.7%) but significantly lower on the test set

(69.2%). We believe that such deficiencies are related to the relatively small dataset and that

accumulation of relevant structural data will result in better prediction models.

Feature selection

We next attempted to identify the most informative sequence-based, structure-based, and

energy-based features using the optimal prediction model with 77 estimators based on the fea-

ture gain calculated for each feature. Features with FG<0.01FGmax (the maximum FG over all

features) were filtered out, resulting in 41 most informative features (S2 Table). While all three

types of features (10 sequence-based, 15 structure-based, and 16 energy-based) proved to be

important, more structure- and energy-based features got selected, indicating that they are

informative for the classification task. To verify that there is no information loss due to feature

selection, we derived a prediction model with a reduced set of selected features and an optimal

number of estimators and achieved the same performance on the training and the test sets. In

contrast, using of single type of features, e.g. solely sequence-, or structure-, or energy-based

descriptors, resulted in significantly lower MCC values on the test set (0.30, 0.15, and 0.22 for

the sequence-, structure-, and energy-based descriptors, respectively), as compared to the

combined feature set (0.46). Finally, we re-derived a prediction model using the obtained opti-

mal parameters and the entire dataset. We will refer to this prediction model as BorodaTM,

which stands for BOosted RegressiOn trees for Disease-Associated mutations in TransMem-

brane proteins.

Predictions are not biased towards specific mutation types or proteins

The dataset comprises 546 point mutations located in 64 proteins of different topology (see S1

Table). Since mutations are very unevenly distributed over individual proteins, we sought to

verify that the optimal prediction model is not biased towards any specific proteins by measur-

ing the number of correctly classified mutations for each protein separately. As it seen in Fig 2

(light grey bars), the obtained prediction model is sufficiently robust and correctly classifies at

least one point mutation in each protein.

There are 380 possible amino acid substitutions, with some of them being much more likely

than the others. S3 Table shows the frequency of amino acid substitutions actually observed in

our dataset. Some mutations (e.g. R->C/Q/H/W) are strongly over-represented, while 269

mutations (68% of all possible mutations) are completely missing. The absence of certain

Table 1. Benchmark results of the prediction model.

Metric Training set Test set

Accuracy 94.3 % 72.7 %

Precision 99.7 % 69.2 %

Recall 92.5 % 90.0 %

F1 96.0 % 78.3 %

MCC 0.87 0.46

Number of true positives 335 (68.2%) 27 (49.1%)

Number of true negatives 128 (26.1%) 13 (23.6%)

Number of false positives 1 (0.2%) 12 (21.8%)

Number of false negatives 27 (5.5%) 3 (5.5%)

https://doi.org/10.1371/journal.pone.0219452.t001

Disease mutations in membrane proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0219452 July 10, 2019 7 / 13

https://doi.org/10.1371/journal.pone.0219452.t001
https://doi.org/10.1371/journal.pone.0219452


amino acid substitutions limits the prediction power of the derived classifiers, but it is hoped

that this limitation will become less severe as more data become available. We evaluated the

ratio of correctly classified exchanges between all pairs of amino acids and found that the per-

formance of our prediction model remains relatively stable for all point mutation types and is

not biased towards any particular residue pair (see S3 Table).

Leave-one-out validation

Ideally, prediction models should be evaluated on a completely independent dataset with no

relation to the data used to develop the method. However, an independent dataset of disease-

associated and benign point mutations completely unrelated to the human variation data used

in this study does not appear to exist. We therefore performed leave-one-out cross-validation

on a dataset covering non-redundant point mutations in 64 different proteins. We derived 63

prediction models, each trained on one of the 63 possible subsets, and evaluated the perfor-

mance of these models with respect to the point mutations in the sole excluded protein. As

seen in Fig 2 (grey bars), the prediction model is able to correctly classify point mutations in

proteins not contained in the training dataset. For example, for three proteins of different

topology with the largest number of point mutations (Nieman-Pick C1 protein, 13TMs; rho-

dopsin, 7TMs; and anion exchanger, 12TMs), the corresponding prediction models correctly

Fig 2. Distribution of point mutations across proteins. Black and light gray bars correspond to the total number of point mutations and the number of point

mutations correctly predicted by the optimal prediction model, respectively. Dark grey bars correspond to the number of correctly predicted point mutations in the

leave-one-out validation (LOO).

https://doi.org/10.1371/journal.pone.0219452.g002

Disease mutations in membrane proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0219452 July 10, 2019 8 / 13

https://doi.org/10.1371/journal.pone.0219452.g002
https://doi.org/10.1371/journal.pone.0219452


classified 61 out of 89, 57 out of 68, and 47 out of 52 point mutations, respectively. The ratio of

correctly predicted mutations in this test was 65.4%, which is comparable with the accuracy

achieved on the test set (72.7%). However, there are a number of cases (20), when a protein is

represented by at most three point mutations, which were not correctly classified by the pre-

diction models (see Fig 2).

Comparison with the state-of-the-art predictors

To the best of our knowledge, BorodaTM is the first predictor designed to classify disease-asso-

ciated point mutations specifically in transmembrane regions. We therefore compared it with

Entprise[30], the currently leading general-purpose prediction method based on the boosted

tree regression approach. Entprise uses sequence- and structure-level information for discrim-

inating between the disease-associated and benign point mutations, where upon 3D informa-

tion is obtained by structure prediction. It was reported to outperform other state-of-the-art

prediction tools, such as PolyPhen-2 [1], FathHmm [31], Sift [32], MutationAssesor [33], and

MutationTaster [34]. Entprise was trained on a previously constructed dataset [35], which

overlaps with the HumVar dataset. The Entprise web-server (http://cssb2.biology.gatech.edu/

ENTPRISE/) provides a pathology score for each point mutation in its training set, with

pathology scores> 0.45 assumed to correspond to disease-associated mutations. Given that

there is a crystallographic structure for each point mutation in our benchmark and that

Entprise and our method use this information for training, it is fair to compare our method

with Entprise. To this end, we retrieved pathology scores for 386 disease-associated and 151

benign point mutations present both in our and Entprise’s training sets and evaluated the per-

formance of the two methods. As seen in Table 2, our prediction model significantly outper-

forms Entprise in terms of accuracy, precision, f1 (~8% better performance for each metric),

and the mcc (0.22 better performance) metric, and slightly outperforms it in terms of the recall

metric (1.7% better performance).

Performance of BorodaTM on point mutations in soluble regions

To further assess the prediction power of BorodaTM, we investigated how well our prediction

model, trained on point mutations in transmembrane regions, discriminates point mutations

in soluble domains of transmembrane proteins, which exhibit vastly different physicochemical

properties. We collected a dataset of 2882 point mutations, including 1597 disease-associated

and 1285 benign mutations, located in the solvent-accessible extra- and intra-cellular domains

of transmembrane proteins. For comparison, we retrieved predictions for these mutations

from the Entprise, Polyphen-2, and SIFT methods. As expected BorodaTM exhibited a much

lower success rate (Table 2), as compared to that of the other methods. Therefore, our method

it its present form is not well suited for handling extramembranous portions of proteins.

Nonetheless, the method correctly classified ~2/3 (62.5%) of the point mutations in soluble

Table 2. Comparison of BorodaTM and Enterprise predictions for point mutations in the transmembrane and soluble regions.

Transmembrane regions Soluble regions

Metric BorodaTM Entprise Polyphen-2 SIFT BorodaTM Entprise Polyphen-2 SIFT

Accuracy 93.5 % 85.5 % 80.0 % 79.3 % 62.5 % 83.0 % 75.7 % 73.8 %

Precision 99.2 % 91.7 % 83.2 % 82.3 % 64.5 % 89.0 % 73.1 % 71.1 %

Recall 91.7 % 90.0 % 90.2 % 90.5 % 71.9 % 83.1 % 86.3 % 85.2 %

F1 95.3 % 88.3 % 86.6 % 86.2 % 68.0 % 86.0 % 79.2 % 77.5 %

MCC 0.86 0.64 0.47 0.45 0.23 0.65 0.51 0.47

https://doi.org/10.1371/journal.pone.0219452.t002

Disease mutations in membrane proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0219452 July 10, 2019 9 / 13

http://cssb2.biology.gatech.edu/ENTPRISE/
http://cssb2.biology.gatech.edu/ENTPRISE/
https://doi.org/10.1371/journal.pone.0219452.t002
https://doi.org/10.1371/journal.pone.0219452


regions, indicating that the model can be adapted to the classification of point mutations

located in the soluble regions, if re-trained on the corresponding dataset.

Availability

We applied BorodaTM to conduct a large-scale mutation analysis of the 379 human mem-

brane proteins with known 3D structures available from the PDBTM database (version 06–

2017) [36]. For each protein we generated structural models for all point mutations by replac-

ing each residue to 19 possible residue types. Each structural model was refined and prepared

for the descriptor computation, similarly to the training set. This procedure was followed by

the computation of the sequence-based, structure-based and energy-based descriptors, result-

ing in ~1.8 million feature vectors. Note that we could not compute descriptors for poorly

resolved or missing residues in the PDB structure. Finally, we applied BorodaTM to classify

each point mutation as benign or diseased associated. In addition, we classified each point

mutation using pre-computed results of the Sift [32], Provean [37], and Polyphen-2 [38] web-

servers. All predictions are available at https://www.iitm.ac.in/bioinfo/MutHTP/boroda.php,

where users can search the data using either PDB or Uniprot ID and download the entire data-

set. The ICM scripts for the descriptor computations can be found at https://gitlab.com/pp_

lab/CompoMug, and the derived prediction model along with the training dataset can be

found at https://gitlab.com/pp_lab/boroda.

Conclusions

In this study we developed BorodaTM—a machine learning tool, which discriminates between

disease-associated and benign point mutations in transmembrane regions. BorodaTM uses

sequence-based, structure-based, and energy-based information derived from wild-type and

mutant-type amino-acid residues and their 5Å neighborhood. BorodaTM was trained on a

non-redundant set of 546 point mutations located in 64 proteins of different topology, result-

ing in 92.5% and 90.0% recall values on the training and test sets, respectively. It significantly

outperforms the state-of-the-art approach, Entprise, which was trained on a larger dataset,

including point mutations in both soluble and membrane proteins. Surprisingly, BorodaTM

also performs relatively well for the point mutations located in soluble regions of the trans-

membrane proteins. We applied BorodaTM to classify ~1.8 millions point mutations in the

transmembrane regions of 379 human proteins with known 3D structure. These results are

provided at https://www.iitm.ac.in/bioinfo/MutHTP/boroda.php together with predictions

made by a number of other publicly available methods.
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