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Phase synchronization measures are widely used for investigating inter-regional
functional connectivity (FC) of brain oscillations, but which phase synchronization
measure should be chosen for a given experiment remains unclear. Using
neuromagnetic brain signals recorded from healthy participants during somatosensory
stimuli, we compared the performance of four phase synchronization measures,
imaginary part of phase-locking value, imaginary part of coherency (ImCoh), phase
lag index and weighted phase lag index (wPLI), for detecting stimulus-induced FCs
between the contralateral primary and ipsilateral secondary somatosensory cortices.
The analyses revealed that ImCoh exhibited the best performance for detecting
stimulus-induced FCs, followed by the wPLI. We found that amplitude weighting,
which is related to computing both ImCoh and wPLI, effectively attenuated the
influence of noise contamination. A simulation study modeling noise-contaminated
periodograms replicated these findings. The present results suggest that the amplitude-
dependent measures, ImCoh followed by wPLI, may have the advantage in detecting
stimulus-induced FCs.

Keywords: somatosensory system, functional connectivity, phase synchronization, amplitude coherence, cross-
periodogram

INTRODUCTION

Functional integration of multiple regions in the central nervous system is an important
concept for understanding normal brain function (Ramnani et al., 2004; Stevens, 2009) and
the pathophysiology of neuropsychiatric disorders (Stam, 2010; Pettersson-Yeo et al., 2011).
Functional integration has been extensively investigated using measures of brain connectivity,
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and the development of methods for quantifying brain
connectivity is a growing field in human neuroscience (Sporns,
2011; Stam and van Straaten, 2012).

Dynamics of brain connectivity are investigated using either
functional connectivity (FC), effective connectivity, or both
(van Diessen et al., 2015). For computing effective connectivity,
researchers have constructed complicated models such as vector
autoregression models and state-space models (Bressler and
Seth, 2011; Vicente et al., 2011; Friston et al., 2014; Seth
et al., 2015), and/or assume directions of causal interaction
between regions of interest (Friston et al., 2003, 2013). Hence,
although effective connectivity is an indispensable method for
determining causality, it requires an a priori assumption about
the network model. In contrast, FC is simply defined as the
statistical dependence of neural signals across spatially remote
brain regions (Sporns et al., 2004; Fingelkurts et al., 2005), which
can provide prerequisite knowledge for effective connectivity
analysis. Because of the simplicity in computing (Bullmore and
Sporns, 2009; Bruña et al., 2018), FC analysis is commonly
applied to the exploration and exploitation of neuroimaging and
electrophysiological data.

Functional connectivity has been measured using several
approaches, including phase synchronization measures
(Cohen, 2014c), amplitude envelope correlation (Bruns
et al., 2000), information theoretical approach (Roulston,
1999) and other methods (Wen et al., 2015; Bakhshayesh
et al., 2019) in studies using electroencephalography (EEG)
and magnetoencephalography (MEG). Among them, phase
synchronization measures, which assess a degree of clustering of
phase differences between signals, are widely used (Varela et al.,
2001; van Diessen et al., 2015).

Several phase synchronization measures are less susceptible
to common source effects (i.e., volume conduction and
magnetic field spread). The common source effect is an
inevitable and serious problem in electrophysiological studies
(Vinck et al., 2011), and cannot be completely eliminated
by source reconstruction methods (Schoffelen and Gross,
2009) or solved by independent component analysis (Almeida
et al., 2013). The common source effect is problematic in
estimating phase synchronization because it can generate
spurious phase synchronization with a phase difference of
0 or 180 degrees (zero-lag) among channels or sensors
(Cohen, 2014a; Khadem and Hossein-Zadeh, 2014). These phase
synchronization measures substantially reduce the common
source effects by attenuating zero-lag contributions, and
have been more frequently used for investigating FCs in
electrophysiological studies (Schoffelen and Gross, 2009).

The phase synchronization measures that are robust to
the common source effects include imaginary part of phase-
locking value (ImPLV) (Sadaghiani et al., 2012), imaginary
part of coherency (ImCoh) (Nolte et al., 2004), phase lag
index (PLI) (Stam et al., 2007) and weighted phase lag index
(wPLI) (Vinck et al., 2011): ImPLV and PLI are unaffected
by amplitudes of signals (i.e., amplitude-independent), while
ImCoh and wPLI are affected by amplitudes (i.e., amplitude-
dependent). Currently, however, little information is available to
help researchers choose an appropriate phase synchronization

measure for a specific experimental application. Although some
studies compared between FC measures using simulated data
(David et al., 2004; Stam et al., 2007; Vinck et al., 2011;
Lowet et al., 2016), it is unclear whether these findings can be
extrapolated to real human electrophysiological data. In other
studies, several FC measures were compared using task-free
(resting state) electrophysiological data (Dauwels et al., 2010;
Mezeiová and Paluš, 2012; Liang et al., 2016). However, in resting-
state EEG/MEG data, it is impossible to differentiate actual
FC from false-positive correlations. Other studies compared FC
measures from the viewpoint of reproducibility (Colclough et al.,
2016; Garcés et al., 2016), but more reproducible FC measures
do not necessarily exhibit better performance for detecting
FCs. In addition, in many of these studies (Dauwels et al.,
2010; Mezeiová and Paluš, 2012; Ard et al., 2015; Colclough
et al., 2016; Garcés et al., 2016; Lowet et al., 2016; Bakhshayesh
et al., 2019), comparisons were made between different types
of FC measures (e.g., amplitude envelope correlation and phase
synchronization measures) or between FC measures and effective
connectivity measures. However, because different types of FC
measures have different functional roles (Mehrkanoon et al.,
2014; Guggisberg et al., 2015), they should be regarded as
complementary approaches. Based on these considerations, it
still remains uncertain which phase synchronization measure is
suitable for FC studies in real data.

In the present study, we aimed to compare the four phase
synchronization measures, which are less sensitive to near
zero-lag interactions (thereby making the four FC measures
robust against the common source effects), for identifying
functional connectivity in real event-related MEG data. We
used neuromagnetic brain signals recorded during exposure
to somatosensory stimuli because somatosensory-induced FCs
between the primary and secondary somatosensory areas (SI
and SII, respectively) have been well documented (Simões et al.,
2003; Hagiwara et al., 2010, 2014). We computed FCs between
the SI and SII using the four phase synchronization measures,
ImPLV, ImCoh, PLI and wPLI, and compared the performance
of these measures in identifying somatosensory-induced FCs.
We first conducted statistical analysis of somatosensory-
induced FCs at an individual level by comparing these FCs
with prestimulus (“baseline”) FCs. Second, we compared each
of the four FC measures in terms of correct and false
detection of stimulus-induced FCs. Third, to examine effects
of amplitudes on performance differences among these FC
measures, we investigated event-related amplitude changes and
cross-periodograms of the time-frequency represented data.
Fourth, we analyzed descriptive statistics for these FC measures.
Finally, we conducted data simulation for a better understanding
of results from the actual MEG data.

MATERIALS AND METHODS

Participants
Thirty-five right-handed healthy volunteers (19 men, 16 women)
with a mean age of 23.8 years (from 19 to 30 years) were recruited.
All participants were native Japanese speakers and had no history
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of neuropsychiatric disorders or head trauma. Written informed
consent was obtained from all participants. The protocol was
approved by the committee of medical ethics at Kyoto University.

Experimental Task
In the MEG experiment, 0.1-ms electrical pulses were delivered
to the digital nerve on each side via ring electrodes. The
intensity was adjusted individually so that it was twice the
sensory threshold. The inter-stimulus interval varied randomly
between 1500 ms and 3500 ms to attenuate the effects of stimulus
anticipation of the participants. Three hundred pulses were
delivered on each stimulated side. As a result, there were 300 trials
on each side of stimulation (hereinafter referred to as the dataset)
for each participant. Participants were seated and relaxed with
their eyes open during MEG recording. They were asked not to
pay attention to the stimuli.

Data Acquisition
We recorded continuous signals using a whole-head 306 channel
MEG system (Elekta Neuromag, Helsinki, Finland) comprised
of 102 magnetometers and 204 planar gradiometers. The data
were recorded at a sampling rate of 600 Hz with a 0.1 to 200 Hz
bandpass filter for removing direct current drifts and signal
aliasing. Participants’ head positions relative to the MEG sensor
array were measured using four head-position-indicator coils
immediately before data recording in each session.

Data Analysis
We performed the following data analysis with custom-made
MATLAB R© (MathWorks, Natick, MA, United States) scripts.

Preprocessing
The session data were first processed using the signal-space
projection method. We then checked inter-session head position
movement by computing the Euclidean distance of the head
positions in two sessions in each dataset for each participant.
Because the inter-session head position distances were less than
7 mm (around one-fifth of the averaged distance between sensors
in the MEG system) in all but four of the 63 datasets (7.0, 7.8,
8.7 and 9.0 mm) and the mean of these distances was 3.3 mm,
we did not perform head movement correction (Nenonen et al.,
2012; Stolk et al., 2013). We used only signals recorded by
the 204 gradiometers (hereinafter referred to as channels) for
further analyses.

We extracted peri-event signals (0.7 s before to 0.7 s after
each stimulus onset) from each trial of these processed data.
Trials containing large artifacts (trials in which the maximum
peak-to-peak amplitude exceeding 1300 fT/cm) were excluded
from further analysis. In this procedure, both datasets of three
participants and one dataset of one participant were excluded
because a substantial number of trials were rejected due to artifact
contamination (50 or more trials out of 300 trials). In the rest
of the datasets (63 datasets), the percentages of rejected trials
ranged from 0.0% to 14.0% with a mean of 3.1%. After the
quality assurance, we concatenated the remaining trials (original
trial data, OTD).

Selection of Reference Channels
We identified channels over the contralateral SI to the stimulus
(c-SI) using somatosensory-evoked fields (SEFs). After the
application of a 1-Hz high-pass filter, we computed SEFs by
averaging signals of the OTDs. The three channels that clearly
showed the early SEF components (i.e., N22m, P30m) on visual
inspection (Ishibashi et al., 2000) were selected as reference
channels in each dataset (hereinafter referred to as c-SI channels).
We here also determined the sensors in which either channel
showed SEFs from the SII ipsilateral to the stimulus (i-SII)
(channels of these sensors are hereinafter referred to as i-SII
channels). The waveforms and latencies of SEFs as well as
the location of the sensors over the i-SII were consistent
with those reported in previous studies (Kakigi et al., 2000;
Wegner et al., 2000).

Subtraction of Stimulus-Locked Brain Responses
From Signals of Each Trial
When stimuli evoke stimulus-locked responses (e.g., phase
resetting) in remote regions, these may result in “apparent”
phase locking between those regions even if there is no actual
interaction (e.g., common locking to stimuli Simões et al.,
2003). When stimulus-locked responses repeatedly occur
after somatosensory stimuli, they emerge as somatosensory-
evoked potentials/fields (SEPs/SEFs) after trial averaging.
Hence, if SEPs/SEFs are present in remote regions, these
activities can generate “apparent” FCs. To remove such a
spurious effect, a previous study subtracted trial-averaged
signals from signals in each trial (Spadone et al., 2015).
We applied this method to our MEG data. In practice, we
simply subtracted trial-averaged MEG signals (equivalent to
SEFs) from each trial data of the OTDs in each individual
before computing FCs.

Selection of Channel Pairs
We computed the four FC measures (ImCoh, ImPLV, PLI,
and wPLI) between each of the c-SI channels and the other
203 channels in each dataset. We transformed the time series
of each trial of the OTD into a time-frequency domain
using short-time Fourier transform with 333.3 ms (200 time
points) Hanning windows with 92.5% overlap. The analyzed
frequency range was up to 45 Hz. The FC values were then
rescaled in each of the FC measures by dividing them by
the root mean squares of the FC values extracted from all
the “pixels” (i.e., analysis units of the data represented in
the time-frequency space) of all the channels. These rescaled
FC values were averaged across the FC measures in each
pixel and channel.

Using this rescaled and averaged FC values, we selected the
channel pair (one for the c-SI channels and the other for the i-SII
channels) between which the greatest FC values were identified
during the poststimulus period (0–0.5 s) in each dataset. In
each of the datasets where somatosensory-induced FCs were
poorly identified visually (19 out of 63 datasets), we selected the
channel pair, which showed the largest SEFs in the c-SI and the
i-SII channels.
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FIGURE 1 | Processing pipeline for constructing surrogate data. Each “trial K” and “trial KR ” represents Kth actual trial onset (K = 1,2, ... , N) and KR th dummy trial
onset (KR = 1,2, ... , NR). c-SI Ch: one of a channel pair over the primary somatosensory cortex contralateral to the stimuli, i-SII Ch: the other of a channel pair over
the secondary somatosensory cortex ipsilateral to the stimuli.

Constructing Surrogate Data
To focus on stimulus-induced FCs, we needed to compare
poststimulus FCs with resting-state (“baseline”) FCs (Delorme
and Makeig, 2004). In addition, we used the cluster-size-based
test to solve the multiple comparison problem in statistical
analysis for our time-frequency represented data (Maris and
Oostenveld, 2007). Because there is no a priori knowledge about
null distributions of these test statistics (i.e., resting-state FC
values and cluster sizes), we used a surrogate data method to
obtain these null distributions (Lachaux et al., 1999).

We generated surrogate data of each dataset in the following
procedure (Figure 1). From the same participant’s MEG data
recorded when the stimuli were delivered on the other side, we
randomly selected 1,100 dummy trial onsets. After trial rejection
as in section “MATERIALS AND METHODS Preprocessing,”
we obtained surrogate trial data by extracting peri-event signals
(random trial data, RTD). We generated the RTDs in each
dataset (the number of trials ranged from 853 to 1,073 among
all the datasets). In these RTDs, although the timing of stimulus
events was lost, the temporal relationship of the signal time

series was preserved across all channels. Note that the RTD had
the same statistical properties as resting-state (and prestimulus)
MEG data and served as control data for stimulus-induced
phase synchronization.

Performance Analysis of Functional Connectivity
Measures
Statistical analysis for identifying significant functional
connectivities
For assessing the significance of somatosensory-induced FCs,
we used the following two-step thresholding method. We first
conducted value-based thresholding in each pixel of the time-
frequency space (pixel-based test). We then conducted cluster-
size-based thresholding by grouping neighboring pixels with
suprathreshold values as clusters (cluster-based test) (Cohen,
2014a) for solving the multiple comparison problem. To
infer significance for these tests, we computed histograms
approximating probability distributions of these statistics using
the generated surrogate data. Because cluster sizes took integers
greater than or equal to 0, we were able to evaluate the statistical
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significance of clusters in a more precise manner by computing
cluster sizes at a finer scale. To this end, we analyzed the data with
relatively small time bins (10 ms), resulting in a 97% overlapping
Hanning window. Note that this rescaling of time bins does not
change the order of cluster sizes.

We obtained the thresholds for the pixel-based test in each
dataset as follows (Figure 2, upper right).

(1) Computing each FC measure between the pre-selected
channel pair using N trials of data randomly sampled from
the RTD (N = 100, 200) and collecting the maximum
value in each frequency row 1000 times to compute null
distributions of surrogate FC values in each frequency row
and each of the FC measures.

(2) Computing the 95th percentiles of these null distributions
as threshold values of each frequency row and each of the
FC measures for the pixel-based test.
We obtained the thresholds for the cluster-based test in
each dataset as follows (Figure 2, upper right).

(3) Computing each of the FC measures between the pre-
selected channel pair using N trials of data randomly
sampled from the RTD (N = 100, 200) and thresholding
these surrogate FC values by applying the corresponding
threshold values computed in the step (2) in each frequency
row and each FC measure.

(4) Grouping 4-connected neighboring pixels (constituted with
time bins and frequency bins) with suprathreshold values as
clusters and collecting the maximum cluster size (number
of pixels in each cluster) in each FC measure.

(5) Iterating steps (3) + (4) 500 times to obtain null
distributions of the maximum cluster size in each of the FC
measures and computing the 95th percentiles of these null
distributions as threshold cluster sizes of each FC measure
for the cluster-based test.
We then applied the two-step thresholding method to each
OTD as follows (Figure 2, upper left).

(6) Computing each FC measure between the pre-selected
channel pair using N trials (N = 100, 200) randomly
sampled from the OTD.

(7) Conducting the pixel-based test to these FC values in
the same way to the step (3) and grouping 4-connected
neighboring pixels with suprathreshold values as clusters.

(8) Leaving clusters with cluster sizes larger than the threshold
cluster size as statistically significant FCs in each FC
measure (double-thresholded FCs, dFCs).

(9) Iterating steps (6) + (7) + (8) 250 times.

We thus obtained sets of 250 dFCs for each number of
trials and each FC measure in each dataset. This procedure
controlled for a family-wise error rate of each dFC at 0.05 after
the multiple comparison correction in the time-frequency space.
We averaged 250 dFCs to obtain the individual-level averages
of dFCs in each dataset. We then computed the grand-
averages of dFCs by averaging these individual-averages of dFCs
across all the datasets for each number of trials and each of
the FC measures.

Comparison of performance among the functional
connectivity measures
Using the RTDs as the surrogate data, by construction, we
should be able to detect stimulus-induced FCs only during the
poststimulus period but not during the prestimulus period (at
a 0.05 family-wise error rate). Thus, to assess correct and false
detection rates of these FC measures, we computed true positive
rates (TPRs) and true negative rates (TNRs) using the dFCs in the
following way. First, time bins in each 50-ms period immediately
before and after the stimulus onset were excluded from this
analysis because time windows of these bins were considerably
affected by both prestimulus and poststimulus brain signals.
We then computed the maximum cluster size in each of the
prestimulus and poststimulus periods for each dFC (zero if no
cluster survived). We computed the TPRs as proportions of dFCs
in which the maximum cluster sizes in the poststimulus period
were greater than those in the prestimulus period in each set
of 250 dFCs. We computed the TNRs as proportions of dFCs
in which the maximum cluster size in the prestimulus period
was greater than zero among each set of 250 dFCs. We thus
obtained the TPRs and TNRs for each number of trials and each
FC measure in each dataset.

To detect significant differences in these TPRs and TNRs
among the FC measures, we compared these rates between
the FC measures for each number of trials (i.e., 100 and
200) using the Friedman test. A post hoc analysis was
conducted using the one-tailed Wilcoxon signed-rank test to
the directional alternative hypothesis, which states that the
rates of one FC measure were greater than those of another
measure (4 × 3 pairs in total). For the multiple comparison
procedure, the Benjamini–Hochberg method (Benjamini and
Hochberg, 1995) was used to control for the false discovery
rate below 0.05.

Amplitude Effect Analysis
Amplitudes of time-frequency transformed signals can affect
FC values, particularly when computing coherence and
related measures (e.g., ImCoh and wPLI). As shown in
Appendix, amplitudes work as a weighting factor of cross-
periodograms for computing these measures (i.e., amplitude
weighting). To investigate the effects of signal amplitudes on
performance differences among the FC measures, we conducted
the following analyses.

Amplitude coherence analysis
To investigate event-related amplitude changes, we computed
event-related amplitude coherence (AC) in each dataset
according to the formula in Appendix (Srinath and Ray, 2014).
For statistical analysis, we applied the same procedure with
the FC measure analysis (see section “MATERIALS AND
METHODS Statistical analysis for identifying significant
functional connectivities” and Figure 2) using the RTDs as the
surrogate data. The number of trials for random sampling was
fixed to 200 in this analysis. We computed a set of 250 double-
thresholded ACs (dACs, both value- and size-based thresholded)
in each dataset. We then computed the grand-average of dACs
by averaging these sets of 250 dACs over all the datasets.
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FIGURE 2 | (Upper panel, thick dashed line) Processing pipeline of statistical analysis for identifying significant functional connectivities (FCs) and amplitude
coherences (ACs). (Middle panel, thick dashed line) Processing pipeline for an individual-level analysis for obtaining the individual-averages of double-thresholded
functional connectivities and true positive/negative rates. (Lower panel, thick dashed line) Processing pipeline for a group-level analysis for the individual results.
dFCs/dACs: double-thresholded FCs/ACs, MaxSzpre/MaxSzpost: maximum cluster sizes of the prestimulus/poststimulus periods.
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Cross-periodogram analysis
To investigate the relationship of the amplitudes of signals
with the synchronized phases, we analyzed cross-periodograms
(complex values) from pixels of the time-frequency represented
OTD. Computing the rescaled and averaged FCs as in section
“MATERIALS AND METHODS Selection of Channel Pairs,” we
extracted cross-periodograms from the pixel with the greatest
value in each dataset, and computed the magnitudes (i.e.,
amplitudes) and angles (i.e., phases) of these cross-periodograms.

We computed phase lags (angles of phase locking) of
stimulus-induced FCs in each dataset as the mean angle of
angles of complex-valued phase-locking values and coherencies
computed using the cross-periodograms. The phases of the
cross-periodograms were converted to the angles relative to the
estimated phase lag in each dataset (relative phases ranging from
0 to pi). We then summarized the relationship between the
amplitudes of the cross-periodograms and the relative phases
derived from all datasets by dividing the amplitudes into 9 bins
from 0 to pi according to the relative phases.

We also estimated signal-to-noise ratios (SNRs) of the
stimulus-induced FCs using these cross-periodograms because
the phase lags and SNRs were likely the major determining
factors for the performance of the FC measures. The SNR
was computed in each dataset as the ratio of the squared
magnitude of mean of the cross-periodograms and the squared
magnitudes of the residuals (after subtracting the mean from
the cross-periodograms). Note that this computation was based
on the assumption that phase-locked cross-periodograms were
constant across trials. When phase-locked cross-periodograms
were not constant (i.e., trial-by-trial variations), these variations
were included in the residuals, which probably resulted in an
underestimation of the SNRs.

Descriptive Statistics of Functional Connectivity
Measures
To investigate the underlying mechanism for the performance
difference between the two amplitude-dependent measures
(ImCoh and wPLI) (see section “RESULTS Comparison of
Performance Across Functional Connectivity Measures”), we
computed a range of population parameters as means and
coefficients of variance (CVs) of these two FC measures
in each pixel in each dataset. We first defined a mask
image for stimulus-induced FCs in the time-frequency space
by thresholding the grand-averaged dFCs. We also defined
the pixels, ranging from 20 to 40 Hz in the frequency
bands and 0.5 to 0.3 s before the stimulus onset in the
time bins, as a mask image for prestimulus FCs. Using a
bootstrap method (number of trials = 200), we obtained sets
of FC values from these two mask images in the two FC
measures. To correct for the difference in scales of the FC
values between the FC measures, we divided these sets of
FC values by the averaged prestimulus FC value in each FC
measure, producing normalized FC values. We then computed
means and CVs of these sets of normalized FC values, and
compared these values between the FC measures. A detail of
this analysis is described in Supplementary Material 1 and
Supplementary Figure S1.

Data Simulation of Noise-Contaminated
Periodograms
To substantiate the preceding results based on the actual
MEG data from a numerical point of view, we applied the
same analyses to simulated noise-contaminated periodograms.
We simply generated a single pair or a set of 10 pairs
(multiple pairs) of phase-locked complex numbers (signals)
and added random complex numbers (noises) to them. For
this data simulation, we set three parameters: SNRs, phase
lags and numbers of trials. We used a surrogate data method
for statistical analysis in this data simulation. As surrogate
simulation data, we generated a single pair or multiple pairs
of phase-UNLOCKED complex numbers with noise. Using the
thresholded results, we computed true positive rates (TPRs)
as the proportions of the simulations where one or more
simulated FCs survived. We then compared TPRs among the
FC measures. We also conducted the descriptive statistics
analysis for ImCoh and wPLI using these simulated data
(number of trials = 200). Using the FC values in the single-
pair simulation, we computed means and CVs of these FC
values normalized by the FC values computed from the surrogate
simulation data. A detail of the data simulation is described in
Supplementary Material 2.

RESULTS

In all 63 datasets, SEFs were visually identified in the channels
over the c-SI and i-SII. After selecting a channel pair in
each dataset (see section “MATERIALS AND METHODS
Section Selection of Channel Pairs ”), we conducted the
following analyses.

Comparison of Performance Across
Functional Connectivity Measures
Conspicuous stimulus-induced FCs were found during a period
of 50–250 ms after the stimulus and in the frequencies ranging
from 3 Hz to 12 Hz in all FC measures (Figure 3). Both
ImCoh and wPLI showed larger and temporally smoother
stimulus-induced FCs than ImPLV and PLI. Only in ImCoh
and wPLI, stimulus-induced FCs were also found in the 18–
24 Hz frequencies, but these FCs were less obvious and lasted
for a shorter time than the stimulus-induced FCs in the 3–
12 Hz frequencies.

The TPR analysis revealed differences in the TPRs among
the FC measures (Figure 4A). A Friedman test revealed
significant differences in the TPRs among the FC measures
regardless of the numbers of trials (p < 0.001 for both 100
trials and 200 trials). In the post hoc analysis (Table 1), the
TPRs of ImCoh and wPLI were significantly greater than
those of ImPLV and PLI regardless of the number of trials
(false discovery rate, p < 0.05). The TPRs of ImCoh were
significantly greater than those of wPLI for 100 trials, while
not for 200 trials.

Contrary to the TPRs, the TNRs were around 0.975 for all
the FC measures and for both the numbers of trials (Figure 4B).
The Friedman test revealed no statistically significant differences

Frontiers in Neuroscience | www.frontiersin.org 7 June 2020 | Volume 14 | Article 648

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00648 June 19, 2020 Time: 13:31 # 8

Yoshinaga et al. Comparison of Phase Synchronization Methods

FIGURE 3 | Grand-averages of double-thresholded functional connectivities
(dFCs) across all the datasets. As shown in the rightmost-bottom panel, each
panel shows data in the time range (abscissa) of 0.5 s before to 0.5 s after the
stimulus onset (0 s) and in the frequency range (ordinate) between 2 Hz and
45 Hz. Note that each pixel value represents a proportion of the
corresponding pixel to be in significant clusters among all 250 sets of random
sampling and all datasets.

among the FC measures for either 100 (p = 0.934) or
200 (p = 0.863) trials. Thus, the post hoc analysis was not
conducted for the TNRs.

Amplitude Effect Analysis
The grand-average of dACs was less evident (Figure 5A) in
comparison with the grand-averages of dFCs (see Figure 3),
suggesting that ACs were not consistent in the present dataset.
Only a few significant clusters were identified in the grand-
averages of dACs, which showed little or no overlap with the
clusters identified in the grand-averages of dFCs. Based on this
result, we considered that the event-related amplitude changes
contributed little to the results of the FC performance analysis.

Focusing on the amplitudes of cross-periodograms, the
amplitudes became greater as these phases became closer to
the estimated phase lag as exemplified in Figure 5B. This
finding was evident in the group level analysis, where the
amplitudes gradually decreased as the relative phases became
larger (Figure 5C). The amplitudes were significantly different
among these bins (p < 0.001, Kruskal–Wallis test). These
findings indicate that cross-periodograms with angles close
to the actual phase lag have large amplitudes and thus
should be heavily weighted in the amplitude weighting for
computing wPLI and ImCoh.

The phase lags of the stimulus-induced FCs, which were
rescaled from 0 to pi/2 as the minimum angle from the horizontal
in the polar coordinates, ranged from 0.300 to 0.997 times of pi/2
among all datasets (25th–75th percentiles: 0.544–0.846 times of
pi/2), and were more than pi/4 in 50 out of these 63 datasets.

FIGURE 4 | (A) Box plots of the true positive rates (TPRs) with the number of trials being 100 (AI) and 200 (AII). For this plotting purpose, we only used the datasets
(n = 35) in which the TPRs for the number of trials 200 were above 0.05 across all the FC measures. (B) Box plots of the true negative rates (TNRs) of all the
datasets when the number of trials is100 (BI) and 200 (BII). On each box plot, the red line, the bottom and top edges of the box represent the median, 25th and
75th percentiles of the TPRs, respectively. The whiskers represent the most extreme values of the TPRs except outliers.
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TABLE 1 | Results of the post hoc analysis of differences in the true positive rates
between each pair of the functional connectivity measures when the number of
trials was 100 (A) and 200 (B).

(A)

Inferior

ImPLV ImCoh PLI wPLI

Superior ImPLV N/A 1.000 0.000* 0.999

ImCoh 0.000* N/A 0.000* 0.015*

PLI 1.000 1.000 N/A 1.000

wPLI 0.001* 0.985 0.000* N/A

(B)

Superior ImPLV N/A 0.999 0.000* 0.999

ImCoh 0.001* N/A 0.000* 0.199

PLI 1.000 1.000 N/A 1.000

wPLI 0.001* 0.804 0.000* N/A

Each value represents p-value of the one-tailed Wilcoxon signed-rank test under
the null hypothesis that there is no difference in the rates between each pair of the
measures of the row header and the column header. N/A, not applicable. *False
discovery rate < 0.05.

The SNRs ranged from 0.012 to 0.207 (25th–75th percentiles:
0.026–0.069).

Comparison of Descriptive Statistics
Between Amplitude-Dependent FC
Measures
The descriptive statistics analysis revealed that statistical
properties (i.e., means and CVs) of normalized FCs were
somewhat different between ImCoh and wPLI in stimulus-
induced FCs, while quite similar in prestimulus FCs (Figure 6).
It appeared that both the means and CVs of normalized FCs
were larger in ImCoh than those in wPLI. These differences
between ImCoh and wPLI were more evident when the means
of normalized FCs were high. For statistical confirmation of this
observation, we conducted a linear regression analysis between
means (response variable) and CVs (explanatory variable) of
the normalized stimulus-induced FCs. The estimated slope and
intercept were −2.582 and 0.077, respectively, for ImCoh, and
−2.382 and 0.183, respectively, for wPLI. The estimated slopes
were significantly different between ImCoh and wPLI (p< 0.001,
F-test). These findings indicate that ImCoh take higher mean
and CVs than wPLI in pixels where the stimulus-induced
FCs are stronger.

Data Simulation of Noise-Contaminated
Periodograms
The simulation study supported the results from the actual MEG
data, revealing that ImCoh and wPLI showed higher TPRs than
ImPLV and PLI in almost all pairs of parameters. The results
were roughly consistent across the single-pair (Figure 7A) and
the multiple-pair simulation (Figure 7B). ImCoh showed slightly
higher TPRs than wPLI when the phase lags were relatively large
(equal to or more than pi/4). This pattern was more evident

in the case of the multiple-pair simulation than the single-pair
simulation. On the contrary, wPLI showed higher TPRs than
ImCoh when the phase lags were small (i.e., pi/12). ImCoh
showed slightly higher TPRs than wPLI when the SNR was low
and vice versa at some of the phase lags (e.g., pi/6, pi/4) in
the single-pair simulation, but this pattern was indistinct in the
multiple-pair simulation. The number of trials appeared to be less
influential on the differences of TPRs than the phase lags. Note
that the range of the SNRs (from 0.009 to 2.081) in the simulation
study covered that of our real MEG data (see section “RESULTS
Amplitude Effect Analysis”).

The properties of descriptive statistics (means and CVs)
showed similar results to those of the actual MEG data
(Figure 7C), particularly at phase lags equal to or greater than
pi/4. That is, both the means and CVs of normalized FC values
were greater in ImCoh than those in wPLI as the means became
greater. This result supported an interpretation that the tendency
for larger mean values at the expense of larger CVs related to the
slightly better performance of ImCoh over wPLI.

DISCUSSION

In the present study, we compared the performance of the four
FC measures (all of which are robust to the effects of common
sources) for detecting somatosensory stimulus-induced FCs.
ImCoh and wPLI exhibited superior performance in detecting
the stimulus-induced FCs compared with ImPLV and PLI while
the four methods, similarly, rejected prestimulus FCs to be taken
as stimulus-induced FCs. The comparison between ImCoh and
wPLI revealed that ImCoh showed slightly superior performance
in detecting the stimulus-induced FCs.

Somatosensory-Induced Functional
Connectivity Between the Primary and
Secondary Somatosensory Areas
In the present study, we focused on somatosensory stimulus-
induced FCs between the c-SI and i-SII (Kakigi et al., 2000;
Schnitzler et al., 2000; Lin and Forss, 2002; Kaas, 2012). Previous
studies identified somatosensory-induced phase synchronization
between these areas in humans (Simões et al., 2003; Blatow
et al., 2007; Hagiwara et al., 2010, 2014; Weisz et al., 2014),
and some of them reported non-zero-lag phase synchronization
(Hagiwara et al., 2014; Weisz et al., 2014). These FCs are thought
to be supported by fiber connections between these areas in
both humans and non-human primates (Cipolloni and Pandya,
1999; Disbrow et al., 2003; Eickhoff et al., 2010). Based on these
previous findings, we consider that the present MEG data should
contain somatosensory stimulus-induced FCs between the c-SI
and i-SII as a conceivable example of stimulus-induced FCs. It
remained unclear, however, as to which measure to be chosen to
detect the should-be-present FC. This problem motivated us to
run the present study.

The somatosensory-induced FCs in the present study showed
smaller FCs in a relatively high frequency range (e.g., beta to
low gamma bands) in reference to previous studies (Simões
et al., 2003; Hagiwara et al., 2010, 2014). Some experimental
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FIGURE 5 | (A) Grand-average of double-thresholded amplitude coherences (dACs) in the time range (abscissa) of 0.5 s before to 0.5 s after the stimulus onset (0 s)
and in the frequency range (ordinate) between 2 Hz and 45 Hz. Note that each pixel value represents a proportion of the corresponding pixel to be in significant
clusters among all 250 sets of random sampling and all datasets. (B) Polar plot of the cross-periodograms of one representative dataset (dataset 42). Each dot
represents each cross-periodogram and the blue dashed line represents the direction of the estimated phase lag. The distribution of the plot appear shifted from the
origin toward the direction at the estimated phase lag. (C) Box plots of amplitudes of cross-periodograms sorted into 9 bins according to these phases relative to
angles of phase locking (i.e., phase lags). These 9 bins are successive bins from 0 to pi. On each box plot, the red line, the bottom and top edges of the box
represent the median, 25th and 75th percentiles of the amplitudes in each bin, respectively. The whiskers represent the 10th and 90th percentiles.

and technical differences may explain this discrepancy. First,
the stimulation method we used was slightly different from that
employed in the previous studies. While electrical stimuli were
delivered to the median nerve at the wrist in these previous
studies, we stimulated the digit nerve of the thumb. Because the
median nerve includes motor branches and sensory branches
other than the digit nerve of the thumb, the median nerve
stimulation was expected to induce stronger inputs than the digit
nerve stimulation. Second, the FC measures are different. We
focused on the FC measures that are robust to the effects of
common sources. According to these definitions, these measures
are assumed to be less sensitive than other FC measures such
as phase-locking value or coherence (Stam et al., 2007; Vinck
et al., 2011), although this sacrificing sensitivity is essential for
achieving the robustness to the common source effects. Third,
for statistical analysis, we used a cluster-size-based thresholding,

which could potentially exhibit a bias toward detecting FCs
with lower frequencies. This is because low-frequency FCs are
generally smoother in the time domain than high-frequency FCs
(Cohen, 2014b). Hence, cluster sizes tend to be larger at low
frequencies than high frequencies, resulting in a tendency for FCs
of lower frequencies to survive in cluster-based analysis.

Validation of the Two-Step Thresholding
Procedure Using a Surrogate Data
Method
When we applied the two-step statistical procedure to the
“baseline” data (i.e., presimulus or resting-state FCs), no cluster
was expected to survive in 95% of cases if the procedure
correctly controlled for a family-wise error rate of 0.05. The
results of the TNR analysis revealed that TNRs were around
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FIGURE 6 | Results of the descriptive statistics analysis. (A) Dot plots of means against natural log-transformed coefficients of variance of normalized functional
connectivity (FC) values retrieved from the prestimulus FC mask. The plots are well overlapping between ImCoh and wPLI. (B) Dot plots of means against natural
log-transformed coefficients of variance of normalized FC values retrieved from the stimulus-induced FC mask. The dot plot of ImCoh appears gradually shifted
upward and leftward in comparison with that of wPLI as means of normalized FC values become greater. Note that values increase from right to left in the x-axis of
both plots. nMEANs, means of normalized FC values; nCVs, coefficients of variance of normalized FC values.

0.975 irrespective of the FC measures and the number of
trials, yielding the family-wise error rates of the two-step
procedure around 0.025. Although we controlled the family-wise
error rates of false detection of any clusters only during the
peristimulus periods (prestimulus and poststimulus) under 0.05,
we considered clusters only during the prestimulus period for
the TNR analysis, which explains why the family-wise error rates
were approximately half of 0.05 in the current result. For this
reason, we confirmed that our procedure is a valid method to
control the family-wise error rate at 0.05 for statistical analysis
of time-frequency represented data.

Comparison of Performance Between
the Amplitude-Independent and
Dependent Measures
ImCoh and wPLI showed significantly higher TPR than ImPLV
and PLI, while there was no significant difference in TNRs
among the four FC measures. These results suggest that ImCoh
and wPLI had advantages in detecting somatosensory-induced
functional connectivities over ImPLV and PLI, at least in the
experimental condition employed here. Both ImCoh and wPLI
are computed from coherences, while ImPLV and PLI are
computed from phase information. As noted in several previous
studies (Lachaux et al., 2002; Srinath and Ray, 2014), coherences
can be regarded as amplitude-weighted phase-locking values.
Therefore, the differences between ImCoh/wPLI and ImPLV/PLI
are presumed to arise from the effects of amplitude weighting.

We first investigated the possibility that event-related changes
in amplitude of oscillations caused the difference in the

performance. However, the AC analysis revealed that event-
related amplitude changes were not significant and had little
effect on the difference of dFCs among the four FC measures
in the present data. This finding indicates that event-related
amplitude changes were less likely to explain the difference
between ImCoh/wPLI and ImPLV/PLI.

We next examined cross-periodograms because phase
synchronization is computed using this information (Gordon
et al., 2013). This cross-periodogram analysis showed that, by
considering the amplitudes, cross-periodograms with angles
closer to the proper angle were more heavily weighted (see
Figure 5C). Because of this amplitude weighting, the amplitude-
dependent measures are expected to show better performance
than the amplitude-independent measures in detecting FCs
between correlated signals contaminated by noises. Note that
this amplitude weighting does not depend on the existence of
event-related amplitude coherences.

Comparison of Performance Between
the Amplitude-Dependent Measures
Between the two amplitude-dependent FC measures, ImCoh
exhibited slightly better performance than wPLI in the TPR
analysis (Figure 4 and Table 1). This difference can be explained
through our descriptive statistics analysis. In general, both higher
contrast of means between two groups and lower CVs (or
standard deviations) in each group are expected to increase
the probability of detecting a significant difference between
these groups. There seemed to be a trade-off statistical property
between means and variances in ImCoh (i.e., higher means
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FIGURE 7 | Results of the data simulation of periodograms. (A,B) Surface plots of the true positive rates against numbers of trials and signal-to-noise ratios (SNRs)
at each angle in the single-pair simulation (A) and multiple-pair simulation (B). Surfaces of the plots of each functional connectivity (FC) measure colored with the
corresponding color in the color map are overlaid as layers so that the measure with the greatest rate is identified in the uppermost layer. Overall, ImCoh and wPLI
show higher rates in most situations. ImCoh tends to have higher rates in the multiple-pair simulation or at larger phase lags, whereas wPLI tends to have higher
rates in the single-pair simulation or at smaller phase lags. (C) Dot plots of the means against the coefficient of variances of the normalized FCs in the descriptive
statistics analysis for the simulated data. The sizes of dots change depending on the SNRs (getting larger as the SNRs become higher). Note that values increase
from right to left in the x-axis of all plots. nMEANs, means of normalized FCs; nCVs, coefficients of variance of normalized FCs.
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and higher CVs of the normalized FC values in comparison
with those in wPLI), judging from the distribution of the CVs
against the means of the normalized FC values (see Figure 6B).
Our data simulation replicated this finding, particularly when
angles of cross-periodograms were relatively large (Figure 7C).
Considering the results of our TPR analysis, the greater mean
values seemed to be more beneficial than the lower CVs in this
trade-off relationship.

Our data simulation also revealed that ImCoh showed better
performance in considering periodograms of multiple-pair data
than those of single-pair data. Because considering multiple-pair
data is expected to reduce the influence of CVs in comparison
with single-pair data, it can be inferred that the difference of TRPs
was more related to the difference of means in our descriptive
statistics analysis. Therefore, the higher contrast of means in
ImCoh was likely to be more crucial for the statistical significance
of stimulus-induced FCs in the time-frequency space.

Comparison With Previous Studies
Only a few previous studies directly compared FC detection
performance among FC measures that are not affected by the
common source effects (Stam et al., 2007; Vinck et al., 2011).
These studies reported an advantage for PLI/wPLI over ImCoh
in contrast to our study. There are several possible reasons for
this discrepancy. First, as also noted in the previous studies (Stam
et al., 2007; Vinck et al., 2011), phase lags of FCs are thought to
affect the performance of these FC measures. In our real MEG
data, most of the stimulus-induced FCs had phase lags larger
than pi/4, where ImCoh showed better performance in both the
actual MEG data and the simulated data. On the contrary, our
data simulation revealed that wPLI showed higher TPRs when
the phase lags were close to zero (e.g., phase lag = pi/12 in
Figures 7A,B). To investigate the relationship of phase lags to the
performance of these FC measures in actual brain signals, further
studies should be conducted with other data.

Second, PLI and wPLI are thought to be robust to noise
contamination when noise is small enough not to change the
signs of imaginary parts of cross-periodograms. In simulated data
and human EEG data of absence seizures in a previous report
(Stam et al., 2007), PLI and wPLI showed better performance in
detecting FCs than ImCoh. However, in our cross-periodogram
analysis (Figure 5B), the dot plots of cross-periodograms were
widely distributed across the real axis in the polar coordinates.
This finding suggests that actual brain signals are not so stable
that signs of imaginary parts of cross-periodograms stay the same.
Thus, we presumed that these two factors (phase lag of FCs and
level of noise) would explain the discrepancy between our results
and the previous reports.

Limitations of the Present Study
The current results focusing on the stimulus-induced FC are
not directly applicable to resting-state electrophysiological data.
However, our findings suggest that the amplitude weighting,
which can attenuate the effect of noise on computing FCs, may be
critical for the difference of performance between the amplitude-
dependent and independent measures. Because the amplitude
weighting is presumed to be effective in computing resting-state

FCs, our results may be applicable, to some extent, to resting-
state FC analysis.

An important issue of cluster-based analysis should be
considered when interpreting the current results. In the cluster-
based method, we considered clusters composed of time and
frequency bins in the time-frequency space. However, to use the
sizes of these clusters as a fair measure of extent, the assumption
must be satisfied that frequency bins are equivalent to temporal
bins in terms of smoothness (i.e., a degree of correlation between
adjacent bins). However, this may not be the case because, in
time-frequency transform methods such as short-time Fourier
transform, the smoothness of frequency bins usually differs from
that of temporal bins (Cohen, 2014b). Using different temporal
and frequency bins in time-frequency transform can lead to
differences in threshold values in cluster-based analysis, resulting
in differences in the results of statistical analysis, even when
conducted with the same data. To date, there is no validated
solution for this problem. Thus, further improvements are
required to address this limitation of cluster-based methods.

CONCLUSION

In the present study, focusing on the FC measures that are robust
to the common source effects, we investigated the performance of
these measures in detecting somatosensory-induced FCs. Overall,
ImCoh was the most sensitive method for detecting stimulus-
induced FCs, at least in the present experimental condition. The
difference in the performance was partially explained by the
notion that the amplitude weighting was effective for attenuating
negative effects of noise contamination in computing FCs and
by different properties of descriptive statistics among these
measures. The present work offers a useful insight into functional
connectivity studies with electrophysiological data.
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APPENDIX

Considering two signals X1 and X2, short-time Fourier transform produces two complex values F(X1) and F(X2) in the following
equations,

F(X1) = AX1(t,f ,k) · exp(iθX1(t,f ,k))

F(X2) = AX2(t,f ,k) · exp(iθX2(t,f ,k))

where, t, f and k represent indices of time, frequency and trials, respectively. Event-related phase-locking value PLV (Lachaux et al.,
1999) and coherence ERCoh (Andrew and Pfurtscheller, 1996; Lachaux et al., 2002) are computed as follows;

PLV(t,f ) =
|
∑

k exp(iθX1(t,f ,k))
∗ exp(iθX2(t,f ,k))|

N

ERCoh(t,f ) =
|(
∑

k F(X1)
∗ F(X2))|√∑

k F(X1) ∗ F(X1)
√∑

k F(X2) ∗ F(X2)

=
|
∑

k AX1(t,f ,k)AX2(t,f ,k)· exp(iθX1(t,f ,k))
∗ exp(iθX2(t,f ,k))|√∑

k A
2
X1(t,f ,k)

√∑
k A

2
X2(t,f ,k)

where, N represents total number of trials. As these equations indicate, amplitudes work as a weighting factor of cross-periodograms
in computing coherence (and coherency). Focusing on a difference between these equations, we can define amplitude coherence AC
as follows (Srinath and Ray, 2014);

AC(t,f ) =
|
∑

k AX1(t,f ,k)AX2(t,f ,k)|√∑
k A

2
X1(t,f ,k)

√∑
k A

2
X2(t,f ,k)
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