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FGF23, CYP24A1 and VDR altogether play a significant role in genetic susceptibility to chronic kidney disease
(CKD). Identification of possible causative mutations may serve as therapeutic targets and diagnostic markers
for CKD. Thus, we adopted both sequence and sequence-structure based SNP analysis algorithm in order to over-
come the limitations of both methods. We explore the functional significance towards the prediction of risky
SNPs associated with CKD. We assessed the performance of four widely used pathogenicity prediction methods.
We compared the performances of the programs using Mathews correlation Coefficient ranged from poor
(MCC = 0.39) to reasonably good (MCC = 0.42). However, we got the best results for the combined sequence
and structure based analysis method (MCC = 0.45). 4 SNPs from FGF23 gene, 8 SNPs from VDR gene and 13
SNPs fromCYP24A1 genewere predicted to be the causative agents for human diseases. This studywill be helpful
in selecting potential SNPs for experimental study from the SNP pool and also will reduce the cost for identifica-
tion of potential SNPs as a genetic marker.

© 2016 Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the past fewdecades, enormous implementation has beenmade to
complete human genome and high throughput genome analysis tech-
nologies. However, documentation of specific causative genetic markers
could trigger common complex traits viz. diabetes, hypertension, CKD
etc., which continue to pose a major challenge. Different human genome
variations such as single nucleotide polymorphisms (SNPs), micro-
satellites and variable number of tandemrepeats (VNTRs) are used as ge-
netic markers for many diseases (Prasad and Thelma, 2007).

FGF23, CYP24A1 and VDR genes play an important role in the path-
ogenesis of CKD (Cozzolino andMalindretos, 2010; Petkovich and Jones,
2011; Wahl and Wolf, 2012), tumoral calcinosis (Farrow et al., 2011)
and cancer (Slattery, 2007; Sakaki et al., 2014). FGF23 is the recently dis-
covered regulator of phosphate and mineral metabolism. FGF23mainly
regulates the renal phosphate excretion. FGF23 levels are increased
among CKD patients and many cross sectional studies demonstrated
that an inverse relationship has been observed in glomerular filtration
rate (GFR) with an inverse kidney function (Liu and Quarles, 2007;
Damasiewicz et al., 2011; Wan et al., 2012). The increased level of
FGF23 leads to the over expression of CYP24A1 mRNA in the kidney
(Bai et al., 2003; Larsson et al., 2004; Shimada et al., 2005; Inoue et al.,
2005; Perwad et al., 2007). The CYP24A1 enzyme is responsible for
the catabolism of 25 hydroxyvitamin D3 (25–OHD3) and its hormonal
husamy).
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form, 1,25-dihydroxyvitamin D3(1,25-(OH)2D3) into 24-hydroxylated
products for excretion. The 1,25(OH)2D3 is the target hormone to in-
duce the VDR expression (Petkovich and Jones, 2011). Further, the ac-
tive form of the VDR mediates a wide variety of biological actions such
as cell proliferation and differentiation, calcium homeostasis, immune
modulation, neurological functions and bone mineralization (Norman,
2008). The over-expression of the CYP24A1 leads to VDR dysfunction
as it overmetabolized the 25OHD3 and 1,25(OH)2D3. Thus, CKDpatients
ought to experience vitamin D deficiency and subsequent osteoporosis
(Loh et al., 2012). Fig. 1 shows the schematic representation of the dis-
ease mechanism.

Discrepancies are observed while establishing the treatment/diag-
nostic targets for complex multifactorial traits like CKD, hypertension
by single locus analysis. This problem is mainly due to the small sample
size, varying effects of several disease-predisposing variants, population
structure, gene–environment interactions, poor study design or less
number of polymorphisms selected for the analysis. These are some of
the important factorswhich can hamper the detection ofmodest contri-
bution of an individual locus to a trait such as hypertension and CKD.
Haplotype based analysis explored different variants segregating at par-
ticular loci whichwill be helpful in studying complex disease. But still it
is a daunting task to consider all genetic and non-genetic information in
the analytic process. A single nucleotide polymorphism(SNP) is a nucle-
otide (A, T, G and C) change in the genome, which leads to genetic var-
iation, occurring at each 100–300 bases along the 3-billion-base human
genome, even though their density varies between regions (De Alencar
and Lopes, 2010). A non-synonymous SNP (nsSNP) is known as a single
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. The schematic representation of the disease mechanism.
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base change in the coding region of a gene. This change leads to the
amino acid substitutions (AAS) in the corresponding protein product.
If SNP occurs in a primary amino acid sequence, the protein structure
and function might be altered, which could lead to drastic phenotype
and drug effect changes (Mah et al., 2011).

Experimental studies are crucial evidence to identify disease associ-
ated SNPs from a large number of reported SNPs and to study the func-
tional role of SNPs. Although numerous studies have been carried out on
how SNPs are associated with the diseases, it could not be confirmed by
subsequent independent studies. In this case, computational analysis
could help in saving the time, reducing costs and prioritize SNPs for
analysis by quantitative ranking of functionally significant SNPs (De
Alencar and Lopes, 2010). In this study, we implemented both sequence
and sequence-structure-based computational approaches to analyze
the SNPs in FGF23, VDR and CYP24A1 genes.

2. Materials and methods

Initially, the SNPs and their related sequences of FGF23, CYP24A1
and VDR genes were retrieved from the National Center for Biotechnol-
ogy Information (NCBI) database of SNPs, dbSNP (http://www.ncbi.
nlm.nih.gov./SNP/) for our computational analysis. We strict our list to
missense mutation, that is mainly associated with the diseases (Boillee
et al., 2006; Minde et al., 2011).

Sequence based and structure based methods are the two common
approaches used in SNP prediction tools. Compared to the structure
based predictions, sequence-structure based predictions are more pre-
cise one, since it includes all types of effect at the protein level, and
can be applied to any human protein with known relatives (Yue et al.,
2005; Mooney et al., 2010; Singh Kh and Karthikeyan, 2014). Sequence
based predictions are failed to explain the underlying mechanism of
how the single nucleotide polymorphism will alter the protein pheno-
type, whereas the structure based approachesmay solve this limitation.
Thus, we used the combination of structure based and sequence based
approaches to validate the different aspects of SNP analysis (Yue and
Moult, 2006; Singh Kh and Karthikeyan, 2014).

3. Sequence based tools

3.1. SIFT

The human nsSNP which is available in dbSNP was analyzed by
sorting intolerance from tolerant (http://sift.jcvi.org/www/SIFT_
dbSNP.html). The difference between functional and non-functional
SNPs in coding regionswas predicted by SIFT. The results from this soft-
ware helped to predict the substitutions of an amino acid on phenotypic
effect. SIFT predictions are mainly based on physiochemical properties
of amino acid and sequence homology (Ng and Henikoff, 2002).

The SIFT algorithm uses a modified version of PSI Blast (Altschul
et al., 1997) fromNCBI (Wheeler et al., 2001) and Dirichlet mixture reg-
ulation (Sjolander et al., 1996) in order to construct multiple sequence
alignment of protein sequences. It aligned the query sequences globally
and all the sequences which are in same clad. The SIFT scores N0.05 are
considered by the algorithm to be tolerant (Sherry et al., 2001).

3.2. SNP & GO

The SNPs which are likely to be involved in the pathogenesis of
human disease might be predicted by the SNP & GO server. It predicts
the disease relatedmutations froma protein sequence and the function-
al annotation of the protein on the basis of support vector machines
(SVMs).

The SNP&GO server collected the information fromdifferent sources
such as protein sequence, the local sequence environment of the SNPs,
the protein sequence profile, features generated from sequence align-
ment, and protein function. This server annotated the information from
the gene ontology database (GO). This database included the gene prod-
ucts in terms of their associated biological processes, cellular compo-
nents and molecular functions (Calabrese et al., 2009).

4. Combined sequence and structure based prediction tools

4.1. PolyPhen-2

Thepossible impact of an amino acid on the structure and functionof a
human protein was predicted by polymorphism phenotyping V2 (http://
genetics.bwh.harvard.edu/pph2/) usingphysical and comparative consid-
erations. The results from the PolyPhen-2 output encompass a score that
ranges from0 to apositive number. The zero indicates the neutral effect of
SNP on protein structurewhereas the large positive number indicates the
substitution that may have severe effects (Ramensky et al., 2002; Xi et al.,
2004; Ng and Henikoff, 2006).

4.2. I-Mutant

Protein stability changes upon single-sitemutationswere calculated
by a neural-network-based web-server I-Mutant. The tool generated an
output in connection with dataset derived from ProTherm (Bava et al.,
2004). I-Mutant predicted the protein mutation which stabilizes or de-
stabilizes the protein structure. The free energy value was also comput-
ed with the energy-based FOLD-X tool. The reliability index value was
calculated by coupling the FOLD-X predictions with I-Mutant (Guerois
et al., 2002).

5. Computational site directed mutagenesis

The human CYP24A1 protein crystal structure was not solved, but the
rat CYP24A1 crystal structure was available in the protein data bank
(PDB) (Berman et al., 2000) (PDB id: 3K9V) (Annalora et al., 2010). The
sequence similarity between both the sequences was 85%. Thus we
modeled the human CYP24A1 protein using rat CYP24A1 in Prime mod-
ule of Schrodinger software (Prime, version 3.9, Schrödinger, LLC, New
York, NY, 2015). The FGF23 (PDB id: 2p39) (Goetz et al., 2007) and VDR
(PDB id: 3B0T) (Kakuda et al., 2010) crystal structures were downloaded
from the PDB. Computationalmutagenesiswas performed usingMaestro,
version 9.10, Schrodinger, LLC, New York, 2015. After mutagenesis, each
protein was optimized and energy minimized using OPLS_2005 force
field in the protein preparation wizard of Schrodinger, LLC. After energy
minimization, the mutant structure was superimposed with the corre-
sponding native structure and the root mean square deviation (RMSD)
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was calculated. The RMSD is the square root of the mean of the square of
the distance between the matched atoms.

RMSD ¼ SQRT SUM diið Þ2
n o

=N
h i

ð1Þ

where dii is the distance between the ith atom of structure l and ith atom
of structure 2 and N is the number of atoms matched in each structure.

6. Analysis of effect of mutation on protein solvent assessable area
and secondary structure

The accessible surface area (ASA) was calculated by rolling a sphere
size of a water molecule over the protein space which was accessible to
a solvent (Chothia and Finkelstein, 1990). The ASA was mostly trans-
formed to the relative surface area (RSA) for the comparative and pre-
dictive purpose. It was calculated to the given amino acid residue in
the polypeptide chain, relative to the maximum possible exposure of
the residue in the center of a tri-peptide flanked with either glycine
(Connolly, 1983) or alanine (Chothia, 1976). Understanding the degree
of surface exposure of an amino acid was valuable since it was used to
enhance the understanding of a variety of biological problems such as
protein–ligand interactions (Ahmad et al., 2003) and protein–protein
interactions (Jones and Thornton, 1997a, 1997b), active sites (Haste
Andersen et al., 2006), and structural epitopes (Jones and Thornton,
1997a, 1997b) and the prediction of disease related SNPs (Panchenko
et al., 2004). The RSA can be calculated as follows,

RSA ¼ ASA
ASAmax

ð2Þ

where ASAmax is the maximum obtained solvent exposed area
(Petersen et al., 2009).

In order to compare the surface accessibility, from exposed to buried
regions were calculated. Geneious Pro (Kearse et al., 2012) software
(Aukland, New Zealand) was used to compare the secondary structure
of the wild and mutant type of the protein. The pI for protein folding
and unfolding free energy, optimumpH for protein stability was further
calculated using PROKA 3.0 (Copenhagen, Denmark) (Li et al., 2005;
Olsson et al., 2011).

7. Statistical analyses

In statistical prediction the following three cross-validationmethods
are often used to evaluate the anticipated success rate of a predictor: in-
dependent dataset test, sub-sampling (or K-fold cross-validation) test,
and jackknife test (Chou and Zhang, 1995). Among the three, however,
the jackknife test is deemed the least arbitrary and most objective as
elucidated by Eqs. 28–32 of Chou, 2011. Therefore, the jackknife test
has been widely recognized and increasingly used to test the quality
for various predictors (Chen et al., 2012, 2013, 2014, 2016a, 2016b;
Lin et al., 2014; Liu et al., 2015a, 2015b, 2015c, 2016a, 2016b; Qiu
et al., 2015; Jia et al., 2016a, 2016b).

Six different parameters were widely used to describe the predic-
tions quality viz. accuracy, precision, sensitivity, specificity, negative
predictive value (NPV) and Matthews correlation coefficient (MCC). In
the following equations true positives, true negatives, false positives
and false negatives are represented as tp, tn, fp and fn respectively.

Accuracy ¼ tpþ tn
tpþ tnþ fpþ fn

ð3Þ

Specificity ¼ tn
fpþ tn

ð4Þ

Sensitivity ¼ tp
tpþ fn

ð5Þ
MCC ¼ tp� tn−fn� fpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tpþ fnð Þ tpþ fpð Þ tnþ fnð Þ tnþ fpð Þ

p : ð6Þ

Unfortunately, the four metrics formulated in Eqs. 3–6, are not intu-
itive and easy-to-understand to most biologists especially the equation
for MCC. Hence, we adopted the formulation proposed by Chou et al.
(2012). According to the formulation, the same four metrics can be
expressed as

Accuracy ¼ 1−
Nþ

− þ N−
þ

Nþ þ N− ð7Þ

Sensitivity ¼ 1−
Nþ

−

Nþ ð8Þ

Specificity ¼ 1−
N−

þ
N− ð9Þ

MCC ¼
1−

Nþ
−

Nþ þ N−
þ

N−

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N−

þ−Nþ
−

Nþ

� �
ð1þ Nþ

− þ N−
þ

N−

� �s ð10Þ

where N+ is the total number of SNPs investigated, whereasN−
+ is the

number of the disease caused by SNPswhichwere incorrectly predicted
as neutral; N− is the total number of non-synonymous SNPs investigat-
ed, and N+

− is the number of the non-synonymous SNPs wrongly pre-
dicted as deleterious.

TheMCC (Matthews, 1975) is a good evaluation statistics, because it
was unaffected by the different proportions of neutral and pathogenic
datasets predicted by different programs. Overall the MCC was insensi-
tive to different test set sizes and thus it gives a more balanced assess-
ment of performance than the other performance measures (Baldi
et al., 2000). The use of these metrics and their merits has been con-
curred by a series of recent studies (Chen et al., 2016a, 2016b; Jia
et al., 2016a, 2016b; Liu et al., 2016a, 2016b). The set of metrics is
valid only for the single-label systems. For the multi-label systems
whose existence has become more frequent in system biology (Chou
et al., 2012) and systemmedicine (Xiao et al., 2013), a completely differ-
ent set of metrics as defined by Chou, 2013 is needed.

8. Results

Themain objective of the present study is to identify the pathogenic
SNPs from the pool of SNPs reported in NCBI using the web based anal-
ysis tools. We have used both the combined sequence and sequence-
structure-based tools in order to overcome the limitations of both the
methods towards the prediction of risky SNPs associated with CKD.
The workflow followed in this study is shown in Fig. 2.

Thusberg et al. (2011) had reported the accuracy of SNP & GO (0.82)
and that it is comparably good with PolyPhen 2 (0.69) and SIFT (0.65).
The SNP & GO software predicted a high precision value (0.90) in com-
parison to PolyPhen-2 (0.71), SIFT (0.64). SNP & GO, SIFT, PolyPhen-2,
and I-Mutant software were used to analyze all our dataset including
SNPs from the Uniprot disease database (664 SNPs) and 287 non-
sense mutations.

9. Statistical analysis of the performance from in silico prediction
methods

We used six different statistical measures, namely accuracy, preci-
sion, specificity, sensitivity, negative predictive value (NPV), and Mat-
thews correlation coefficient (MCC) to evaluate the performance of
the tools. Initially a dataset comprising of deleterious SNPs fromUniprot
disease database and nsSNPs was formed and we predicted the



Fig. 2. The workflow followed in the study.
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performance of the tools. Based on the computational method predic-
tions, the dataset was evaluated to obtain tp (true positive), tn (true
negative), fp (false positive) and fn (false negative) values in order to
calculate the statistics measures (Table 1). Based on the statistical anal-
yses, I-Mutant (0.89) and SNP & GO (0.72) performed well in terms of
accuracy, I-Mutant (0.91) and SIFT (0.85) performed well in terms of
precision, SIFT (0.72) and PolyPhen-2 (0.61) performed well in terms
of specificity and I-Mutant (0.97) and SNP & GO (0.89) performed
well in terms of sensitivity and SNP & GO (0.75) and PolyPhen-2
(0.75) performed good in terms of NPV and PolyPhen-2 (0.42) per-
formed well in terms of MCC. Overall the accuracy predictions were
worst in the case of SIFT tool (0.71) and PolyPhen-2 (0.71), PolyPhen-
2 performed worst in terms of precision (0.67), I-Mutant and SIFT per-
formedworst in terms of specificity (0.32) and sensitivity (0.71) respec-
tively. Further, we performed the statistical analysis for the combined
sequence based and sequence-structure based prediction methods. In-
terestingly, our findings clearly exhibit that the predictions based on
both sequence and sequence-structure based method produced good
statistical method (MCC = 0.45) rather than single individual method.
10. SNP dataset

FGF23, CYP24A1 and VDR genes play a very important role in the
CKD pathogenesis, which were selected for computational analysis of
deleterious SNPs. We have selected SNPs only from the coding regions,
since coding regions are critical for the determination of protein tertiary
structure and function.
Table 1
Statistical evaluation of various computational methods.

SIFT SNP & GO PolyPhen-2 I-Mutant Combined sequence
and sequence-structure
based method

Tp 270 286 164 553 1273
Tn 123 110 126 25 384
Fp 48 117 80 52 297
Fn 110 36 40 16 202
Cases+ 380 322 204 569 1475
Cases− 171 227 206 77 681
Accuracy 0.71 0.72 0.71 0.89 0.77
Specificity 0.72 0.48 0.61 0.32 0.56
Sensitivity 0.71 0.89 0.80 0.97 0.86
MCC 0.40 0.41 0.42 0.39 0.45
11. Prediction of deleterious nsSNPs using sequence based
prediction tools

In the initial process, we analyzed all the SNPs with sequence based
prediction tools. SIFT algorithmwas used for the protein conversion and
predicted whether an amino acid substitution had an impact on protein
function by aligning similar proteins. Further, a score was generated to
determine the evolutionary conversion status of the amino acid of inter-
est. The retrieved 739 SNPs were submitted to the SIFT program to
check its tolerance and 454 SNPs have found to be havingmissensemu-
tation in the coding region.

The output scores for the SIFT analysis ranges from 0 to 1, while 0
represents damaging whereas 1 denotes neutral. If the SIFT cutoff
score is lower than the 0.05, the amino acid change at a particular posi-
tion is tolerated (no effect). Further, the repetitive amino acid substitu-
tions would be predicted as deleterious. The SIFT algorithm predicted 4
SNPs from FGF23 gene, 15 SNPs from VDR gene and 13 SNPs from
CYP24A1 gene which were found to be having a critical deleterious
role (Table 2).

The SNP & GO tool is a collection of unique framework, and includes
information derived from protein sequence, and evolutionary informa-
tion and function as encoded in the Gene Ontology terms. The software
predicts the human disease related SNPs in proteinswith functional an-
notations. 12 SNPs from FGF23 gene, 60 SNPs from VDR gene and 22
SNPs from CYP24A1 gene were predicted to be associated with human
diseases (Table 2).

12. Prediction of deleterious nsSNPs using sequence-structure based
prediction tool

The PolyPhen-2 programwas used to determine the structural level
alterations. Various parameters such as evolutionary conservation,
physicochemical differences and the proximity of the substitution
were considered in order to predict functional domains, and structural
features and functional effects of amino acid changes. PolyPhen-2
score in the dataset ranges from 0 to 1. If the PolyPhen-2 score is b0.5
then the mutation is a benign one. The changes are possibly damaging
if the score is N0.5 and N0.9 are probably damaging. 13 SNPs from
FGF23 gene, 45 SNPs from VDR gene and 62 SNPs from CYP24A1 gene
were predicted to be probably/possibly damaging and these SNPs may
affect the structural stability and the phenotype of the protein (Table 2).

I-Mutant program was used to check the stability of the protein
caused by nsSNPs. This program calculated the energy difference



Table 2
Analysis of SNPs detected in the coding region of FGF23, VDR and CYP24A1 genes.

SIFT I-Mutant SNP & GO PolyPhen-2 RMSD (Å)

GENE Uniprot ID SNP id Amino acid change Prediction Prediction Effect Prediction

FGF23 Q9GZV9 rs104894342 S71G Damaging Decrease Disease Probably damaging 5.72
Q9GZV9 rs104894343 M96T Damaging Decrease Disease Probably damaging 6.66
Q9GZV9 rs104894344 S129F Damaging Increase Disease Probably damaging 5.77
Q9GZV9 rs575204793 R160Q Damaging Decrease Disease Possibly damaging 5.77

VDR P11473 rs121909796 R274L Damaging Decrease Disease Possibly damaging 7.85
P11473 rs121909799 I314S Damaging Decrease Disease Benign 6.87
P11473 rs121909800 R391C Damaging Decrease Disease Probably damaging 6.83
P11473 rs121909802 E329K Damaging Decrease Disease Probably damaging 7.70
P11473 rs11574090 L230V Damaging Decrease Disease Possibly damaging 8.13
P11473 rs75590999 I367M Damaging Decrease Disease Probably damaging 7.19
P11473 rs114678556 R358H Tolerated Decrease Disease Possibly damaging 7.14
P11473 rs199705103 R154W Damaging Decrease Disease Probably damaging 8.63

CYP24A1 Q07973 rs6068812 L409S Damaging Decrease Disease Probably damaging 3.51
Q07973 rs114368325 R396W Damaging Decrease Disease Probably damaging 3.08
Q07973 rs387907322 R159Q Damaging Decrease Disease Probably damaging 4.92
Q07973 rs387907324 E322K Damaging Decrease Disease Probably damaging 3.61
Q07973 rs58713852 T248K Damaging Decrease Disease Probably damaging 4.04
Q07973 rs114476330 R120H Damaging Decrease Disease Probably damaging 5.14
Q07973 rs114579367 D202H Damaging Decrease Neutral Probably damaging 3.47
Q07973 rs116548533 R344H Damaging Decrease Neutral Probably damaging 3.88
Q07973 rs139763321 L148P Damaging Decrease Disease Probably damaging 4.67
Q07973 rs140189382 Y407N Damaging Decrease Disease Probably damaging 3.46
Q07973 rs141152573 R439H Damaging Decrease Disease Probably damaging 3.26
Q07973 rs143934667 R396Q Damaging Decrease Disease Probably damaging 3.53
Q07973 rs146980218 R439Q Damaging Decrease Disease Probably damaging 3.24
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between native and variant proteins based on Gibbs free energy values.
I-Mutant predictionswere classified into three different classes viz. neu-
tral mutations (−0.5 ≤ kcal/mol), mutationswhich decreased the Gibbs
free energy (−0.5 b kcal/mol), and mutations which produce a larger
increased energy (0.5 N kcal/mol). 21 SNPs from FGF23 gene, 174
SNPs from VDR gene and 83 SNPs from CYP24A1 gene might decrease
the protein stability (Table 2).

The wild type protein wasmutated usingMaestro, Schrodinger, LLC,
New York, 2015. Further, the mutated protein was optimized and ener-
gy minimized using protein preparation wizard, Schrodinger, LLC, New
York, 2015. The RMSD between the wild type and mutant type was cal-
culated and reported in the Table 2.

We adopted four online SNP prediction tools (two sequence based
and two sequence-structure based) to reduce the false positive errors.
These online servers were used for different parameters such as se-
quence, evolutionary approach, physicochemical, secondary structure,
solvent accessibility, and free energy calculations for analysis. After
analysis, all the results predicted by four different SNP prediction
servers, we anticipated that those SNPs whichwere predicted to be dis-
ease/disorder/damaging etc., by at least three different algorithms, had
high RMSD andmay show functional significance and it may be the rea-
son behind the cause of disorder to the human body (Table 1). Such
SNPs are listed below: FGF23 rs104894342 (S71G), rs104894343
(M96T), rs104894344 (S129F), rs575204793 (R160Q); SNP id's of VDR
rs121909796 (R274L), rs121909799 (I314S), rs121909800 (R391C),
rs121909802 (E329K), rs11574090 (L230V), rs75590999 (I367M),
rs114678556 (R358H), rs199705103 (R154W); SNP id's of CYP24A1
rs6068812 (L409S), rs114368325 (R396W), rs387907322 (R159Q),
rs387907324 (E322K), rs58713852 (T248K), rs114476330 (R120H),
rs114579367 (D202H), rs116548533 (R344H), rs139763321 (L148P),
rs140189382 (Y407N), rs141152573 (R439H), rs143934667 (R396Q),
rs146980218 (R439Q). Fig. 3 shows the superimposed structure of
wild and mutant proteins.

Additionally, the solvent accessible areas of 25 deleterious SNPs
were analyzed to better understand the relationship between sequence
and structure. Thus the solvent accessible area was calculated by
NetsurfP server (Kongens Lyngby, Denmark). NetSurfP predicted the
amino acids, whether in exposed region or buried region at 25% thresh-
old (residues may be predicted to be exposed/buried based on a 25%
threshold). The changes in exposed to buried or buried to expose re-
gions due to mutation were shown in Table 3. Mutations in the buried
sites aremore prone to disrupt the protein structure compared tomuta-
tions introduced in the solvent exposed structures. Thus, the latter tend
to destabilize proteins, through steric hindrance and the introduction of
strained conformations. Mutation in FGF23 and VDR genes shows the
number of changes from buried to expose and exposed to buried
when compared to CYP24A1 gene.

13. Relative surface area

The analysis of the RSA and ASA of thewild type andmutant type for
all the residues is shown in Figs. 4 and 5. After analyzing the graph itwas
found that the FGF23 and VDR have changes in their RSA and ASA value
of the wild type except CYP24A1. In FGF23, Q54K SNP produced slight
different RSA and ASA when compared to the wild type. The same
type of slight difference was observed in the CYP24A1:I367M SNP. The
effect of SNP in the formation of secondary structure was analyzed
and displayed in the Fig. 6.

In FGF23, a small deletion of alpha helix was observed in S71G mu-
tation. In M96T, one extra turn was noticed near the helical region.
Moreover, the addition of an extend beta strand was observed in
FGF23–S129F SNP. Finally, in R160Q the coil was extended towards its
right side.

In VDR, L230V SNP led to small changes in the beta strand. In R274L
mutation, the small beta strand coil changed and instead a long alpha
helix was formed. The E329K formed a linear alpha helix. In R358H,
the small turn was changed into a coil. The remaining SNPs could not
cause significant changes in the secondary structure.

In CYP24A1, R120H led to a change into turn. L148P mutation
brought about change in the formation of small coil structure. An exten-
sion of alpha helix was observed in the T248K mutation. Further, in
L409Smutation a coil is presented instead of alpha helix. The remaining
mutations could not cause significant change in the protein secondary
structure.

Further, we analyzed the pH for optimum stability, pI for folding and
unfolding are free energy of thewild andmutant protein and found that
all the three proteins were stable at different pH. FGF23 was stable at
9.6 pH, VDR was stable at 7.8 to 8.5 pH and CYP24A1 was stable at 7.9



Fig. 3. Superimposed structure of wild type FGF23 and S71G mutant (A), wild type of VDR and R274L mutant (B), wild type CYP24A1 and L409S mutant. The SNPs in this figure are
randomly selected from each gene for the easy interpretation of the result.
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to 8.6 pH. Therewere no vigorous changes observed in the optimumpH
of wild and mutant proteins. The CYP24A1 enzyme had more binding
energy when compared to the remaining two proteins. The predicted
pH value is shown in Table 4.

14. Discussion

Identification of the disease causingmutations from thosewhich are
functionally neutral is very essential to understand the molecular path-
ophysiology of the diseases. In recent days, amino acid substitutions ac-
count for approximately half of the known gene lesions responsible for
human inherited disease (Cooper et al., 1998). Thus, identification of
Table 3
Solvent accessibility of the wild type and mutant type of FGF23, VDR, CYP24A1 proteins.

Gene Mutation Exposed to buried

FGF23 M96T 36W, 40I, 50S, 108F, 122N, 166L, 1
R160Q 36W, 49N, 81G, 167I
S71G 33G, 81G, 166L, 167I, 168H
S129F 36W, 40I, 50S, 108F, 122N, 130P, 1

VDR E329K 142T, 239Q, 284M, 300V, 341P
I314S 142T, 239Q, 280T, 300V, 385Q, 389
I367M 142T, 239Q, 385Q, 389D
L230V 142T, 143Y, 389D
R154K 389D, 142T, 341P, 389D
R274L 239Q, 264K, 284M, 341P, 389D
R358H 142T, 239Q, 389D
R391C 239Q, 385Q, 389D

CYP24A1 D202H 264N
E322K 232G
L148P 140Y, 143E, 353L
L409S 262S, 264N
R120H 264N
R159Q 176M, 232G, 264N
R344H 193L, 232G, 264N
R396K 264N, 300D
R396Q 129L, 300D
R439H 136A, 232G
nsSNPs which affect protein functions and causing disease is crucial. In
natural selection,manyof the nsSNPs effects are neutral sincemutations
are removed in essential positions. Therefore, researchers have the abil-
ity to discriminate accurately significant, protein function altering SNPs
from those that are functionally neutral (Boillee et al., 2006). However,
there is increasing evidence of availability for the role of coding or non-
coding mutations in protein regulatory functions and subsequent dis-
eases (Yan et al., 2002; Hudson, 2003). Analyzing the vast number of
SNPs might not be reasonable for researchers to carry out in vitro
experiments on each and every SNP to infer from their biological signif-
icance. Thus, the vast number of SNPs causes challenge to biologists as
well as bioinformaticians. Apart from these, numerous studies are in
Buried to exposed

67I, 168H 48R, 68T, 170N, 171T
154Y, 160R, 170N,
48R, 68T, 170N, 171T

31Q, 133H, 143R, 166L, 167I, 168H 30P, 48R, 68T, 154Y, 169F, 170N
312P, 376S

D 145P
145P, 290N, 306S
290N, 303A
415T
145P, 290N, 303A, 314I, 376S
145P, 285S, 290N, 295Y, 306S
145P, 295Y, 376S, 410C, 419L
143E
87V, 353L
136A, 264N
–
353L
140Y
140Y, 353L
140Y, 353L
353L
140Y, 353L



Fig. 4. The relative surface area (RSA) of wild type and selected mutant type of FGF23 gene (A), CYP24A1 gene (B) and VDR gene (C).
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progress to study the effect of SNPs in genetic profiles and alteration
pharmacogenomic drug profiles using a molecular epidemiological
approach.

In this paper, we attempted to predict the SNPs which can alter the
protein expression and function in three interlinked genes (FGF23,
Fig. 5. The accessible surface area (ASA) of wild type and selected mut
VDR and CYP24A1). The mutations among these genes have associated
with several diseases (Bai et al., 2003; Shimada et al., 2005; Liu and
Quarles, 2007; Perwad et al., 2007; Damasiewicz et al., 2011).

Thus, the changes of amino acids in particular region might be asso-
ciated with several diseases. Therefore, our study would pave way in
ant type of FGF23 gene (A), CYP24A1 gene (B) and VDR gene (C).



Fig. 6.Multiple sequence alignment and secondary structure prediction of FGF23, CYP24A1 and VDR genes. Alignment of secondary structure identified the β–strand to alpha change in
S71G mutant, β–strand to turn change in M96T mutant, addition of β–strand in S129F mutant, addition of coil in R160Q mutant (A), addition of β–strand in L230V mutant, addition of
alpha helix in R274L and E329K mutants, turn to coil change in R385H mutant (B), Turn to coil change in R120H mutant, β–strand to coil change in L148P mutant, coil to β–strand
mutant in T248K mutant and alpha helix to β–strand and turn change in L409S mutant.
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selecting SNPs that were likely to have potential complexity to refine
SNP prediction. GO based score was incorporated in the SNP & GO pre-
diction algorithmwhich enables correlation between given SNP and its
corresponding gene product function. PANTHER predicted classification
data that is also included in the SNP & GO prediction. SNP& GO tool was
more advanced than PANTHER. As PANTHER requires Gene or dbSNP
IDs which cannot be entered directly as search inputs, limiting the
scope of searches to the protein sequence level and require information
on protein alignment for search input. PolyPhen-2 ranking of the SNPs
on the basis of protein phenotype changes which caused by severe
SNP effects. I-Mutant server uses a neural network based web server
for the analysis of the protein stability upon the single mutation.



Table 4
Predicted value of pH of optimum stability, pI of folding and unfolding and free energy for
wild type and selected mutant type genes.

Protein Amino acid
change

pH of optimum
stability

pI value
folded

pI value
unfolded

Free energy
(kcal/mol)

FGF23 WT 9.6 9.32 9.42 0.7
M96T 9.6 9.32 9.42 0.6
160Q 9.6 8.79 9.11 0.2
S71G 9.6 9.32 9.42 0.6
S129F 9.6 9.32 9.42 0.8

VDR WT 7.9 6.20 6.61 14.8
E329K 8.5 6.50 7.03 19
I314S 7.9 6.22 6.31 18
I367M 7.9 6.23 6.61 18.2
L230V 7.9 6.23 6.61 18.1
R154K 7.9 6.23 6.61 21.6
R274L 7.8 5.98 6.44 13.4
R358H 7.9 6.07 6.52 17.6
R391C 7.8 5.98 6.44 17.8

CYP24A1 WT 8.3 9.01 8.86 52.3
D202H 9.3 9.13 8.97 51.8
E322K 9.0 9.08 9.06 54.3
L148P 8.3 9.02 8.86 54.5
L409S 8.3 9.01 8.86 52.2
R120H 8.3 8.88 8.74 51.2
R159Q 8.2 8.91 8.74 47.4
R344H 8.3 8.88 8.74 52.0
R396K 8.6 8.94 8.86 50.5
R396Q 7.9 8.94 8.74 47.4
R439H 8.3 8.87 8.74 51.4

WT—Wild type.
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Out of 740missense SNPs reported in dbSNP, we found 25missense
SNPs in the coding region whichmay affect the normal gene regulation
or protein stability. Mutation in FGF23 gene was associated with hyper
and hypo phosphatemia (Gupta et al., 2004; Saito and Fukumoto, 2009),
familial tumoral calcinosis (Farrow et al., 2011) and autosomal domi-
nant hyophosphatemic rickets (ADHR Consortium, 2000) etc. Five mu-
tations (H41Q, S71G, M96T, S129F, and Q54K) in the coding region
were already reported (Garringer et al., 2008). Interestingly, in our in
silico findings, we also found that these fivemutations have a significant
effect on protein structure and stability. Consistent with in vitro find-
ings, we hypothesized that the mutations in these regions lead to alter
in peptide folding and decreased in FGF23 secretion. Moreover, we pre-
dicted that the protein stability was decreased with respect to these
mutations.

CYP24A1 gene mutations were known to cause hypercalcemia,
nephrocalcinosis and nephrolithiasis etc. R159Q mutation in the coding
region disrupts the hydrogen bond interaction in the CYP24A1 active
site (Ji and Shen, 2011). Thus, this SNP analysis also revealed that muta-
tion decreased the protein structure stability. L409S mutation affected
the enzyme activity since it leads to weakening the binding with
1,25(OH)2D3 (Nesterova et al., 2013). In secondary structure analysis,
we found that the alpha helix was changed into beta turn and might
be a structural change to cause this effect. Moreover, the enzyme activ-
ity decreased in L148P mutation because of the direct interaction with
enzyme substrate (Nesterova et al., 2013), therefore, this mutation
leads to decrease in enzyme activity. Small coil was changed in this par-
ticular region and may cause the protein stability and activity.

VDR has long been known for its important role in regulating body
levels of calcium (Ca) and phosphorous (P) and in mineralization of
bone (Holick, 2010). In VDR gene, we found eight polymorphisms as
more deleterious. VDR mutations were associated with rickets, cancer,
osteoporosis etc.VDR activation is essential for different types of cellular
processes. R274L mutation in the active site region causes changes in
VDR structure between helices H1 & H2 (Nakabayashi et al., 2013). Sec-
ondary structure analysis predicted the deletion of beta strand and coil
formation of alpha helix. Moreover, I314S (Whitfield et al., 1996) and
R391C (Nguyen et al., 2006) mutation was found to have changed the
conformations and leads to changes in hormonal binding domain.
Among these, R391C mutation was well known for its ability to reduce
the binding with steroid receptor co-activator 1 (SRC-1). Interestingly,
our in silico findings elucidate the deleterious nature of these polymor-
phisms. Therefore, our findings conceal that thesemutations may affect
the gene expression and the protein structure.

To the best of our knowledge, no comprehensive evaluation of the
performance of missense variant pathogenicity predictors has been
madeoutside the performance studies of individualmethods in the con-
text of identification of SNPs associated with risk. We selected test sets
which have not been used in the training set of all methods, but the
pathogenic subset was comprised of dataset from Uniprot disease data-
base mutations. Testing the performance of a method with the same
cases when it was trained would lead to biased results, thus data set
from Uniprot disease database mutations would have an advantage
over the other methods. The performance decreased in all methods re-
gardless whether trained on Uniprot data or not. But, if we combined
the sequence based and sequence-structure based results it outper-
forms than the individual methods.

The neutral dataset was generated from dbSNP entries that had N1%
frequency when there was data at least for 25 individuals (50 chromo-
somes). By this way we minimized the number of false negatives in the
test set.

Out of 25 deleterious SNP reports from our study, 8 SNPs were al-
ready reported in the Uniprot disease database. Different parameters
such as sequence, evolutionary approach, physiochemical, secondary
structure, solvent accessibility, and free energy calculations were used
for the analysis of SNPs.

As demonstrated in a series of recent publications (Chen et al.,
2016a; Jia et al., 2016a, 2016b, 2016c; Liu et al., 2016a, 2016b, 2016c)
in developing new prediction methods, user-friendly and publicly ac-
cessible web-servers will significantly enhance their impacts (Chou,
2015; Chen et al., 2015),we shallmake efforts in our futurework to pro-
vide a web-server for the prediction methods presented in this paper.
15. Conclusion

In the present study, we investigated the functional and structural
impact of SNPs caused by the CKD associated genes (FGF23, CYP24A1
and VDR) using different computational prediction tools. The approach
can also be applied to study the relationship between SNP conservation
levels and epidemiological studies among these studied genes. 25 SNPs
were predicted to be disorder/diseases/damaging etc., by three or four
different algorithms and high RMSD will show functional significance
and it may cause disorder in the human body. Out of which four SNPs
(S71G, M96T, S129F, R160Q) of FGF23 gene, eight SNPs (R274L, I314S,
R391C, E329K, L230V, I367M, R358H, R154W) of VDR gene and thirteen
SNPs (L409S, R396W, R159Q, E322K, T248K, R120H, D202H, R344H,
L148P, Y407N, R439H, R396Q, R439Q) of CYP24A1 gene were found to
have a possible functional effect in the coding region of our comparative
sequence and structure–SNP based analysis tools with low RMSD value.
Further, experimental study needs to be carried out for further valida-
tion to analyze the functional effect of the mutations reported in the
Table 1. As we mentioned earlier, our combined sequence and
sequence-structure based methods outperformed than the available
methods. Thus, our method is the best one for prioritizing nsSNPs out
of SNP pool.

The in silico data presented here demonstrate the comparative com-
putational approach for classification of three difference gene variants
which is a powerful and fast technique and can be used for large scale
analyses. The present study will also be helpful to understand the func-
tional variation from the perspective of structure, expression, evolution,
physiochemical property, and phenotypes and can help the experimen-
tal geneticists to carry out their large scale SNP analysis.
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