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Summary

1. Predicting the current and potential distributions of established invasive species is critical for

evaluating management options, but methods for differentiating these distributions have received

little attention. In particular, there is uncertainty among invasive species managers about the value

of information from incidental sightings compared to data from designed field surveys. This study

compares the two approaches, and develops a unifying framework, using the case of invasive

sambar deerCervus unicolor in Victoria, Australia.

2. We first used 391 incidental sightings of sambar deer and 12 biophysical variables to construct a

presence-only habitat suitabilitymodel usingMaxent.We then used thatmodel to stratify field sam-

pling, with proportionately greater sampling of cells with high predicted habitat suitability. Field

sampling, consisting of faecal pellet surveys, sign surveys and camera trapping, was conducted in

80 4-km2 grid cells. A Bayesian state-space occupancy model was used to predict probability of

suitable habitat from the field data.

3. The Maxent and occupancy models predicted similar spatial distributions of habitat suitability

for sambar deer in Victoria and there was a strong positive correlation between the rankings of cells

by the two approaches. The congruence of the two models suggests that any spatial and detection

biases in the presence-only data were relatively unimportant in our study.

4. Wepredicted the extent of suitable habitat from the occupancymodel using a threshold that gave

a false negative error rate of 0Æ05. The current distribution was the suitable habitat within a kernel

that had a 99Æ5% chance of including the presence locations pooled from incidental sightings and

field surveys: the potential distribution was suitable habitat outside that kernel. Several discrete

areas of potential distribution were identified as priorities for surveillance monitoring with the aim

of detecting andmanaging incursions of sambar deer.

5. Synthesis and applications.Our framework enablesmanagers to robustly estimate the current and

potential distributions of established invasive species using either presence-only and ⁄or presence–
absence data.Managers can then focus control and ⁄or containment actionswithin the current distri-

bution and establish surveillancemonitoring to detect incursionswithin the potential distribution.

Key-words: camera trap, Cervus unicolor, detection probability, habitat suitability models,

kernel smoothing, Maxent, occupancy, sambar deer, state-space modelling, Victoria

Introduction

Invasive species can have important detrimental environmen-

tal, economic and social impacts (Mack et al. 2000; Pimentel

et al. 2005; Lodge et al. 2006) and there is much interest in

managing these populations (Myers et al. 2000; Hulme 2006;

Lodge et al. 2006). Predicting and quantifying the current and

potential distributions of established invasive species is a criti-

cal step in evaluating management options: for example, con-

trol and eradication efforts should focus on the current

distribution, containment should focus on the interface

between the current and potential distributions, and incursion

monitoring should focus on the potential distribution (Myers
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et al. 2000; Leung et al. 2005; Lodge et al. 2006). However,

methods for differentiating the current and potential distri-

butions of established invasive species have received little

attention.

Since the distributions of many established invasive plants

and animals may be much smaller than their maximum distri-

butions (e.g. for recent and ⁄or slow invaders;Ward 2007; Phil-

lips, Chipperfield & Kearney 2008), methods are required for

discriminating suitable habitat that is occupied from that

which is unoccupied. The first step is to distinguish ‘suitable’

from ‘unsuitable’ habitat, and two general approaches have

been used to do this. Presence-only data (e.g. from atlas

records) and biophysical variables can be used to fit predictive

‘niche-based models’ of distribution using numerous methods

(Elith et al. 2006). Models of presence-only data produce spa-

tially explicit suitability surfaces that represent habitat suitabil-

ity (Elith et al. 2006). However, presence-onlymodelling based

on incidental sightings may be subject to major spatial and

detection biases (Gu & Swihart 2004; Wintle, Elith & Potts

2005; Araújo & Guisan 2006). An alternative approach is to

conduct field surveys in a way that accounts for potential spa-

tial biases (by using a known sampling design; Thompson,

White & Gowan 1998) and imperfect detection of the species

of interest (MacKenzie et al. 2002): modelling such data esti-

mates the probability of occupancy (MacKenzie et al. 2006).

Occupancy models constructed from observed presence–

absence data also predict habitat suitability when projected

across the landscape. A threshold is needed to distinguish the

output of habitat suitability models (from presence-only

and presence–absence models) into ‘suitable’ and ‘unsuitable’

habitat (Liu et al. 2005).

The second step is to estimate which areas of predicted suit-

able habitat are ‘occupied’ (‘current distribution’) and ‘unoccu-

pied’ (‘potential distribution’). Point pattern analysis (‘kernel

smoothing’; Diggle 2003; Hengl et al. 2009) is a particularly

promising method for estimating the current distributions of

established invasive species because it can use presences pooled

frompresence-only and presence–absence data.

The aim of this study is to estimate the current and potential

distributions of invasive sambar deer C. unicolor Kerr in the

state of Victoria, Australia. We first construct habitat suitabil-

ity models for sambar deer using presence-only data from inci-

dental sightings and presence–absence data from a designed

field survey. After comparing the predictions of the two meth-

ods we then use threshold occupancy and kernel smoothing

methods to delineate the current and potential distributions of

sambar deer in Victoria.

Materials and methods

STUDY AREA AND SPECIES

The state of Victoria (237 629 km2), south-eastern mainland Austra-

lia, was our study area. Sambar deer (Fig. 1), sourced from Sri

Lanka, India and the Philippines, were introduced at four sites in

Victoria during the 1860s and have subsequently expanded their

distribution to the north, north-east and south-east of Victoria

(Menkhorst 1995; Bentley 1998). There is concern about the contin-

ued range expansion of sambar deer in Victoria because of their

potential negative impacts on native biodiversity (Department of Sus-

tainability and Environment 2009a) and agriculture (Lindeman &

Forsyth 2008).

We subdivided Victoria into 56 764 cells of 2 · 2 km. A cell size of

4 km2 was chosen because it approximated estimates of sambar deer

home range size in invasive populations (Lewis et al. 1990; Fraser &

Nugent 2005) and was a practical unit size for conducting field sur-

veys (sensuKaranth et al. 2009).

PREDICTOR VARIABLES

Thirty biophysical variables were identified from the literature as

potentially important predictors of sambar deer distribution and

abundance in Victoria (review in Forsyth et al. 2009; see Appendix

S1, Supporting information). The variables were generated, for each

of the 4 km2 cells, from GIS layers supplied by the Victorian State

Government’s Corporate Geospatial Data Library (O’Brien 2004).

Prior to model building we assessed the strength of Pearson’s correla-

tion coefficients between pairs of variables: if variables were highly

correlated (rp > 0Æ7) then one of the variables was removed from the

set. A final set of 12 candidate variables remained for model building

(Table 1).

HABITAT SUITABIL ITY MODEL FROM INCIDENTAL

SIGHTINGS

Incidental sightings

Presence-only data for sambar deer were obtained from the Atlas of

Victorian Wildlife Database (AVWD) containing data from 1974 to

2007 (Department of Sustainability and Environment 2009b). The

AVWD is a geographically registered relational database of inciden-

tal sightings of fauna by government agency staff and the public.

Sambar deer observations consisted of a date, latitude ⁄ longitude and
a measure of locational precision. We only used records (n = 391)

Fig. 1. Sambar deer photographed at a camera trap during our pres-

ence–absence field survey.
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with a location precision of less than 1 km in our analyses, and binned

these observations into the 4 km2 cells.

Maxent model

Incidental sightings of sambar deer were modelled using Maxent

3Æ2Æ19 (Phillips, Anderson & Schapire 2006), a machine learning

approachbasedonmaximumentropy.Maxenthasbeen shown toper-

form as well as, or better than, other methods for modelling presence-

only data (Elith et al. 2006).Maxent uses the presence-only data and a

user-defined number (in our case, 10 000) of randomly selected points

(‘pseudo-absences’) and combines these with the biophysical covari-

ates to construct an index of habitat suitability for each cell ranging

from 0 (least suitable habitat) to 1 (most suitable habitat).We allowed

linear and ⁄ or quadratic relationships between the index of habitat

suitability and each covariate (Phillips & Dudı́k 2008). The relative

contribution of each covariate to the Maxent distribution, and the

relationship between each variable and the predicted index of habitat

suitability,was also calculated (Phillips,Anderson&Schapire 2006).

Model performance was assessed by determining how well the

model discriminates between unsuitable and suitable habitat over a

range of thresholds (Fielding & Bell 1997). For any threshold of habi-

tat suitability index, presence locations are either correctly classified

as being in suitable habitat (‘true positives’) or misclassified as being

in unsuitable habitat (‘false negatives’). Similarly, absence data are

either correctly classified as being in unsuitable habitat (‘true nega-

tives’) or misclassified as being in suitable habitat (‘false positives’).

Because false positives cannot be estimated for presence-only data,

Maxent estimates the fractional predicted area (FPA), which is the

proportion of cells predicted to have suitable habitat for the species

(Phillips, Anderson & Schapire 2006). To assess performance of the

Maxent model we plotted a receiver operating characteristic curve,

which compares the model sensitivity (true positives) against 1 – spec-

ificity (false positives) over the entire range of thresholds (Fielding &

Bell 1997). For presence-only modelling, the area under this curve

(AUC) represents the probability that a randomly chosen presence

site will be ranked as more suitable than a randomly chosen pseudo-

absence site. A model that performs no better than random will have

an AUC of 0Æ5 whereas a model with perfect discrimination would

have an AUC of 1. An additional measure of model performance is

the regularized training gain (‘Gain’), which describes how much

better the Maxent distribution fits the presence data compared to a

uniform distribution. The exponential of the Gain is a measure of

how many times higher the sample likelihood is compared to a ran-

dom cell (Yost et al. 2008).

OCCUPANCY MODEL FROM FIELD SURVEYS

Sampling methodology

Our aim here was to develop amodel of potential distribution of sam-

bar deer based on the relationship between presence ⁄ absence data

and biophysical variables. Since resources were available to conduct

field surveys in only 80 cells, it was desirable to spendmore effort sam-

pling areas of high-habitat suitability (sensu McDonald 2004). We

therefore allocated a greater proportion of sites to areas of higher

habitat suitability estimated by our Maxent model. Sixty cells were

randomly selected and retained with probability equal to the corre-

sponding habitat suitability index of that cell. The other 20 cells were

selected entirely at random.

Field surveys

We used three survey methods to estimate occupancy rates of sambar

deer between July 2008 and April 2009. First, we assessed pres-

ence ⁄ absence of sambar deer faecal pellets along three randomly

located transects in each of the 80 cells using the method described in

Forsyth et al. (2007). Briefly, we navigated to the start of each 150-m

transect using a hand-heldGPS and counted the number of intact pel-

lets in circular plots of 1 m radius spaced at 5 m intervals (i.e. 30 plots

per transect). The presence and absence of pellets in cell i and transect

jwas indicated byYij = 1 and 0, respectively, for j = 1–3.

Secondly, we searched for signs of sambar deer along a 400 m tran-

sect in each of the 80 cells. The sign transect was subjectively located

by field staff to maximize the detection of deer (e.g. along a trail or

watercourse likely to be used by sambar deer; Bentley 1998). Any of

the following signs of sambar deer seen along the survey route were

recorded: sightings of live or dead deer, tree-rubbings, tracks, cast

antlers, wallows and faecal pellets. The presence ⁄ absence of sambar

deer sign on transects was denoted asYi4 = 1 and 0, respectively.

Thirdly, in a randomly selected 40 of the 80 cells we set two heat-in-

motion remote cameras along the sign survey route. Cameras [Trail-

MAC Digital (Trail Sense Engineering, Middletown, DE, USA) and

PixController DigitalEyeTM (PixController Inc., Export, PA, USA)]

were set, unbaited, for 21 days. The presence ⁄ absence of images of

sambar deer on the cameras was indicated by Yi5 = 1 and 0, respec-

tively.

Statistical model

The presence–absence data were modelled using a Bayesian state-

space occupancymodel consisting of a process model and an observa-

tionmodel (Royle&Kéry 2007). The processmodel describes the true

occupancy at each site and the observation model described the

observation process conditional on the true occupancy state of each

site. For each site i, the true occupancy state zi was modelled as a ran-

dom variate from a Bernoulli distribution with probabilitywi equal to

the probability of occupancy at site i:

zi � BernðwiÞ: eqn 1

The probability of occupancy at site iwasmodelled as a function of

one ormore biophysical covariates, denoted in general as:

Table 1. Biophysical covariates used in our models of sambar deer

distribution in Victoria

Covariate Description Units

Grass Amount of grassland % (0–100)

Gullies Number of gullies Count

Homogeneity Similarity of land use 0–100

NativeGrassShrub Amount of native

grassland ⁄ shrubland
% (0–100)

AnnualPrecip Annual precipitation mm

SeasonalPrecip Seasonal difference in

precipitation

mm

RoadDistance Distance from nearest road m

MeanTemp Annual mean temperature �C · 10

MinimumTemp Minimum annual temperature �C · 10

WaterDistance Distance from water m

WetForestCover Amount of wet sclerophyll

forest

% (0–100)

Slope Average slope � (0–90)
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logitðwiÞ ¼ bXi: eqn 2

For each survey method there is a probability of detection given

that the site is occupied. The observed presences ⁄ absences were mod-

elled as:

Yij � BernðzipjÞ; eqn 3

where Yij is the observed presence ⁄ absence at site i for survey j,

and pj is the detection probability for that survey (recall j = 1–3

denotes faecal pellet transects, j = 4 sign surveys and j = 5 cam-

era surveys). If a site is unoccupied then zi = 0 and Yij = 0 is

observed with probability 1. If a site is occupied then zi = 1 and

Yij = 1 is observed with probability pj, and Yij = 0 with proba-

bility 1–pj. Assuming independence of the surveys, the overall

probability of detection, conditional on presence, p*, from k sur-

veys is:

p� ¼ 1�
Yk

j¼1
ð1� pjÞ: eqn 4

The same twelve biophysical variables used in the Maxent model

(Table 1) were used as potential covariates in the occupancymodel.

Parameter estimation

Models were fitted using WinBUGS 1Æ4Æ3 (Lunn et al. 2000). Prior

distributions ofNormal(0, 100) were used for the covariate coefficient

parameters b. All covariates were standardized to a mean of 0 and

standard deviation of 1. Prior distributions of Beta(1, 1) were used

for the detection probabilities pj for each of the three survey methods.

Three replicate Markov-chains were constructed using different ini-

tial values to check for convergence. The chains were run for 1000

iterations to tune the algorithm and ensure convergence. The ‘burn-

in’ samples were discarded and the algorithm run for a further 20 000

samples before the three chains were combined to provide a sample of

60 000 values from the joint posterior distribution of each parameter.

Our WinBUGS code is provided in Appendix S2 (Supporting infor-

mation).

Model selection and averaging

We calculated the deviance information criterion (DIC) value for

each model following Spiegelhalter et al. (2002). We first evaluated

models containing the 12 biophysical variables individually and in

pairs. This was followed by models with combinations of three and

four variables, using variables that had consistently lower DIC values

as individuals and pairs. Rather than selecting a single ‘best’ model

we used model averaging (Burnham & Anderson 2002; McCarthy

2007) to predict sambar deer occupancy. Model weights (w) were

summed from largest to the smallest, and the models with a cumula-

tive sum of 0Æ9 used as themodel averaging set (Burnham&Anderson

2002). The resulting model-averaged predictive equation was applied

to each 4 km2 grid cell in our study area to produce a map of pre-

dicted probability of suitable habitat for sambar deer.

COMPARING PREDICT IONS OF THE MAXENT AND

OCCUPANCY MODELS

AlthoughMaxent and occupancymodels both give results on the unit

scale, these are not directly comparable. We therefore compared the

predictions (i.e. cell rankings from lowest to highest) of the presence-

onlyMaxentmodel and the presence–absence occupancymodel using

Spearman’s correlation coefficient (rs). We also compared the spatial

output from each of the twomodels following rescaling as deciles.

DEFIN ING ‘SUITABLE HABITAT ’

The probabilities of suitable habitat for each cell from the occupancy

model were delineated into suitable and unsuitable habitat using a

threshold. The choice of a threshold depends on whether one wishes

to minimize false negative or false positive errors, or balance them in

some other way (Liu et al. 2005). A threshold that is too high will

result in a high number of false negative errors and low number of

false positives, leading to a higher proportion of the study area being

classified as unsuitable when it is suitable. Conversely, a threshold

that is too low will result in lower false negative and higher false posi-

tive error rates, leading to a relatively high proportion of the study

area being classified as suitable when it is not (Ward 2007). We

selected a threshold by setting the false negative error rate at 0Æ05.

ESTIMATING CURRENT DISTRIBUTION

We delimited the current distribution of sambar deer, conditional on

areas of suitable habitat, by two-dimensional kernel smoothing the

pooled sambar deer presence data (i.e. using both incidental sightings

and field survey data). The function ‘kde2d’ in R package ‘MASS’

version 7Æ2 (Venables &Ripley 2002) with a bivariateGaussian kernel

was used to estimate the density surface. This method has been widely

used to estimate the utilization distribution of individual animals

based on location data. The resulting density surface can be thought

of as indicating the relative intensity (i.e. points per unit area) of spe-

cies presence records for any location within the study area. The

bandwidth for smoothing was calculated using the ‘solve-the-equa-

tion’ method of Sheather & Jones (1991) and we defined a percentage

level that ensured 99Æ5% of the presence records were included in the

current distribution. Kernel smoothing was applied conditional on

the cell being classified as suitable habitat (see above).

Results

HABITAT SUITABIL ITY MODEL USING INCIDENTAL

SIGHTINGS

The 391 sightings of sambar deer occurred in 322 cells

(Fig. 2a). The AUC (0Æ942) and Gain (1Æ61) values indicate

that the Maxent model of the incidental sightings (Table 2)

had a high discriminatory ability (Fig. 2b). The plot of false

negative errors and FPA (Fig. 3a) showed little overlap, fur-

ther confirming the usefulness of the Maxent model. Three

variables (WetForestCover, AnnualPrecip and Gullies) had a

relative contribution of 83% to the Maxent model and when

used on their own showed a reasonable fit to the data in terms

of Gain (Fig. 3b). Conversely, the variables SeasonalPrecip

and RoadDistance achieved little Gain when used alone

(Fig. 3b). Results from omitting each variable whilst including

all others showed that no one variable contained a substantial

amount of information that was not contained in the other

variables. Three other variables (MeanTemp, MinimumTemp

and Slope) showed a reasonable to fit to the data in terms of

Gain when used alone despite having small relative contribu-

tions to the model built using all variables. The probability
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of presence increased with increasing WetForestCover and

AnnualPrecip, but had a concave-up relationship with Gullies

andMeanTemp (Fig. S1, Supporting information).

DETECTION PROBABIL IT IES AND OCCUPANCY MODEL

Sambar deer were detected in 40 of the 80 sampled cells

(Fig. 2c). They were detected on one ormore faecal pellet tran-

sects in 26 cells, on sign transects in 35 cells and at camera traps

(Fig. 1) in 10 of the 40 cells sampled with that method. The

highest probability of detection, conditional on presence, was

associated with sign surveys, followed by transects and

cameras (Table 3 and Fig. 4). The overall probability of detec-

tion from three faecal pellet transects was 0Æ736 (95%

CI = 0Æ628–0Æ832), and from two cameras was 0Æ507 (95%

CI = 0Æ288–0Æ722). The site-level detection probability, com-

bining all methods (eqn 4), was 0Æ932 (95%CI = 0Æ851–0Æ974)
at sites where only faecal pellet transects and sign surveys were

used and 0Æ967 (95%CI = 0Æ896–0Æ992) at sites where all three
methods were used.

The variables Gullies, Homogeneity, AnnualPrecip, Annu-

alTemp, MinimumTemp, WetForestCover and Slope had

consistently lower DIC values relative to the other covariates

when used alone and when included in pairs. Subsequently, all

three-way and four-way combinations of these seven

covariates were modelled. A total of 148 models with various

combinations of covariates were evaluated. The best model

(i.e. lowest DIC) included the variables Gullies, AnnualPrecip,

AnnualTemp, and MinimumTemp (Table S1, Supporting

information). However, there were many models with similar

DIC values: the 17 highest ranked models had a cumulative

model selection weight of 0Æ906. The variablesMinimumTemp

and AnnualPrecip were included in 17 and 16 of the reduced

set of 17 models used for model averaging, respectively

(Tables S1, Supporting information and 3). There was a strong

negative effect of MinimumTemp, and a strong positive effect

of AnnualPrecip, on probability of occupancy (Table 3). The

effects of the other variables included in the model-averaged

occupancymodel weremore equivocal (Table 3).

COMPARISON OF THE MAXENT AND OCCUPANCY

MODELS

There was a strong positive correlation (rs = 0Æ89) between
the rankings of cells by the two methods (Fig. 5): cells with a

higher habitat suitability index fromMaxent had higher prob-

abilities of suitable habitat from the occupancy model. Both

models indicated that areas of highest habitat suitability for

sambar deer were in eastern Victoria and that the northern,

western and southern areas of the state were of lowest suitabil-

ity (Fig. 2b,d). There were several large patches of moderate

habitat suitability in central and southern Victoria.
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0 50 100 200

km
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Fig. 2. Habitat suitability and occupancy models for sambar deer in Victoria estimated from incidental sighting (presence-only) and field survey

(presence–absence) data, respectively. (a) Incidental sightings used in theMaxent habitat suitability model. (b) Predictions of theMaxent habitat

suitabilitymodel. (c) The 804-km2 cells in which presence–absence field surveys were undertaken. (d) Predictions of the occupancymodel.
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Comparison of each cell’s deciles showed several coastal

areas were ranked higher in the Maxent model than the

occupancy model, although they were still ranked relatively

low overall (Fig. S2, Supporting information).

CURRENT AND POTENTIAL DISTRIBUTIONS OF

SAMBAR DEER IN VICTORIA

We used all presence-only data (i.e. including all incidental

sighting records from 1974–2007 and our field survey pres-

ences) to estimate current distribution. The target false nega-

tive rate of 0Æ05 was achieved at a threshold level of 0Æ40, which
had a corresponding commission error rate of 0Æ225 (Fig. 6).

The threshold value of 0Æ40 was therefore used to delineate

between unsuitable and suitable sambar deer habitat. Using

this threshold there are an estimated 58 340 km2 of suitable

sambar deer habitat in Victoria.

The 99Æ5% utilization distribution gave a current estimated

distribution of 42 888 km2 (Fig. 7). Major areas of apparently

suitable but unoccupied range outside the current distribution

include the Great Otway National Park and Grampians

National Park, both in westernVictoria (Fig. 7).

Discussion

We used presence-only (incidental sightings) and presence–

absence (field surveys) data to differentiate the current and

potential distributions of invasive sambar deer in Victoria such

that potentially important spatial and detection biases were

minimized. We first used incidental sightings to estimate a

habitat suitability index. We then used the habitat suitability

index to stratify our field survey effort and our field surveys

usedmethods that enabled imperfect detection to be accounted

for in the estimated probability of suitable habitat. We then

used a threshold to delineate the predictions of the occupancy

model into suitable (i.e. potential distribution) and unsuitable

habitat. Finally, we applied kernel smoothing to the pooled

presence data (i.e. from both incidental sightings and field

surveys) to further delineate the suitable habitat into estimates

of current and potential range. Our analyses indicated that

sambar deer occupied c. 74% of suitable habitat (42 888 km2)

in Victoria in 2008–2009 but that several large, discrete areas

of potential range exist in western Victoria.

CONGRUENCE OF HABITAT SUITABIL ITY AND

OCCUPANCY MODELS

Although the units of Maxent and occupancy models differ,

there was strong agreement between the relative rankings of

the predictions of the two approaches for sambar deer in Victo-

ria (Fig. 5). To our knowledge, this is the first study to use

independently collected presence–absence data to test the

Table 2. Relative contribution of variables to the Maxent model of

incidental sightings of sambar deer in Victoria

Variable

Relative

contribution

WetForestCover 65Æ4
AnnualPrecip 9Æ4
Gullies 8Æ4
WaterDistance 6Æ7
MinimumTemp 5Æ5
RoadDistance 1Æ7
SeasonalPrecip 1Æ2
NativeGrassShrub 0Æ6
Homogeneity 0Æ5
Grass 0Æ3
MeanTemp 0Æ2
Slope 0Æ1

(a)

(b)

Fig. 3. Performance of the Maxent habitat suitability model of inci-

dental sightings of sambar deer in Victoria. (a) False negative error

rate (solid line) and FPA (dashed line) for all threshold values. (b)

Regularized Training Gain, with variables ranked depending on the

Gain from amodel with only that variable.
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predictions of a habitat suitability model constructed from

presence-only data: previous comparisons have used pseudo-

absences (e.g. Elith et al. 2006; Pearson et al. 2007). The

congruence of the two models suggests that any spatial and

detection biases in the presence-only data (Gu& Swihart 2004;

Wintle, Elith & Potts 2005; Araújo &Guisan 2006) were unim-

portant in our case study. The combination of repeated surveys

and multiple field methods when collecting the presence–

absence data resulted in a high cumulative detection

probability and thus a very small probability of false negatives.

However, such biases might be more important for a recently

established invader with a small current range and ⁄or few

sightings, or when unmodelled processes constrain range

expansion (Pearson et al. 2007). Furthermore, issues related to

detectability are likely to be greater for rare and ⁄or elusive

species. MacKenzie et al. (2006) give an excellent summary of

the logic for using occupancy estimated from designed field

surveys, rather than habitat suitability derived from incidental

sightings, to estimate species distributions.

We chose to use Maxent to model incidental sightings of

sambar deer in Victoria, but many other methods are available

for modelling presence-only data (Elith et al. 2006). In the

absence of any presence-only data, expert opinion could be

used to develop a habitat suitability model (e.g. Yamada et al.

Table 3. Model-averaged parameter estimates from occupancy

models of sambar deer in Victoria. SD is the square root of the

unconditional variance estimator. Importance is calculated for b
coefficients as the sum of the model weights for models containing

that parameter

Parameter Mean SD 2Æ5% 97Æ5% Importance

a [Intercept] 1Æ062 1Æ172 )0Æ809 3Æ370 NA

b [Gullies] 0Æ389 0Æ638 )0Æ081 1Æ119 0Æ37
b [Homogeneity] 0Æ197 0Æ409 )0Æ123 0Æ648 0Æ21
b [AnnualPrecip] 2Æ355 1Æ100 0Æ595 4Æ659 0Æ99
b [MeanTemp] 0Æ723 1Æ299 )0Æ549 1Æ970 0Æ40
b [MinimumTemp] )4Æ263 1Æ573 )7Æ699 )1Æ664 1Æ00
b [WetForestCover] )0Æ025 0Æ194 )0Æ336 0Æ296 0Æ21
b [Slope] 0Æ145 0Æ306 )0Æ051 0Æ586 0Æ26
p [Faecal Pellet

Transect]

0Æ362 0Æ043 0Æ281 0Æ449 NA

p [Sign] 0Æ746 0Æ068 0Æ605 0Æ870 NA

p [Camera] 0Æ302 0Æ815 0Æ156 0Æ479 NA

Fig. 4. Conditional probabilities of detection for our three field sur-

vey methods. Cumulative probabilities are shown for one, two or

three faecal pellet transects, and one and two camera traps. Vertical

bars are 95% credible intervals.

Fig. 5. Scatter plot of cell ranks from the predictions of Maxent and

occupancymodels.

Fig. 6. False negative and false positive error rates from the occu-

pancy model for all threshold values. The black dashed line indicates

a 5% false negative error rate and the red lines indicate the resulting

threshold between suitable and unsuitable habitat and the corre-

sponding false positive error rate for that threshold.
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2003; Ray & Burgman 2006) for stratifying field sampling.

However, the ability of experts to extrapolate beyond their

geographic area of expertisemay be poor (Murray et al. 2009).

An alternative to choosing among different modelling

approaches when estimating species distributions is to combine

inferences using the ensemble model framework (Araújo &

New 2007). Future studies could use that framework to

combine the outputs of presence-only (e.g. Maxent) and pres-

ence–absencemodels.

STRATIFYING FIELD SAMPLING USING HABITAT

SUITABIL ITY MODELS

Field surveys are expensive and occupancy rate will be

estimated more precisely if proportionately more sampling is

conducted in areas where a species is known or predicted to

occur relative to areas where they have not previously been

observed.We chose to randomly allocate 75% of our field sur-

veys to cells using an unequal probability sampling scheme

according to the habitat suitability index and the remainder

randomly to all cells. The choice of how to stratify field sam-

pling is determined by the goal of the study. The aim of our

study was to estimate current and potential distribution. If the

aim was to detect new incursions ⁄ range expansions then rela-

tively more effort should be placed in areas of lower habitat

suitability. Further work is required to generate rules of thumb

for the allocation of survey effort based on habitat suitability

maps, and adaptive sampling may be a useful approach

(Thompson,White &Gowan 1998).

DETECTION PROBABIL IT IES

Although all three field survey methods had detection proba-

bilities <1 (Fig. 4), the use of multiple methods and spatial

replication of two of those methods (faecal pellet transects and

camera traps) reduced the overall probability of false negatives

in sampled cells. Sambar deer are cryptic, being largely noctur-

nal and spending daylight hours in dense forest (Bentley 1998).

If multiple methods were not used, the rate of false negatives

would have beenmuch greater. These results highlight the need

to carefully consider detection probability in the design of pres-

ence–absence surveys (MacKenzie et al. 2002, 2006; Royle &

Kéry 2007).

ESTIMATING CURRENT AND POTENTIAL

DISTRIBUTIONS

A key decision in estimating suitable and unsuitable habitat is

the choice of threshold (Liu et al. 2005). We chose to use a

threshold that gave a false negative error rate of 0Æ05 because

we had reliable information on presences but due to imperfect

detection there may have been some sites where deer were pres-

ent but unobserved. For invasive species it may often be desir-

able to minimize the false negative error. In some cases the

spatial predictions of probability of suitable habitat may be

more useful to managers than the demarcation into suitable

and unsuitable habitat.

We used kernel smoothing to define the current range of

sambar deer in Victoria. Kernel smoothing has previously been

applied to the modelling of presence-only species distribution

data (Hengl et al. 2009) but our innovation was to use the

resulting distribution to delimit suitable habitat estimated from

the occupancy model into occupied habitat (current range)

and unoccupied habitat (potential range), a critical parameter

in decision-making for invasive species (Hulme 2006). The

kernel density estimator, and hence estimates of current distri-

bution, can be particularly sensitive to the choice of smoothing

parameter (Diggle 2003). As well as calculating the smoothing

parameter using the robust method developed by Sheather &

Jones (1991), we also used historical information on the range

expansion of sambar deer in Victoria (Menkhorst 1995; Bent-

ley 1998) to help us determine the ‘best’ model of occupied and

unoccupied range.

MANAGEMENT APPLICATIONS

The draft management policy focuses on containing invasive

sambar deer within their current distribution in Victoria

(Department of Sustainability and Environment 2009a).

Although we have shown that sambar deer occupy c. 74%

of their potential range in Victoria, our analysis has identified

several discrete areas of suitable habitat that sambar deer do

not currently occupy (Fig. 7). The Great Otway National

Park and Grampians National Park are both separated from

occupied range by agricultural land that sambar deer are unli-

kely to disperse across (Downes 1983; Bentley 1998). How-

ever, illegal translocation to establish new populations of deer

has commonly occurred in Australia (Moriarty 2004). Rapid

eradication of new populations has been proposed as a

priority management action for sambar deer in Victoria

(Department of Sustainability and Environment 2009a) and

establishing surveillance monitoring in areas of suitable but

unoccupied habitat using our detection methods (Fig. 4)

would enable such populations to be quickly detected and

dealt with.

0 50 100 200

km

Unoccupied range
Occupied range
Urban areas

Great Otway
National Park

Grampians 
National Park

Fig. 7. Occupied (orange) and unoccupied (green) ranges of sambar

deer in Victoria from an occupancy model and kernel smoothing

of presence locations (circles) from incidental sightings and field

surveys.
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Conclusion

Our framework enables managers to robustly estimate the cur-

rent and potential distributions of established invasive species

using either presence-only and ⁄or presence–absence data, and
could be applied to any plant or animal taxa. Invasive species

managers can use this information to better target control

and ⁄or containment actions within the current distribution

and establish surveillance monitoring to detect incursions

within the potential distribution.
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