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Abstract
Background: Metabolic abnormalities in patients with gastric adenocarcinoma lead to 
drug resistance and poor prognosis. Therefore, this study aimed to explore biomark-
ers that can predict the prognostic risk of gastric adenocarcinoma by analyzing drug 
metabolism- related genes.
Methods: The RNA- seq and clinical information on gastric adenocarcinoma were 
downloaded	from	the	UCSC	and	gene	expression	omnibus	databases.	Univariate	and	
least absolute shrinkage and selection operator regression analyses were used to 
identify the prognostic gene signature of gastric adenocarcinoma. The relationships 
between gastric adenocarcinoma prognostic risk and tumor microenvironment were 
assessed	using	CIBERSORT,	EPIC,	QUANTISEQ,	MCPCounter,	xCell,	and	TIMER	al-
gorithms. The potential drugs that could target the gene signatures were predicted in 
WebGestalt, and molecular docking analysis verified their binding stabilities.
Results: Combined with clinical information, an eight- gene signature, including GPX3, 
ABCA1, NNMT, NOS3, SLCO4A1, ADH4, DHRS7, and TAP1, was identified from the drug 
metabolism-	related	gene	set.	Based	on	their	expressions,	risk	scores	were	calculated,	
and patients were divided into high-  and low- risk groups, which had significant dif-
ferences in survival status and immune infiltrations. Risk group was also identified 
as an independent prognostic factor of gastric adenocarcinoma, and the established 
prognostic and nomogram models exhibited excellent capacities for predicting prog-
nosis. Finally, miconazole and niacin were predicted as potential therapeutic drugs for 
gastric adenocarcinoma that bond stably with NOS3 and NNMT through hydrogen 
interactions.
Conclusions: This study proposed a drug metabolism- related eight- gene signature as 
a potential biomarker to predict the gastric adenocarcinoma prognosis risks.
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1  |  INTRODUC TION

Gastric adenocarcinoma is a life- threatening malignancy of the gas-
trointestinal tract and has become the third leading cause of cancer 
death	globally.	Of	all	 the	gastric	cancers,	approximately	90%–	95%	
are gastric adenocarcinomas.1	 In	2018,	more	than	one	million	new	
cases were confirmed, the majority of which were locally advanced 
at the time of diagnosis.2 The 5- year survival rate of advanced or 
metastatic	gastric	adenocarcinoma	is	less	than	30%.3 The incidence 
of local recurrence or distant metastasis of gastric cancer after sur-
gery	 remains	 at	 40%–	70%,	 even	with	 surgical	 intervention,	 radio-
therapy, chemotherapy, and other treatment strategies, along with 
a certain degree of side effects after radiotherapy and chemother-
apy.4 Therefore, numerous studies have been conducted to explore 
prognostic biomarkers in an attempt to improve the clinical outcome 
of patients with gastric adenocarcinoma. Among them, Yao and 
Ren et al. evaluated the importance of immune microenvironment- 
related genes in gastric adenocarcinoma prognosis by mining public 
databases 5,6. However, a more comprehensive understanding of tu-
morigenesis mechanisms and the exploration of potential prognostic 
biomarkers from multiple perspectives are still required.

Metabolic abnormalities are the primary cause of drug resistance 
in patients with gastric adenocarcinoma, and current studies have 
provided profound insights into the metabolic changes of gastric ad-
enocarcinoma and discussed their possible regulatory mechanisms.7 
A related genome- wide profile analysis identified several important 
gastric cancer biomarkers that were significantly associated with 
drug metabolism pathways.8	The	long	non-	coding	RNA	MACC1-	AS1,	
a biomarker related to gastric cancer prognosis, was reported to reg-
ulate disease metabolism through enhanced glycolysis and antioxi-
dant capacity.9	Furthermore,	ectopic	expression	of	S100P	has	been	
found to correlate with proliferation and increased drug resistance 
in gastric cancer cells.10 A bioinformatics study found that the dif-
ferentially expressed genes (DEGs), including ASPN, COL1A1, FN1, 
VCAN, and MUC5AC, in gastric cancer were significantly associated 
with survival prognoses of patients and were predominantly en-
riched in drug metabolism pathways.11 Although these genes were 
found to be involved in drug metabolism pathways, few studies have 
systematically reported drug metabolism- related drugs and thor-
oughly explored their prognostic values.

Therefore, the current study aimed to identify genes that are 
significantly associated with gastric adenocarcinoma prognosis 
from	drug	metabolism-	related	gene	sets.	Based	on	 the	expression	
of these genes, we constructed a prognostic model and explored the 
predictive performance of the model through internal and external 
validation. Furthermore, we predicted the drugs that could target 
these genes and performed a molecular docking analysis to verify 
their binding. Additionally, multiple databases were used to inves-
tigate the relationship between the prognostic risk of gastric ade-
nocarcinoma and the immune microenvironment. The workflow of 
the	study	is	shown	in	Figure	S1.	The	feature	genes	proposed	in	this	
study may be potential therapeutic markers, resulting in improved 
clinical outcomes in patients.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition

RNA- seq data of gastric adenocarcinoma and related clinical in-
formation, including tumor stage, family history, lymph node 
examined count, neoplasm histologic grade, primary diagnosis, 
resection	 or	 biopsy	 site,	 disease	 type,	 overall	 survival	 (OS),	 and	
OS	duration	were	downloaded	from	the	UCSC	Xena	(https://toil.
xenah ubs.net) platform.12 A total of 32 paracancerous samples 
and 375 tumor samples were included in this study, and 348 gas-
tric adenocarcinoma samples with prognostic information were 
enrolled to develop a prognostic model. Furthermore, expression 
data and clinical information of 65 gastric adenocarcinoma sam-
ples	in	the	microarray	dataset	GSE13861	were	obtained	from	the	
Gene	 Expression	 Omnibus	 (GEO,	 http://www.ncbi.nlm.nih.gov/
geo/) database.13	 GSE13861	 was	 detected	 using	 the	 GPL6884	
Illumina	HumanWG-	6	v3.0	Expression	BeadChip	and	was	used	as	
the validation set.

2.2  |  Analysis of drug metabolism- related genes

Based	on	published	articles14 and The Cancer Genome Atlas (TCGA) 
database, a total of 228 drug metabolism- related genes were 
matched.	Using	the	empirical	Bayes	method	provided	by	the	limma	
package	 (v3.10.3,	 http://www.bioco	nduct	or.org/packa	ges/2.9/
bioc/html/limma.html),15 drug metabolism- related DEGs between 
tumor and paracancerous samples were identified with p- values 
adjusted	 by	Benjamini	&	Hochberg	method	< 0.05, and |log fold- 
change| >0.5 as thresholds.

2.3  |  Enrichment analysis and protein- protein- 
interaction (PPI) network construction

Gene	 ontology	 (GO)	 functions	 and	 Kyoto	 Encyclopedia	 of	 Genes	
and	Genomes	 (KEGG)	pathways	of	drug	metabolism-	related	DEGs	
were	 enriched	 in	 DAVID	 v6.8	 (http://david.ncifc	rf.gov/)	 16,17.	 GO	
and	KEGG	terms	with	p- value <	0.05,	and	gene	count	≥2	were	se-
lected	with	significant	correlation.	Moreover,	the	STRING	database	
(v11.0, http://strin g- db.org/)18 was used to analyze the relationship 
between proteins coded by drug metabolism- related DEGs, and the 
PPI	 network	 was	 visualized	 using	 Cytoscape	 (v3.6.1,	 http://cytos	
cape.org/).19

2.4  |  Screening of drug metabolism- related 
prognostic DEGs

Based	 on	 the	 drug	metabolism-	related	DEGs	 obtained	 above	 and	
the survival information of gastric adenocarcinoma samples, uni-
variate Cox regression analysis was performed to select drug 

https://toil.xenahubs.net
https://toil.xenahubs.net
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13861
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13861
http://www.bioconductor.org/packages/2.9/bioc/html/limma.html
http://www.bioconductor.org/packages/2.9/bioc/html/limma.html
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http://string-db.org/
http://cytoscape.org/
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metabolism- related prognostic DEGs using the survival package 
(v2.41–	1,	 http://bioco	nduct	or.org/packa	ges/survi	valr/)	 in	 R3.6.1.20 
DEGs with a p- value < 0.05 were determined to be significantly cor-
related with prognosis.

2.5  |  Construction and validation of the 
prognostic model

By	 utilizing	 the	 prognostic	 information	 of	 gastric	 adenocarcinoma	
samples in the training set and the expression values of drug 
metabolism- related prognostic DEGs in each sample, genes were 
further selected as the optimized gene set using the least absolute 
shrinkage	and	selection	operator	(LASSO)	regression	analysis	in	the	
glmnet	 package	 (v2.0–	18,	 http://cran.r-	proje	ct.org/web/packa	ges/
glmne t/index.html) 21,22. The risk score of each sample was then cal-
culated as follows:

where βgene	 indicates	 the	 LASSO	 regression	 coefficient	 of	 gene	
signature, and Expgene indicates their expression levels in gastric 
adenocarcinoma samples. To verify the effectiveness of the prog-
nostic	model,	 the	 risk	 scores	 of	 the	 samples	 in	GSE13861	were	
calculated. The samples were then grouped into high-  and low- risk 
groups	based	on	the	median	risk	score.	Kaplan-	Meier	(KM)	curves	
were created to analyze the difference in survival status between 
the two groups.

2.6  |  Feature analysis of gene signature

The expression cutoff value of each gene signature in the training 
set was obtained to determine the optimal cutoff point calculated 
by	the	Survminer	package	of	R3.6.1	(v0.4.3).	KM	analysis	was	then	
performed to evaluate the difference in survival prognosis between 
samples in the high-  and low- expression groups. A heatmap was 
created to observe the relationships between the expression level, 
risk score, and clinical characteristics of each gastric adenocarci-
noma sample.

2.7  |  Statistical analysis of clinical features among 
risk groups

In	 the	 training	 set,	 the	 chi-	squared	 test	 in	 R3.6.1	was	 used	 for	
statistical analysis and comparison of categorical variables, in-
cluding TNM classification, tumor stage, family history, neo-
plasm histologic grade, primary diagnosis, resection or biopsy 
site, and disease type, between risk groups. The t test was used 
for continuous variables, including age and lymph node ex-
amined count.

2.8  |  Immune microenvironment analysis between 
risk groups

In	 the	 current	 study,	 CIBERSORT	 (https://ciber	sort.stanf	ord.edu/
index.php) 23,24,	 EPIC	 (https://gfell	erlab.shiny	apps.io/EPIC_1-	1/),25 
QUANTISEQ,26 MCP- counter (https://github.com/ebech t/MCPco 
unter),27 xCell (https://xcell.ucsf.edu/),28	 and	 TIMER	 (https://cistr	
ome.shiny apps.io/timer)29 were used to estimate immune cell infil-
tration among risk groups. The Wilcoxon test was used to analyze 
the difference between the two groups and a heatmap was created 
accordingly.	 Furthermore,	 the	 ESTIMATE	 algorithm30 was used to 
assess the stromal and immune scores of gastric adenocarcinoma 
samples, and the t test was applied to analyze the difference, fol-
lowed by generation of a box plot.

2.9  |  Differential pathway analysis between 
risk groups

Gene	Set	Enrichment	Analysis	(GSEA,	v3.0)	software	was	used	for	
pathway	 enrichment	 with	 c2.cp.kegg.v7.1.symbols.gmt	 in	 MSigDB	
v7.1 (http://softw are.broad insti tute.org/gsea/msigd b/index.jsp)31 as 
an enrichment background. Then, the differences in enriched path-
ways were analyzed between risk groups with a false discovery rate 
(FDR) < 0.05.

2.10  |  Analysis of independent prognostic 
factors and construction of a nomogram 
prediction model

To determine whether the prognostic model could be used as an 
independent prognostic factor, univariate Cox regression analysis 
was performed on age, sex, tumor stage, family history, neoplasm 
histologic grade, disease type, and lymph node examined count. 
Variables with p- values < 0.05 were selected for multivariate Cox 
regression analysis, followed by a further selection of statistical 
significance at p < 0.05. A nomogram model was created to predict 
the 1- , 2- , 3- , and 5- year survival probabilities of gastric adenocar-
cinoma patients according to the multivariate Cox regression anal-
ysis results. Calibration curves were generated to verify model 
accuracy.

2.11  |  Drug enrichment prediction of 
gene signature

Based	 on	 the	 obtained	 genes,	 the	 WebGestalt	 database	 (http://
www.webge stalt.org/option.php)32 was used for drug enrichment 
prediction using over- representation analysis. Drugs with p < 0.05 
were selected as candidate drugs that could bind with the genes. 
Based	 on	 the	 prognostic	 effect	 of	 the	 gene	 signature,	 drugs	 that	

Risk score =

∑

�gene × Expgene
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function as inhibitors or inducers were selected. Finally, the bind-
ing stabilities between candidate inhibitors or induced drugs and 
related target genes were validated by molecular docking using 
AutoDock 4.2.6.

3  |  RESULTS

3.1  |  Analysis of drug metabolism- related DEGs of 
gastric adenocarcinoma

Differential analysis was performed between gastric adenocarci-
noma samples and paracancerous samples based on 228 matched 
drug metabolism- related genes. The volcano plot (Figure 1A) 
shows the 77 obtained drug metabolism- related DEGs. Then, 
enrichment analysis was performed on these drug metabolism- 
related	DEGs,	and	64	biological	processes	(BP),	13	cellular	compo-
nents	 (CC),	47	molecular	 functions	 (MF),	and	21	KEGG	pathways	

were	obtained.	The	bubble	charts	of	Figure	1B	display	the	top	10	
GO	and	KEGG	terms,	ranked	by	p- values. The results showed that 
these	DEGs	were	primarily	enriched	in	GO-	BP	of	several	metabolic	
processes,	GO-	CC	of	TAP	complex	and	host	cell,	GO-	MF	of	alde-
hyde	dehydrogenase	activity,	and	in	KEGG	pathways	of	drug	me-
tabolism, xenobiotic metabolism, and chemical carcinogenesis. The 
interactions of these proteins coded by DEGs were then analyzed, 
and	a	PPI	network	was	created,	as	shown	in	Figure	1C.	This	PPI	net-
work	contained	66	drug	metabolism-	related	DEGs	and	309	relation	
pairs. Among these nodes, UGT1A1, CYP2B6, and CYP3A4 had a 
larger degree.

3.2  |  Screening of gene signature of gastric 
adenocarcinoma

Combined with the prognostic information of gastric adeno-
carcinoma samples, a univariate Cox regression analysis was 

F I G U R E  1 Analysis	of	drug	metabolism-	related	DEGs	of	gastric	adenocarcinoma.	(A)	The	volcano	plot	shows	drug	metabolism-	related	
DEGs	between	gastric	adenocarcinoma	samples	and	paracancerous	samples;	(B)	GO	functions	and	KEGG	pathway	enrichment	analyses	of	
drug metabolism- related DEGs; (C) The protein- protein- interaction network created based on proteins coded by drug metabolism- related 
DEGs
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performed, and 11 drug metabolism- related prognostic DEGs 
were selected with p < 0.05, as shown in Figure 2A. Then, 
LASSO	 regression	 analysis	 was	 performed	 to	 select	 the	 opti-
mized gene set, and an eight- gene signature was identified, in-
cluding GPX3, ABCA1, NNMT, NOS3, SLCO4A1, ADH4, DHRS7, 
and TAP1.	Their	prognostic	effects	are	shown	 in	Figure	2B,	and	
only SLCO4A1 and TAP1 were considered protective factors with 
hazard ratios <1.	Based	on	the	expression	cutoff	of	these	genes	
in the training set, samples were separated into high-  and low- 
expression	 groups.	 The	KM	curves	 in	Figure	2C	 illustrated	 that	
patients with high GPX3, ABCA1, NNMT, NOS3, ADH4, and DHRS7 
expressions had worse survival status, whereas high SLCO4A1 
and TAP1 expressions were significantly associated with better 
prognoses.

3.3  |  Establishment and validation of the 
prognostic model

Using	 the	 LASSO	 regression	 coefficients	 of	 each	 gene	 obtained	
above, the risk scores of each sample were calculated, and a prog-
nostic	model	was	 created.	 Based	 on	 the	median	 value	 of	 the	 risk	
score, the samples were grouped into high-  and low- risk groups. The 
expression distributions of these genes in the two groups were visu-
alized using a heatmap (Figure 3A). The results suggested that the 
expression distribution of genes in the risk groups was different. To 
validate the model efficiency in the training set, we found that the 
prognostic risk of patients increased along with increased risk scores 
(Figure	3B).	The	KM	curve	(Figure	3C)	demonstrated	that	patients	in	
the high- risk groups had a worse survival status. Receiver operator 

F I G U R E  2 Screening	of	gene	signature	of	gastric	adenocarcinoma.	(A)	The	forest	map	shows	the	prognostic	DEGs	selected	from	the	
univariate	Cox	regression	analysis;	(B)	the	forest	map	shows	the	gene	signature	of	gastric	adenocarcinoma	screened	by	the	multivariate	
regression	analysis;	(C)	KM	curves	show	the	survival	differences	between	patients	with	different	expression	levels	of	these	genes
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characteristic	(ROC)	curves	(Figure	3D)	were	created	to	verify	model	
accuracy, and it was observed that the prognostic model had supe-
rior performance in predicting 1- , 2- , 3- , and 5- year survival prog-
noses	with	area	under	the	curves	(AUCs)	of	0.67,	0.679,	0.711,	and	
0.728, respectively. The prognostic model was further validated 
using	the	GSE13861	dataset	(Figure	3E–	G).	Similarly,	as	the	risk	score	
increased, the number of deaths increased. Meanwhile, patients in 
the high-  and low- risk groups had significant differences in survival 
time, and the model accuracy was proven in the validation set with 

all	AUCs	in	ROC	curves	over	0.65.	These	results	indicated	a	signifi-
cant association between the risk grouping and actual outcomes.

3.4  |  Difference of clinical characteristics between 
risk groups

The clinical information of the high-  and low- risk groups was com-
pared, as shown in Table 1. The results suggested that the two 

F I G U R E  3 Construction	and	validation	of	the	prognostic	model.	(A)	The	heatmap	shows	the	expression	distribution	of	genes	in	high-		and	
low-	risk	groups;	Model	validation	in	the	training	set	(B–	D)	and	the	GSE13861	validation	dataset	(E–	G);	(B	and	E)	the	distribution	of	survival	
time	on	risk	scores;	(C	and	F)	KM	curves	show	the	survival	difference	between	the	two	groups;	(D	and	G)	Receiver	operator	characteristic	
curves show the model accuracy in predicting 1- , 2- , 3- , and 5- year prognoses

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13861
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13861
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TA B L E  1 The	statistics	of	clinical	features	in	the	high-	risk	and	low-	risk	groups

Subgroups Low risk High risk p- Value

Age (mean ±	SD) 66.0 ± 10.1 64.6 ± 10.6 2.058E−01

Lymph node examined count 26.5 ±	20.9 19.2	± 15.1 4.264E−04

Family history 5.088E−01

Yes 9 6

No 133 129

NA 32 39

Tumor stage 3.544E−04

I 1 12

II 34 54

III 56 74

IV 70 22

NA 12 12

Neoplasm histologic grade 3.463E−03

G1 3 6

G2 77 46

G3 89 118

GX 5 4

Pathologic M 8.204E−02

M0 161 150

M1 6 16

MX 7 8

Pathologic N 3.294E−03

N0 65 38

N1 39 53

N2 39 32

N3 29 42

NX 2 7

NA 0 2

Pathologic T 6.183E−04

T1 15 1

T2 38 36

T3 79 80

T4 42 53

TX 0 4

Primary diagnosis 1.223E−03

Adenocarcinoma 55 62

Adenocarcinoma with mixed subtypes 0 1

Adenocarcinoma, intestinal type 40 33

Carcinoma, diffuse type 20 39

Mucinous adenocarcinoma 6 13

Papillary adenocarcinoma 4 1

Signet	ring	cell	carcinoma 5 7

Tubular adenocarcinoma 44 18

(Continues)
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Subgroups Low risk High risk p- Value

Site	of	resection	or	biopsy 7.366E−01

Body	of	stomach 46 38

Cardia 44 40

Fundus of stomach 18 22

Gastric antrum 59 68

Lesser curvature of stomach 1 0

Stomach 6 6

Disease type 1.941E−01

Adenomas and Adenocarcinomas 162 154

Cystic,	Mucinous	and	Serous	Neoplasms 12 20

Note: Bold	p- value < 0.05 indicates statistical significance.
Abbreviations:	NA,	not	available;	SD,	standard	division.

TA B L E  1 (Continued)

F I G U R E  4 Estimation	of	immune	cell	infiltration	abundance	in	high-		and	low-	risk	groups.	(A)	The	infiltration	abundances	of	immune	and	
stromal	cells	estimated	by	CIBERSORT,	EPIC,	QUANTISEQ,	MCPCounter,	xCell,	and	TIMER	algorithms;	(B)	the	heatmap	shows	59	immune	
microenvironment- related cells with p < 0.05; (C) the difference in immune scores between high-  and low- risk groups; (D) the difference in 
stromal scores between high-  and low- risk groups
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groups had significant differences in lymph node examined count, 
tumor stage, neoplasm histologic grade, pathologic N, pathologic T, 
and primary diagnosis.

3.5  |  Difference of immune microenvironment 
between risk groups

Based	on	CIBERSORT,	EPIC,	QUANTISEQ,	MCPCounter,	xCell,	and	
TIMER	 algorithms,	 the	 relative	 infiltration	 abundances	 of	 immune	
and stromal cells were estimated. The infiltration abundance of im-
mune cells is shown in Figure 4A. Then, by comparing the differ-
ences	 between	 risk	 groups,	 59	 immune	microenvironment-	related	
cells (p <	0.05)	were	screened	out,	as	shown	in	Figure	4B.	Immune	
and stromal scores were calculated for each sample, and significant 
differences between risk groups were visualized using box plots 
(Figure 4C,D).

3.6  |  GSEA pathway enrichment analysis among 
risk groups

The	 KEGG	 pathways	 of	 high-		 and	 low-	risk	 groups	 were	 analyzed	
using	GSEA.	By	setting	the	threshold	of	FDR	< 0.05, the high- risk 
group	significantly	enriched	25	KEGG	pathways	with	a	normalized	
enrichment	 score	 (NES)	>0. Furthermore, 11 significant pathways 
were	enriched	in	the	low-	risk	group,	with	an	NES	< 0. The enriched 
pathways of these two groups are shown in Table 2.

3.7  |  Analysis of independent prognostic 
factors and establishment of a nomogram model

To further identify the independent prognostic factors, age, sex, 
tumor stage, family history, neoplasm histologic grade, TNM clas-
sification, disease type, and lymph node examined count were in-
corporated into the univariate Cox regression analysis (Figure 5A). 
Variables with p- values < 0.05 were then selected for multivariate 
Cox regression analysis. Finally, the risk group, pathologic N, and 
pathologic M were identified as independent prognostic factors 
(Figure	5B).	A	nomogram	model	was	established	to	predict	1-	,	2-	,	3-	,	
and 5- year survival probabilities (Figure 5C), and calibration curves 
were created to verify model accuracy. Figure 5D shows that the 
predicted	probabilities	of	2-	,	3-	,	and	5-	year	OS	were	similar	to	the	
actual	OS,	 thereby	 suggesting	 an	 excellent	 prediction	 accuracy	of	
the nomogram model.

3.8  |  Molecular docking analysis of predicted 
drugs and related targets

Drug prediction enrichment analysis was performed on an eight- 
gene signature, and 30 drugs were predicted to target 7 genes. 

Among them, high ABCA1, NNMT, and NOS3 expression levels were 
correlated with poor prognoses, and their related inhibitors or bind-
er's glyburide, niacin, and miconazole, respectively, were selected 
for molecular docking analyses. The binding results of glyburide- 
ABCA1, miconazole- NOS3, and niacin- NNMT complexes are shown 
in	Figure	6A–	C,	 respectively.	As	a	 result,	miconazole	bonded	with	
the PHE- 473 residue of NOS3 by a hydrogen bond with a length 
of 2.5 Å. Moreover, the small molecular ligand niacin bonded with 
ARG-	30	and	SER-	32	residues	of	the	receptor	NNMT through hydro-
gen bond interactions. These findings illustrated that these ligand- 
receptor complexes were in a stable state of binding.

4  |  DISCUSSION

Gastric adenocarcinoma ranks fifth among the most prevalent 
malignancies worldwide, and the development of drug resist-
ance because of metabolic disorders is one of the reasons for 
poor prognosis.1	Therefore,	by	mining	TCGA	and	GEO,	we	identi-
fied eight prognostic genes, namely GPX3, ABCA1, NNMT, NOS3, 
SLCO4A1, ADH4, DHRS7, and TAP1 from the drug metabolism- 
related	gene	set	using	univariate	and	LASSO	regression	analyses.	
Then, a prognostic model was constructed, and patients were 
grouped	into	high-		and	low-	risk	groups.	Survival	analyses	showed	
that patients in the high- risk group had worse prognoses, while 
the	ROC	curves	showed	that	the	prognostic	model	had	good	pre-
dictive performance in both the training and validation sets with 
AUCs > 0.65. Furthermore, the risk group was identified as an 
independent prognostic factor, and the established nomogram 
model exhibited good accuracy in predicting 1- , 2- , 3- , and 5- year 
survival probabilities.

Among the eight genes, we found that SLCO4A1 and TAP1 were 
protective factors for gastric adenocarcinoma prognosis, whereas 
high GPX3, ABCA1, NNMT, NOS3, ADH4, and DHRS7 expressions 
were	significantly	associated	with	poor	prognoses.	 It	has	been	 re-
ported that in gastric cancer patients over 60 years of age, GPX3 hy-
permethylation was significantly correlated with a shorter time to 
tumor recurrence.33 Meanwhile, Wang et al. believed that GPX3 is a 
risk factor for gastric cancer, and the intron single nucleotide poly-
morphism of GPX3 may alter gastric cancer risk by affecting gene 
expression levels.34 Therefore, we speculated that the risk role of 
GPX3 in gastric adenocarcinoma prognosis may be closely related 
to changes in gene epigenetics. As for NNMT, related studies found 
that high NNMT expression in stromal cells may predict an unfa-
vorable postoperative prognosis for gastric carcinoma.35 NNMT is 
known to act as a negative predictor for gastric carcinoma prognosis 
and is correlated with immune infiltrates 36,37. These findings con-
firmed our results, and upregulated NNMT in gastric cancer cells 
may promote the occurrence of epithelial- mesenchymal transition 
by activating TGF- β1/SMAD	signaling,38 thereby leading to tumor 
recurrence and metastasis. A pan- cancer analysis found that in-
creased NOS3 expression in gastric adenocarcinoma may lead to 
poor prognosis through several typical cancer- related pathways.39 
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This finding is consistent with our results; however, how NOS3 in-
fluences gastric adenocarcinoma prognosis through cancer- related 
pathways requires investigation.

The tumor microenvironment significantly contributes to the 
occurrence, progression, prognosis, and immunotherapy response 
of gastric adenocarcinoma.6 Gastric adenocarcinoma is a chronic 
gastritis caused by Helicobacter pylori and is often character-
ized by the infiltration of immune cells, including granulocytes, 

macrophages, and T lymphocytes.40 Therefore, the current study 
explored the relationship between prognostic risk and immune 
cell	infiltration.	Significant	differences	in	the	infiltration	of	59	im-
mune	microenvironment-	related	cells,	such	as	B	cells,	T	cells,	neu-
trophils, and macrophages were found between the risk groups. 
Relevant	 studies	 have	 reported	 that	 high	 infiltration	 of	 B	 lym-
phocytes is beneficial for gastric cancer prognosis.41 Fristedt and 
Knief	et	al.	suggested	that	increased	infiltration	density	of	B	cells	

TA B L E  2 Enrichment	GSEA	pathways	of	high-		and	low-	risk	groups

Terms (High- risk) NES FDR p- Value

Focal adhesion 2.068 0.040

Regulation of actin cytoskeleton 2.054 0.024

Hypertrophic cardiomyopathy HCM 2.031 0.021

Complement and coagulation cascades 2.023 0.018

Vascular smooth muscle contraction 2.004 0.018

Glycosphingolipid biosynthesis ganglio series 1.992 0.018

Calcium signaling pathway 1.976 0.018

KEGG	dilated	cardiomyopathy 1.965 0.019

Arrhythmogenic right ventricular cardiomyopathy ARVC 1.964 0.017

ECM receptor interaction 1.934 0.023

GAP junction 1.923 0.025

Leukocyte transendothelial migration 1.920 0.024

Vasopressin regulated water reabsorption 1.861 0.040

TGF- β signaling pathway 1.851 0.041

Neuroactive ligand- receptor interaction 1.851 0.039

Melanogenesis 1.846 0.038

Pathogenic escherichia coli infection 1.833 0.041

Cell adhesion molecules cams 1.829 0.040

MAPK	signaling	pathway 1.821 0.041

Prion diseases 1.817 0.041

Adherens junction 1.802 0.045

Glycosaminoglycan biosynthesis chondroitin sulfate 1.801 0.043

Melanoma 1.788 0.046

Hematopoietic cell lineage 1.775 0.049

Axon guidance 1.770 0.049

Terms (Low- risk) NES FDR p- Value

Spliceosome −2.117 0.015

DNA replication −1.966 0.039

RNA degradation −1.946 0.032

Base	excision	repair −1.896 0.040

Homologous recombination −1.891 0.035

Aminoacyl tRNA biosynthesis −1.886 0.031

One	carbon	pool	by	folate −1.876 0.029

Pyrimidine metabolism −1.870 0.027

Proteasome −1.868 0.025

Cell cycle −1.862 0.023

Nucleotide excision repair −1.800 0.039

Abbreviations:	FDR,	false	discovery	rate;	GSEA,	gene	set	enrichment	analysis;	NES,	normalized	enrichment	score.
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or plasma cells was associated with improved prognosis and pro-
longed	OS	of	esophageal	and	gastric	cancers	42,43. As for T cells, 
increased CD8+T	cell	infiltration	was	associated	with	impaired	OS,	
and PD- L1 expression was higher in patients with a higher CD8+T 
cell density, suggesting a possible mechanism of adaptive immune 

resistance.44 Christina et al.45 reported that the high CD8+T cell 
density was an adverse prognostic factor for gastric adenocarci-
noma patients. However, certain contrasting results suggested 
that increased CD3+ and CD8+ T lymphocyte infiltrations are 
associated with improved survival status.46 The upregulation of 

F I G U R E  5 Construction	and	validation	of	the	nomogram	model.	(A	and	B)	Identification	of	the	independent	prognostic	factors	using	
univariate and multivariate Cox regression analyses; (C) the establishment of a nomogram model to predict 1- , 2- , 3- , and 5- year survival 
probabilities; (D) calibration curves were created to verify the accuracy of the nomogram model
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PD- 1 and PD- L1 is believed to promote T- cell apoptosis in gas-
tric adenocarcinoma.47 The association between T cell infiltration 
and the prognostic risk of gastric adenocarcinoma has been ex-
tensively introduced; however, the specific prognostic effects of 
T cells remain controversial, possibly because of the differences 
in identified T cell subtype markers and gastric cancer molecular 
subtypes among different studies.

At the end of this study, we predicted several inhibitors or 
binders based on prognostic risk genes as potential drugs for gas-
tric adenocarcinoma treatment, and the molecular docking anal-
ysis showed that the drug ligand and the protein receptor bond 
stably in the form of hydrogen bonds. However, our understanding 
of the therapeutic potential of drugs for gastric adenocarcinoma 
is	 limited.	 In	 future	 studies,	we	will	 conduct	animal	experiments	
to explore whether the molecular mechanism of niacin and mi-
conazole for gastric adenocarcinoma treatment is related to the 
expression of target genes.

5  |  CONCLUSIONS

In	summary,	 this	study	proposed	an	eight-	gene	signature	related	
to drug metabolism as a potential biomarker to predict the prog-
nostic risk of gastric adenocarcinoma patients. The predicted 
drugs (niacin and miconazole) can stably bind to target genes and 
have therapeutic potential for gastric adenocarcinoma patients. 
Additionally, we found a significant correlation between the 
tumor immune microenvironment and gastric adenocarcinoma 

prognosis.	Our	study	helps	to	better	understand	the	relationship	
between gastric adenocarcinoma prognosis, drug metabolism, and 
the immune microenvironment.
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