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Abstract

Intramuscular fat (IMF) content and fatty acid composition of longissimus dorsi muscle (LM)

change with growth, which partially determines the flavor and nutritional value of goat

(Capra hircus) meat. However, unlike cattle, little information is available on the transcrip-

tome-wide changes during different postnatal stages in small ruminants, especially goats.

In this study, the sequencing reads of goat LM tissues collected from kid, youth, and adult

period were mapped to the goat genome. Results showed that out of total 24 689 Unigenes,

20 435 Unigenes were annotated. Based on expected number of fragments per kilobase of

transcript sequence per million base pairs sequenced (FPKM), 111 annotated differentially

expressed genes (DEGs) were identified among different postnatal stages, which were sub-

sequently assigned to 16 possible expression patterns by series-cluster analysis. Functional

classification by Gene Ontology (GO) analysis was used for selecting the genes showing

highest expression related to lipid metabolism. Finally, we identified the node genes for lipid

metabolism regulation using co-expression analysis. In conclusion, these data may uncover

candidate genes having functional roles in regulation of goat muscle development and lipid

metabolism during the various growth stages in goats.

Introduction

Intramuscular fat (IMF), the flecks and streaks of fat within the lean sections of meat, also

known as marbling, is positively associated with juiciness and flavor. Optimal IMF content

and fatty acid composition are also beneficial for human health. Genetic improvement of IMF

deposition and fatty acid compositions are major goals of goat breeding. Comparing with

research in cattle [1, 2], pigs [3, 4], chicken [5], and sheep [6–8], although peroxisome prolif-

erator-activated receptor gamma (PPARγ) is related with IMF metabolism in goat (Capra hir-
cus) mammary gland [9], few studies have focused on the molecular mechanisms of lipid

metabolism in goat muscle.

A Number of genes are important for lipid metabolism in muscle. In pigs, peroxisome pro-

liferator-activated receptor gamma coactivator-1α (PGC1α) is associated with IMF content

PLOS ONE | https://doi.org/10.1371/journal.pone.0182602 August 11, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Lin Y, Zhu J, Wang Y, Li Q, Lin S (2017)

Identification of differentially expressed genes

through RNA sequencing in goats (Capra hircus) at

different postnatal stages. PLoS ONE 12(8):

e0182602. https://doi.org/10.1371/journal.

pone.0182602

Editor: Yun Zheng, Kunming University of Science

and Technology, CHINA

Received: April 19, 2017

Accepted: July 23, 2017

Published: August 11, 2017

Copyright: © 2017 Lin et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was jointly supported by the

‘Science and Technology Support Program of

Sichuan Province (2016NYZ0045)’, ‘National

Natural Science Foundation of China (31672395

and 31601921)’, ‘Basic Research Programs of

Sichuan Province (2016JY0147)’ and ‘Animal

Science Discipline Program of Southwest

University for Nationalities’ (2014XWD-S0905).

https://doi.org/10.1371/journal.pone.0182602
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182602&domain=pdf&date_stamp=2017-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182602&domain=pdf&date_stamp=2017-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182602&domain=pdf&date_stamp=2017-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182602&domain=pdf&date_stamp=2017-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182602&domain=pdf&date_stamp=2017-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182602&domain=pdf&date_stamp=2017-08-11
https://doi.org/10.1371/journal.pone.0182602
https://doi.org/10.1371/journal.pone.0182602
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


[10]. HDL-binding protein (HDLBP) is also associated with IMF percentage [11]. In male

Kazak sheep, the mRNA expression level of heart-type fatty acid binding protein (FABP3) is

highly and positively correlated with IMF content, but that of PPARγ is highly and negatively

correlated with IMF content [6]. In the bulls and steers, castration results in improved mar-

bling of longissimus dorsi muscle (LM) by increasing the expression of lipid uptake genes

viz. lipoprotein lipase (LPL), fatty acid translocase (CD36) and fatty acid transport protein 1

(FATP1), enhancing lipogenic genes viz. fatty acid synthase (FASN) and acetyl-CoA carboxyl-

ase α (ACCα), and down-regulating lipolytic genes viz. triglyceride lipase (ATGL) and mono-

glyceride lipase (MGLL) [12]. Obviously individual gene cannot illuminate the mechanism of

regulation of IMF deposition, and studies employing transcriptome-wide mining of the func-

tional genes in lipid metabolism are needed.

Moreover, no information is available on the alterations of the transcriptome vis-a-vis IMF

content, particularly in goats. Considering that IMF content increased continuously with

growth in sheep [6], it is hypothesized that the genes that are associated with lipid metabolism

and that are expressed differentially during different postnatal stages in goat LM may provide

us candidates for the regulation of IMF deposition beyond the development of muscle mass.

In the present study, RNA sequencing was used for expression profiling of muscle tissue

from 3 postnatal stages of Jianzhou Big-Eared goats. The results determined the differentially

expressed genes (DEGs), and revealed potential candidates with important role in regulation

of lipid metabolism.

Material and methods

Ethics statement

The animal care and use were performed according to the regulations for the Administration

of Affairs Concerning Experimental Animals (Ministry of Science and Technology, China,

revised in June 2004) and approved by the Institutional Animal Care and Use Committee,

Southwest University for Nationalities, Chengdu, Sichuan, China.

Animals, sampling, and RNA collection

The Jianzhou Big-Eared goats used in this experiment were obtained from the Jianyang

Dageda animal husbandry Co. Ltd in Jianyang County, Sichuan, China. Methods for tissue

collection have been described previously [13]. Briefly, nine healthy Jianzhou Big-Eared goats,

three per stage, in the period of kid (2-month age, group G), youth (9-month age, group Y)

and adult (24-month age, group C) were selected randomly. All the goats were fed freely in the

same house with alfalfa, corn straw silage and supplemented with concentrate; the concentrate

comprised of corn, soybean, wheat bran, rapeseed meal, and a mineral-vitamin mixture. The

kids were nursed freely by the lactating goats. All the goats performed well during experiments.

The LM tissues were collected by a veterinarian after slaughter. All the tissue samples were har-

vested within 20 min of slaughter under sterile conditions and immediately frozen in liquid

nitrogen until RNA extraction.

IMF was determined by Soxhlet method using anhydrous ether as the solvent, and expressed

as percentage of dry weight. Extraction of total RNA, purification of mRNA, and construction

of cDNA library were performed by Novogene (Beijing, China). In brief, total RNA was

obtained from LM using the Trizol method and treated with RNase-free DNase. The quality

and purity of total RNA were analyzed by agarose gel electrophoresis, Bioanalyzer 2100 and

Nanodrop system (Agilent, CA, USA). The RNA Integrity Number (RIN) of RNA were 8.4, 8.1,

8.0 from kids; 7.7, 8.1, 7.8 from youth; and 7.2, 7.7, 8.2 from adults; respectively. Qubit1 2.0

fluorometer was used for determination of RNA concentration.
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cDNA library construction and Illumina sequencing

Total RNA obtained from goats of the same group was pooled in equal quantities (1 μg mRNA

per goat). mRNA was isolated with poly-T-oligo-attached magnetic beads (Invitrogen, USA).

Following purification, the mRNA was fragmented using fragmentation buffer. Random hex-

amers were then used for first cDNA strand synthesis, following which the second strand of

cDNA was synthesized after the supplementation of buffer, dNTPs, and DNA Polymerase I.

The cleaved cDNA purified by AMPure XP beads (Illumina, San Diego, USA) was modified

by end-repair, and addition of A-tail and adapter. PCR enrichment was performed following

the size selection of fragments to create the final cDNA library. The cDNA library was then

quantified by Qubit 2.0 fluorometer and diluted to a terminal concentration of 1 ng/μl. Agilent

2100 Bioanalyzer system was then used for identification of insert size following quantification

of concentration by quantitation real-time PCR (qPCR). Pair-end sequencing of 2×150 bp was

then performed on an Illumina HiSeq 4000 equipment following the vendor’s recommended

protocol for 1 lane.

Data filtering and sequence assembly

Prior to assembly, the raw reads (raw data) were determined by fastqc [14] and filtered by

removing the adapter sequences and potential contamination, i.e. reads with unknown base

(N) greater than 10% and low quality sequences (<Q20) [15], to obtain clean data. All of the

downstream analyses were based on high quality clean data. TopHat2 method was used for

sequence mapping and assembly with the complete goat genome (CHIR_1.0) as the reference

sequence (ftp://ftp.ncbi.nlm.nih.gov/genomes/Capra_hircus/) [16].

Gene annotation and determination of expression level

Assembled Unigenes were annotated to the reference goat genome using BLAST. Unigene

expression level was recorded according to the sum frequencies of compared reads. Expected

number of fragments per kilobase of transcript sequence per million base pairs sequenced

(FPKM) was used for expression normalization [17]. The goat genome was aligned to the

Gene Ontology (GO, http://www.geneontology.org/) of other species, including human,

bovine, mice et al., to build the GO database available for goat which was then used for GO

analysis in the present study [18].

Analysis of differentially expressed genes among various growth stages

DEGs were analyzed using DESeq method following the normalization of read count by

Trimmed Mean of M values (TMM) [19]. DEGs were selected according to |log2(fold-change)|

> 1 and q value < 0.005 (normalized p value), which were then used for GO analysis. The soft-

ware of Short Time-series Expression Miner (STEM) was used for expression pattern analysis

by the “Normalize data” method; the “maximum number of model profiles” was set at 20 and

the “maximum unit change in model profiles between time points” was set at 2. The signifi-

cance level was set at 0.05, and the minimum correlation with the clustering profiles was set at

0.7 [20]. Gene co-expression analysis [21, 22] was performed to track the interactions among

the DEGs profiles. Pearson correlation was performed for each pair of genes and the signifi-

cantly correlated pairs were used to construct a network with a threshold of 0.92 [23] using a

Perl script. The number of correlated genes was used for selection of the node genes.
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Quantitative real-time PCR

cDNA was synthesized from 0.5 μg of total RNA using the PrimeScript™ RT kit with gDNA

Eraser (Takara, Japan) which removes genomic DNA contamination, according to the manu-

facturer’s instructions. qPCR was performed according to manufacturer’s instructions using

SYBR green (SYBR1 Premix Ex Taq™ II, Perfect Real Time, Takara, Japan). The sequences of

the primers are shown in the S1 Table. Peptidylprolyl isomerase B (PPIB) was chosen as the

internal control gene, and amplified using the primer sequences reported previously [13].

Three independent biological replicates were analyzed per sample by qPCR. The relative gene

expression was calculated using the 2-ΔΔCt method. Significance for RNA expression between

different ages was determined by one-way ANOVA using SPSS22.0. Significance was declared

at P<0.05. Pearson correlation was performed for each pair of genes.

GEO accession numbers

The data obtained from RNA sequencing studies were deposited in the Gene Expression

Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) and Sequence Read Archive (https://

www.ncbi.nlm.nih.gov/sra) at NCBI. The accession number for GEO and SRA are GSE85014

and SRP068688.

Results

Intramuscular fat determination

The IMF content increased continuously with the development of goat muscle and peaked at

24-month age, which was significantly higher than that at 9-month age and 2-month age. The

IMF content at 9-month age was higher than that at 2-month age, although not statistically sig-

nificant (Fig 1).

Illumina sequencing and assembly

Illumina sequencing of goat muscle tissue yielded a total of 47 590 558, 44 719 748, 55 361 278

clean reads with 100% valid data in the groups “G”, “Y” and “C”, containing 7.14 G, 6.71 G,

and 8.3 G clean bases, which mapped to 73.444%, 71.84%, and 70.68% of the reference goat

genome sequence, respectively.

In the samples from group G, 84.1%, 5.8%, and 10.2% of the total reads were mapped to

exon, intergenic and intron regions, respectively. The samples from the groups “Y” and “C”

covered 85.2%, 5.6%, 9.2% and 85.7%, 5.5%, 8.8%, respectively.

Ten chromosomes, including 1, 2, 3, 4, 5, 6, 7, 8, 11 and X, were covered by the total clean

reads of the samples across the three stages. While chromosome 1, 2 and X had the most of

clean reads, chromosomes 7 and 11 had the least clean reads.

Analysis of genes related to lipid transport and metabolism with high

expression levels

Illumina sequencing uncovered 24 689 Unigenes, including 17 421 Unigenes in the samples

from group G, 17 154 Unigenes in the samples from group Y and 17 556 Unigenes in the sam-

ples from group C (Fig 2A). Samples from the group G expressed 1 086 Unigenes with FPKM

greater than 60, and had 2 797 Unigenes with FPKM between 15 and 60, accounting for 4.4

and 11.33% of the total Unigenes, respectively. However, most of the Unigenes (20 806) in

the group G were expressed below 15 FPKM (accounting for 84.27% of the total Unigenes).

According to the same FPKM classification the samples from the groups Y and C expressed 1
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065, 2 701, 20 923 Unigenes (accounting for 4.31%, 10.94% and 84.75%) and 1 104, 2 614, 20

917 Unigenes (accounted for 4.47%, 10.59% and 84.94%), respectively (S1 File).

Of 20 425 defined Unigenes, 16 059, 15 820 and 16 087 Unigenes, and 421, 305 and 447

uniquely expressed defined genes were identified in the samples of group G, Y and C, respec-

tively (Fig 2B). These Unigenes were enriched into 199 GO categories, of which the organic

cyclic compound metabolic processes contained most of the Unigenes among 89 biological

processes (Fig 2C). (S1 File).

16002 defined Unigenes were annotated to three main GO categories, including biological

process, cellular component and molecular function, of which 619 defined genes were associ-

ated with lipid metabolic process (S1 File). Ribosomal protein S3A (RPS3A), nebulin, tran-

script variant X1 (NEB), and fructose-1,6-bisphosphatase 2 (FBP2) were the top three genes

in the group G and C samples with FPKM of 791.268, 697.603, 404.234 and 576.974, 599.270

and 515.530, respectively. Although RPS3A and NEB were also the top two genes (FPKM of

687.634 and 606.082, respectively) in the samples of group Y, myosin light chain kinase 2,

Fig 1. IMF content in 2-month age, 9-month age and 24-month age goats. IMF, intermuscular fat.

* represents P<0.05.

https://doi.org/10.1371/journal.pone.0182602.g001
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Fig 2. Unigenes distribution in different periods of goat longissimus dorsi muscle at different postnatal stages. A. Unigenes distribution

in kid (G), young (Y) and adult (C) goats muscle. B. The distribution of annotated Unigenes in goat muscle at different postnatal stages. C. Top

30 GO biological process categories by GO enrichment of defined Unigenes. Significance level was P<0.05.

https://doi.org/10.1371/journal.pone.0182602.g002
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transcript variant X1 (MYLK2) was the third highest expressed gene (FPKM = 472.406), closely

followed by FBP2 with FPKM of 360.732.

Within the 79 defined genes associated with the fatty acid metabolic process GO, enoyl-

CoA hydratase (trifunctional protein), beta subunit (HADHB), vimentin (VIM) and acetyl-

CoA acetyltransferase 1 (ACAT1) had the highest expression in the samples of groups G and Y

with FPKM of 290.692, 247.270, 236.088, and 194.394, 203.159, 252.401, respectively. In the

group C, the top three genes were ACAT1, HADHB and HADHA, with FPKM of 260.667,

253.297 and 180.980, respectively. (S1 File).

Within the fatty acid biosynthetic process GO, the top three genes were HADHB, vimentin

and ACAT1 in all the stages, with FPKM of 290.692, 247.270 and 236.087 in group G samples;

194.393, 203.159, and 252.401 in group Y samples; and 253.297, 158.729, and 260.667 in group

C samples, respectively. (S1 File).

Identification of differential gene expression patterns in goat muscle

Comparing with the group G samples, 25 uniquely defined DEGs were identified in the group

Y samples, including 13 upregulated and 12 down-regulated DEGs. Myosin, heavy chain 13,

skeletal muscle (MYH13), interferon-induced protein with tetratricopeptide repeats 1 (IFIT1),

methyltransferase like 21C (METTL21C) and serpin peptidase inhibitor, clade E (nexin, plas-

minogen activator inhibitor type 1), member 1, transcript variant X1 (SERPINE1), early

growth response 1 (EGR1), estrogen-related receptor gamma, transcript variant X3 (ESRRG)

were the most three fold-change-modified genes, with the fold-changes of 95.339, 3.929, 3.869

and 0.213, 0.223, 0.295, respectively (S2 Table, S1 File).

28 upregulated genes were identified in the group C samples when compared with the

group G samples, the top three genes being 40S ribosomal protein S25-like (RPS25), MYH13
and cartilage oligomeric matrix protein (COMP) with fold-changes of 148.673, 93.183 and

14.611, respectively. According to the same fold-change method, the most three fold-change-

modified genes among the 36 down-regulated genes were transcription factor BTF3-like

(LOC102186300),SERPINE1 and nuclear receptor subfamily 4, group A, member 2 (NR4A2)

with fold-changes of 0.057, 0.100 and 0.165, respectively (S3 Table, S1 File).

There were 37 up-regulated genes and 36 downregulated genes in the group C samples,

when compared with the group Y samples, of which the most three fold-change-modified

genes according to the fold-change were RPS25 (88.279), COMP (12.415), prostate androgen-

regulated mucin-like protein 1 (PARM1) (7.454) and BOLA class I histocompatibility antigen,

alpha chain BL3-7-like (LOC102177715) (0.024), AT rich interactive domain 5B (MRF1-like),

transcript variant X1 (ARID5B) (0.190), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase

3 (PFKFB3) (0.204), respectively (S4 Table, S1 File).

There were 12 DEGs shared between “C_vs._G” (the DEGs in the group C samples com-

pared with the group G samples) and “Y_vs._G”. 52 and 13 DEGs were uniquely identified

in “C_vs._G” and “Y_vs._G”, respectively. According to similar classification, the number

of genes were 8, 65 and 17 for “C_vs._Y” and “Y_vs._G”, and 32, 32, 41 for “C_vs._G” and

“C_vs_Y”, respectively. Only one gene, NR4A3, was shared by all the groups. 34, 6 and 21

genes were uniquely differentially expressed in “C_vs._Y”, “Y_vs._G” and “C_vs._G”, respec-

tively (Fig 3A).

Four genes were associated with lipid metabolic process GO, including microtubule

associated monooxygenase, calponin and LIM domain containing 2, transcript variant X1

(MICAL2), nuclear receptor subfamily 1, group D, member 2 (NR1D2), glycerol-3-phosphate

dehydrogenase 2 (mitochondrial) (GPD2), also related to fatty acid metabolic process GO,

and salt-inducible kinase 1 (SIK1), with FPKM of 5.259, 31.569, 41.547, 42.225 in the group G

Crucial genes at different postnatal stages goat
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samples, 3.061, 43.653, 41.829, 30.487 in the group Y samples and 14.366, 19.475, 13.944,

10.430 in the group C samples, respectively. However, no genes were related to the fatty acid

biosynthetic process GO. Among the samples from the three stages, a total of 117 DEGs,

including 111 defined genes, were identified, that enriched into 19 GO categories, including

18 biological processes and 1 molecular function, of which the DEGs associated with response

to chemicals contained most of genes (Fig 3B).

According to the expression level, the 111 defined DEGs were significantly correlated with

16 possible expression clustering patterns using the software of STEM. 21 genes transcripts

(patterns 0, 2 and 3) decreased continuously with the growth of goats, whereas 7 gene tran-

scripts (patterns 12, 13 and 15) were continuously increased. 33 genes were stable in group Y, of

which 20 genes were turned up (pattern 8) and 13 genes were turned down (pattern 7) in the

Fig 3. Distribution of differentially expressed genes (DEGs) of goat longissimus dorsi muscle at

different postnatal stages. A. Distribution of differentially expressed genes. C_vs._G, the differentially

expressed genes in the adult samples (C) compared with the kid (G) samples. C_vs._Y, the DEGs in the “C”

samples compared with the youth (Y) samples. Y_vs._G, the DEGs in the group Y samples compared with

the group G samples. B. The GO biological process enrichment of defined Unigenes. Significance level was

P<0.05.

https://doi.org/10.1371/journal.pone.0182602.g003
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group C samples. After changing in the period corresponding to group Y, 11 genes (patterns 4

and 11) maintained a similar expression level in the period corresponding to group C. While 19

genes were increased in the period corresponding to group C period after a decrease in the

period corresponding to group Y period (patterns 1, 5 and 6), the converse expression trend

contained 20 genes (patterns 9, 10 and 14). A total of 47 DEGs were significantly upregulated

in the adult stage (patterns 6, 8, 11, 12, 13, 14 and 15), whereas 54 DEGs were significantly

decreased in this stage (patterns 0, 1, 2, 3, 4, 7 and 9). Ten DEGs maintained the stable expres-

sion level between the periods corresponding to groups C and G despite the significant change

in expression during the period corresponding to group Y (patterns 5 and 10) (Fig 4, S1 File).

Fig 4. Series-cluster analysis of differentially expressed genes (DEGs) during growth in goats at different postnatal stages using STEM

software. The significant level was set at 0.05 and the minimum correlation at 0.7; the “maximum number of model profiles” was set at 20 and the

“maximum unit change in model profiles between time points” was set at 2. group G, kid goats; group Y, young goats; group C, adult goats. The

number in the top left-hand corner of a profile box is the pattern ID number. The number in the lower left corner of the profile box is the number of

genes.

https://doi.org/10.1371/journal.pone.0182602.g004
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Co-expression analysis revealed that creatine kinase, mitochondrial 2 (sarcomeric)

(CKMT2), pyruvate dehydrogenase kinase, isozyme 4 (PDK4), and prostate androgen-regu-

lated mucin-like protein 1 (PARM1) were the top three genes correlating with most number

of DEGs (54, 54, and 53 genes, respectively) (S5 Table, S1 File). In sorder to identify the quality

of RNA sequencing, we confirmed the mRNA expression of complement component 3 (C3),

CKMT2, filamin A interacting protein 1 like, transcript variant X1 (FILIP1L), peptidylprolyl

isomerase F (PPIF), protein phosphatase 1, regulatory subunit 27 (PPP1R27), PTC7 protein

phosphatase homolog (S. cerevisiae) (PPTC7), PDK4 and cysteine-serine-rich nuclear protein

1, transcript variant X2 (CSRNP1) by qPCR. Similarities in the expression patterns were

observed in the results by qPCR and RNA sequencing. Strong correlations were identified for

all the 8 genes (r>0.90), although not statistically significant in CKMT2 (P = 0.17), PPIF
(P = 0.15) and FILIP1L (P = 0.16) (P> 0.05) (Fig 5).

Discussion

Next-generation sequencing has facilitated the research on the regulation of IMF deposition

in chicken [24], cattle [25], and pigs [26]. Despite the characterization of the complete tran-

scriptome of the goat mammary gland [27] and skin [28], to date, no information is available

on the transcriptome for goat muscle development. Based on the goat genome sequence [16],

in the present study we found that IMF deposition was positively correlated with growth of

goats, consistent with the data in sheep [6]. The highest IMF content was observed in adult

goats, and was significant higher than that in kids and in young goats. It implies that the

DEGs, also genes encoding proteins between 3 month and 24 month, and 9 month and 24

month, could be associated with IMF deposition in goats. In the present study, 32 DEGs

were shared by “C_vs._G” and “Y_vs._C”, which may prove candidate genes for the regula-

tion of IMF deposition during growth in goats. We also realized that the same 3 goats across

Fig 5. Quantitative real-time PCR (qPCR) validation of differentially expressed genes from RNA sequencing. C3, complement component 3;

CKMT2, creatine kinase, mitochondrial 2 (sarcomeric); FILIP1L, filamin A interacting protein 1 like, transcript variant X1; PPIF, peptidylprolyl

isomerase F; PPP1R27, protein phosphatase 1, regulatory subunit 27; PPTC7, PTC7 protein phosphatase homolog (S. cerevisiae); PDK4, pyruvate

dehydrogenase kinase, isozyme 4; CSRNP1, cysteine-serine-rich nuclear protein 1, transcript variant X2. PPIB, peptidylprolyl isomerase B was

chosen as the internal control genes. Pearson correlation was performed for each pair of genes.

https://doi.org/10.1371/journal.pone.0182602.g005
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different stages using biopsy method instead of slaughter may result in more solid DEGs col-

lection in the future.

We also recognized that the development of muscle mass, rather than IMF deposition,

could be the main factor affecting the transcriptome patterns associated with goat develop-

ment. However, by GO classification following STEM and co-expression analyses, we obtained

the genes associated with lipid metabolism, predicted to be mainly responsible for IMF deposi-

tion in goat muscle. On the other hand, although we had tried our best to exclude the effects of

diet, the discrepancies in diet at different ages in goats may be another contributor to differen-

tial gene expression. In the present study, the goats were fed freely upon alfalfa, corn straw

silage and concentrate. Identical management practices are beneficial for reducing the effects

induced by the differences in diet. Although great number of such controlled in vivo experi-

ments is needed in the future for identifying the exact reasons for the differential expression

of genes, our suggests candidate genes that may be crucial for growth and lipid metabolism in

goats.

Dong et al. (2013) were the first to publish genomic information on goats. Compared with

the de novo sequencing method [27, 29], the use of goat genome as reference sequences would

have, undoubtedly, resulted in a better assembly and annotation. In the present study, we

mapped the data of transcriptome sequence to goat genome, and identified a total of 24 689

Unigenes supporting 20 425 annotated genes (82.73%). This method allows more exactitude in

the results of analysis of differential gene expression.

Although 111 defined genes were identified to be expressed differentially during growth in

goats, only 4 genes were associated with lipid metabolism. The activation of SIK1 suppresses

metastasis through the AMP-activated protein kinase (AMPK) pathway [30], and inhibits lipid

synthesis in human hepatoma cells [31]. Considering the continuous decrease of SIK1 during

muscle development, it is predicted that SIK1 may be involved in lipid metabolism in muscle

via the control of the AMPK pathway. However, more research for finding an exact mecha-

nism underlying the expression pattern is needed.

NR4A3 is the only gene showing significant differential expression during growth in goats.

As a member of the nuclear orphan receptors NR4A-family, it participates in cell cycle, apopto-

sis, inflammation, atherogenesis, metabolism, DNA repair and tumorigenesis [32]. In humans,

elevation in NR4A3 reduces the expression of insulin gene [33], which is closely associated

with lipid metabolism. The EWSR1 (EWS RNA binding protein 1)/NR4A3 fusion protein

of extraskeletal myxoid chondrosarcoma activates PPARγ [34] which is crucial for lipid metab-

olism regulation [35, 36]. Thus, it is hypothesized that the continuous increase in NR4A3
expression with growth in goats may be correlated with IMF deposition. Obviously, more con-

trolled molecular experiments, such as RNA silencing and over-expression studies, will be ben-

eficial in addressing the precise role of NR4A3 in regulating lipid deposition in adipocytes.

Although 111 defined genes undergoing differential expression were identified, the key

genes related to lipid metabolism during muscle development remains unclear. Using series-

cluster analysis, we identified 16 possible profiles representing the overall expression patterns,

and also classified the genes related to lipid metabolism, including sterol regulatory element

binding transcription factor 1 (SREBP1) (pattern 6), FABP3 (pattern 6), adipocyte fatty acid-

binding protein (FABP4) (pattern 4), PGC1α (pattern 8), forkhead box O1 (FOXO1) (pattern

7), Kruppel-like factor (KLF4) (pattern 0), KLF10 (pattern 9) and so on. Previously, a close cor-

relation between SREBP1 and FABP3 [37] was observed during IMF deposition. PGC1α can

interact with FOXO1 to involve lipid metabolism in rats [38]; unexpectedly, in the present

study converse expression pattern was identified between PGC1α and FOXO1. Although the

differences between goats and rats may contribute to such divergence, evidence on direct
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interactions between PGC1α and FOXO1 in goat adipocytes may be beneficial for understand-

ing their expression patterns in the future.

The use of co-expression analysis has been reported to be a suitable method for selection of

regulatory gene [22]. The node genes correlating with the greatest number of genes were con-

sidered to be crucial for the regulation of lipid metabolism during growth in goats. Our analy-

ses revealed that PDK4 may regulate lipid metabolism during growth. As the last member of

PDK family, PDK4 is induced by increased lipid delivery [39], and is negatively correlated with

the sensitivity of pyruvate dehydrogenase complex (PDHC) to pyruvate, a substrate for lipid

metabolism, in skeletal muscle [40]. PDK4 is also a negative regulator of glucose oxidation,

and is involved in fatness [39]. Increased PGC1α enhances the expression of PDK4 gene in

mice [41]. These studies indicate that PDK4 is important in lipid synthesis. However, unlike

in mice, in the present study, after stable expression at youth stage, PDK4 was significantly

decreased at adult stage (pattern 7) despite the increase in PGC1α expression. Although the

exact regulation mechanism between PGC1α and PDK4 remains unclear, PDK4 is predicted to

be a novel crucial regulator of lipid metabolism during growth in goats.

We also recognized the limitations of mixed samples sequencing. In the present study,

we firstly normalized the read count using TMM [19], and |log2(fold-change)| > 1 and q
value < 0.005 (normalized p value) were used for DEGs selection, which represented accepted

criteria. A total of 111 defined DEGs were identified during different stages of growth in goats.

Although more biological replicates may bring more reliability to DEGs screening, the data in

the present study also provides novel candidate genes for IMF deposition during growth in

goats. We must also accept the limitations of RNA sequencing without technical replicates in

the present study. However, we confirmed the gene expression by qPCR, which showed high

correlations with RNA sequencing. As an original RNA sequencing experiment, our data were

still beneficial for identifying crucial genes during muscle development in goats, despite the

lack of technical replicates.

Conclusion

This is the first study using transcriptome sequencing for expression profiling of genes during

muscle development in meat goat. Based on FPKM value, out of a total of 24 689 Unigenes,

421, 305 and 447 annotated genes were found uniquely expressed in muscle tissues of kid,

young and adult goats, respectively. Using series-cluster analysis, 111 DEGs were identified

under 16 possible expression patterns. Co-expression analysis was used to identify node genes.

Together, the results suggest candidate genes that may be important for regulation of lipid

metabolism at different postnatal stages in meat goats.
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