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Abstract

Background: In clinical diagnostics, as well as in routine dermatology, the increased need for non-invasive diagnosis is
currently satisfied by reflectance laser scanning microscopy. However, this technique has some limitations as it relies solely
on differences in the reflection properties of epidermal and dermal structures. To date, the superior method of fluorescence
laser scanning microscopy is not generally applied in dermatology and predominantly restricted to fluorescein as
fluorescent tracer, which has a number of limitations. Therefore, we searched for an alternative fluorophore matching a
novel skin imaging device to advance this promising diagnostic approach.

Methodology/Principal Findings: Using a VivascopeH-1500 Multilaser microscope, we found that the fluorophore
Indocyanine-Green (ICG) is well suited as a fluorescent marker for skin imaging in vivo after intradermal injection. ICG is one
of few fluorescent dyes approved for use in humans. Its fluorescence properties are compatible with the application of a
near-infrared laser, which penetrates deeper into the tissue than the standard 488 nm laser for fluorescein. ICG-fluorescence
turned out to be much more stable than fluorescein in vivo, persisting for more than 48 hours without significant
photobleaching whereas fluorescein fades within 2 hours. The well-defined intercellular staining pattern of ICG allows
automated cell-recognition algorithms, which we accomplished with the free software CellProfiler, providing the possibility
of quantitative high-content imaging. Furthermore, we demonstrate the superiority of ICG-based fluorescence microscopy
for selected skin pathologies, including dermal nevi, irritant contact dermatitis and necrotic skin.

Conclusions/Significance: Our results introduce a novel in vivo skin imaging technique using ICG, which delivers a stable
intercellular fluorescence signal ideal for morphological assessment down to sub-cellular detail. The application of ICG in
combination with the near infrared laser opens new ways for minimal-invasive diagnosis and monitoring of skin disorders.
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Introduction

In vivo confocal laser scanning microscopy is used in well-

equipped dermatology departments as a state-of-the-art investiga-

tive tool in skin research as well as in clinical routine [1,2,3]. This

imaging technique allows for non-invasive monitoring of the skin

with microscopic resolution second only to histological analysis.

Physiological and pathological skin conditions of the same body

site can be recorded, as well as monitored along with treatment

[4,5]. The method employs the reflected light after laser

illumination of the tissue to obtain morphological information.

This is based on the fact that light is reflected differentially

according to the specific refractive indices (e.g. melanin, keratin,

lipid, water, or collagen) within the skin, producing the required

contrast [6,7]. Similar to computerized tomography, reflectance is

detected only from the focal plane via a pinhole. In this confocal

manner images of thin optical sections of horizontal tissue are

gained in vivo, revealing cellular and even sub-cellular detail [8],

thereby lending this technique the term reflectance confocal

microscopy (RCM). Since the inception of this technique in 1995

[7] RCM has been amply used in dermatology for the diagnosis of

skin tumors as well as inflammatory skin disorders [9,10,11,12,13].

It is already used in the routine setting in some specialized centers.

Incorporation of the principle of fluorescence to this skin

imaging technique led to fluorescence confocal microscopy (FCM).

This technique depends on exogenously added fluorescent

molecules (fluorophores) applied into the tissue and on an

appropriate laser light for the excitation to generate the image

contrast. Only a few reports on FCM in humans exist, and this is

compounded by the fact that just a very limited number of

commercially available fluorescent dyes are approved for applica-

tion in humans [14,15]. The majority of published data on FCM in

vivo was obtained using a device termed StratumH (Optiscan Ltd,

Melbourne, Australia), which is based on a 488 nm argon laser
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[16]. To our knowledge, the only dye used, with this equipment

thus far was fluorescein, which is approved by the U.S. Food and

Drug Administration (FDA) for in vivo use [17,18]. A major

limitation of this method is that illumination of tissue at 488 nm is

restricted to a small depth within the skin (approximately reaching

the top of the papillary dermis) because this wavelength is strongly

absorbed by biological tissue. Another drawback is that the

detectable fluorescence signal of fluorescein decays quickly, with a

peak reached after a few minutes and a near-complete loss of the

signal following 25–40 min [15].

This limitation is bypassed with newer systems that include

additional laser lines, such as the VivascopeH 1500 Multilaser, which

incorporates three different lasers with wavelengths of 488 nm (blue),

658 nm (red) and 785 nm (near-infrared) that can be used both in

reflectance- as well as in fluorescence mode. As intimated above, the

Multilaser compensates for the fact that shorter wavelengths are

limited in penetration depth thereby providing higher resolution

only for upper cellular layers, whereas longer wavelengths penetrate

deeper into the skin due to lower absorbance by biological material.

Near infrared illumination allows for examination at a maximum

depth reaching the upper reticular dermis [19].

Here, we report on the use of Indocyanine green (ICG)

fluorescence for generating images of human skin in vivo after its

intradermal application. ICG is a water-soluble tricarbocyanine

dye. Since 1959 its intravenous application is FDA-approved for

diagnostic purpose (e.g. determination of cardiac output, liver

function diagnostics and ophthalmic angiography) [20,21].

Recently published data show that ICG injection is a safe and

highly sensitive method for sentinel lymph node detection in breast

cancer patients [22]. In our study, we compared the in vivo kinetics

of ICG with that of fluorescein and moreover we tested the extent

of ICG photobleaching. Finally we assessed this method for its

application in the diagnosis of skin pathologies such as dermal

nevus, irritant contact dermatitis or necrosis.

Our data indicate that ICG is far superior to fluorescein in

fluorescence confocal microscopy of skin in vivo and suggest using

this dye in this promising new diagnostic imaging technique.

Materials and Methods

Participants
9 healthy volunteers, 5 women and 4 men, aged between 20 and

57 years (mean 36 years) were recruited for testing the applicability

of ICG. Five of them were additionally appointed as fluorescein

controls. Furthermore, 3 patients respectively suffering from

irritant contact dermatitis, necrosis due to KTP-laser treatment

and a dermal nevus were investigated. All individuals were

Caucasian, with skin types ranging from II to IV. Healthy skin

without clinical alteration on the volar forearm (n = 9) and lesional

skin (n = 3) was imaged with the confocal microscope. The study

was conducted according to the principles embodied in the

Declaration of Helsinki. All participants provided written informed

consent before participating. The study was conducted in Vienna

(Department of Dermatology, Medical University of Vienna,

Austria) after approval of the local ethics committee of the Medical

University of Vienna and the Austrian health authority (Bundes-

ministerium für Gesundheit, Vienna, Austria; EK Nr: 801/2010;

Eudra CT: 2010-022829-15).

Spectroscopy of ICG
The stock solution of ICG (5 mg/ml) was diluted with distilled

water to a final concentration of 3 mg/ml and the absorbance was

measured with a Hitachi U-2000 spectrophotometer from 700 nm

to 850 nm. The same solution was used for fluorescence emission

scanning using a Hitachi F4500 fluorometer. Excitation was set to

633 nm (band width: 10 nm) due to the weak light emission of the

lamp at higher wavelengths. Emission was recorded from 700–

900 nm with a slit width of 20 nm, a PMT gain of 950 V, an

integration time of 2 sec and a scan speed of 60 nm/min.

Fluorescence and absorbance spectra were normalized to a peak

intensity of 1.

In vivo fluorescence/reflectance confocal microscopy
Fluorescence images were obtained using a commercially

available confocal laser scanning microscope (VivaScopeH 1500

Multilaser [Lucid Inc, Rochester, New York; USA]). A compre-

hensive review of the optical principles of the reflectance-only

VivaScopeH has been published [8,23]. The multilaser system

differs by the fact as it is equipped with three lasers with wavelengths

of 488 nm (blue), 658 nm (red) and 785 nm (near-infrared), and

three corresponding filter sets. In this study, we used the 488 nm

laser (for fluorescein) in combination with a 550 nm emission filter

(band width 88 nm) and the 785 nm laser (for ICG) combined with

a 832 nm emission filter (bandwidth 40 nm). Each filter set is

mounted in a bar, which can be set to three different positions:

detection of all returning light, only reflected light, or only

fluorescence emission. In all filter settings, a pinhole attenuates

the light from out-of-focus planes. The scanned field of view is

500 mm6500 mm, producing images of 100061000 pixels. Axial

resolution (section thickness) is ,5 mm. Movement of the objective

lens laterally with respect to the skin surface, enables to image at

different horizontal directions (x and y axis) within the tissue;

movement in the z-plane allows imaging at different depths of the

tissue in a confocal mode due to the pinhole thereby generating an

optical section. Depth measurements can be obtained from the Z-

axis precision stepper motor, by indicating zero at the most

superficial layer before scanning vertically into the tissue.

For making use of the fluorescence capabilities of the imaging

system, we used either fluorescein or ICG as fluorescent dyes

serving as contrast agents for labeling of human skin structures.

20 ml of a 0.5% solution of ICG (ICG-Pulsion, Pulsion Medical

Systems, Munich, Germany) or a 0.08% solution of Sodium

fluorescein (ThilorbinH eye drops, Alcon Pharma, Freiburg,

Germany) were injected intradermally under standardized condi-

tions using a 0.3 ml insulin syringe fitted with a 30-gauge needle.

The syringe was placed at an angle of 5 to 10 degrees with respect

to the skin surface. In case of fluorescein, imaging was performed

before, immediately, 20, 40, 60, and 120 minutes after injection.

Scanning after tissue administration of ICG was performed at

the same time points and additionally 4, 8, 24, and 48 hours after

its application. The ICG injection site serving as photobleaching

control was light-protected with a bandage (CuraporH, 765 cm)

for 48 hours. The standard procedure for in vivo scanning with the

VivaScopeH has been described previously [23]. Fluorescein has a

maximum absorbance at a wavelength of 490 nm and the

fluorescence emission is peaking at about 520 nm, which is ideally

suited for the 488 nm laser. ICG has a maximum absorbance at a

wavelength around 780 nm and its fluorescence emission peaks at

about 805 nm (see Fig. 1), which is matching the 785 nm near-

infrared laser excitation. Automatic image control was active,

which allows the VivaScopeH to automatically optimize the laser

power so that the image is displayed with the proper illumination.

Representative images at different layers of the epidermis and the

dermis were acquired by varying the imaging depth from stratum

corneum to a maximum depth of 200 mm in increments of 4.5 mm

(VivastackH). To study the kinetics of ICG imaging was performed

in fluorescence mode at the defined time points for 9 participants.

Fluorescein was additionally administered to five of those to
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evaluate the differing fluorescent properties of both components in

vivo. Pathological skin morphology was imaged analogously in

reflectance and fluorescence mode.

Image analysis
Images recorded with the VivascopeH Multilaser system were

imported to the free NIH image analysis package ImageJ as stacks.

Representative regions of interest were defined within the rhombic

fields (Areolae cutaneae) and the mean fluorescence intensities as well

as standard deviations (reflecting the contrast) where measured for

all the slices in the 3D stack using the measure stack plugin.

Results were copied to MS-ExcelTM. The mean intensity of the

deepest layer containing only background fluorescence was

subtracted from the fluorescence intensities and values of 3–5

measurements were averaged. These values were determined for

nine individuals receiving ICG and for five patients injected with

fluorescein. For high quality graphs data were exported to

GraphPad Prism-5.01TM.

CellProfiler 2.0 Analysis
Automated image analysis, cell recognition and cell measure-

ments were performed with the CellProfiler 2.0 open software

[24]. First, all images were inverted so that the cell border (stained

by ICG) was darker than the center of the cell, which was a

prerequisite for automated cell recognition. After loading of

images, objects were identified for a diameter between 10 and

60 pixels using the Otsu Global thresholding method with two-

class weighting and a threshold correction factor of 0.7. Clumped

objects were distinguished based on intensity. Identified objects

(cells) were measured for size and shape parameters and values

Figure 1. Absorbance and fluorescence emission spectra of ICG and fluorescein. A) ICG was dissolved in distilled water at a concentration
of 3 mg/ml and the absorbance (grey cycles) was measured on a Hitachi U-2000 spectrophotometer. The same solution was used to record an
emission wavelength scan of ICG on a Hitachi F4500 fluorometer (at an excitation of 633 nm). Spectra are normalized to the peak values. The laser
line used for confocal fluorescence microscopy is indicated with a red line; the band of the detection channel is marked by a red transparent
rectangle. B) Absorbance (dashed line) and fluorescence (continuous line) spectra of fluorescein. The exciting argon-laser line (488 nm) of the
microscopy device is indicated by a blue line. The band of the detection channel is indicated by a green transparent rectangle. Data was derived from
the Invitrogen spectra database (http://www.invitrogen.com/site.gateway.html?type = spectra&fileId = 1300ph9).
doi:10.1371/journal.pone.0023972.g001

Figure 2. Macroscopic image of the ICG injection site and representative confocal fluorescence image. A) The injection site was imaged
immediately after injection of 20 ml ICG solution by a dermatoscopic camera included in the Vivascope system. The square in the green injection area
indicates the site of fluorescence microscopy shown in B. B) Representative confocal fluorescence image at a depth of 18 mm, 20 min after the
injection.
doi:10.1371/journal.pone.0023972.g002
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exported to a database, which was subsequently used for

CellProfiler-Analyst [25] to generate a density plot for all the

measured objects.

Results and Discussion

Here, we studied the potential use of ICG for in vivo fluorescence

microscopy using a novel multilaser equipment. There existed an

initial lack of clarity regarding the peak absorbance of ICG,

whereby previous publications claim this to be in the range of 780–

810 nm depending on the solvent solution [26,27]. This

wavelength broadness prompted us to re-evaluate the absorbance

and emission properties. The absorbance of ICG measured by

spectrophotometry showed a peak at 780 nm, making the dye

suitable for excitation by the 785 nm laser of the multilaser device.

The emission curve was recorded with a spectrofluorometer and a

Figure 3. Montage of an image stack. Every third image of an image stack (site depicted in previous Fig. 2B) is shown with the depth of the slice
(in mm) indicated by white numbers. The yellow boundary indicates a representative area of image analysis.
doi:10.1371/journal.pone.0023972.g003
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peak was detected at 805 nm, which indicated that a substantial

part of the fluorescence reaches the detector after passing the

band-pass filter of the equipment (Fig. 1). These data qualified

ICG for morphological fluorescence analysis in our present study.

The fluorescence properties of ICG and its general approval for

use in humans encouraged us to investigate its applicability as an in

vivo fluorescence marker along with fluorescence confocal

microscopy. To that end, we injected approximately 20 ml of the

dye solution intradermally. At this low volume a potential rupture

of the tissue structure is prevented.

Injection of ICG was reported as a short – time tolerable

burning sensation at the injection site, resulting in green tincture of

the skin with a visibility up to 96 hours (Fig. 2A). Fluorescein

application resulted in a slightly lower pain sensation and a

comparatively short-lived yellow coloration of the skin (data not

shown). Confocal laser scanning microscopy was performed

immediately after the injection and at different time points up to

48 h. In general, a distinct lucid intercellular fluorescence could be

observed, which clearly demarcated the borders of the cells at the

various depths of the optical sectioning thereby allowing for

accurate assessment of the epidermal morphology (Fig. 2B).

Since the device allows a vertical step size of 4.5 mm, image

stacks were acquired that recorded epidermal and dermal layers

down to 200 mm. These image stacks were used for quantifying

fluorescence in representative, laterally homogenous regions

(Fig. 3) and in addition, could also be used for calculating a 3D-

projection of the skin (see Fig. S1).

Assessing the time course of the fluorescence intensity in the

different skin layers revealed a clear advantage of ICG over

fluorescein. While the emission of fluorescein was higher than that

of ICG briefly following injection, it declined quickly and was only

faintly detectable after 2 h, whereas ICG fluorescence was still very

prominent (Fig. 4). Immediately after the injection, the fluorescence

maximum was confined to layers at the depth of the injection site

around 60–80 mm beneath the skin’s surface (Fig. 4, upper left

panel). Reallocation of each dye to suprabasal layers was detected

20 min after application, when the initial signal of fluorescein

already decreased. In contrast, the emission of ICG increased to the

point that it exceeded the original fluorescein intensity (Fig. 4, upper

right panel). One hour after application, ICG emission had slightly

declined while that of fluorescein dropped to approximately 30–

50% of its initial value (Fig. 4, lower left panel). Two hours after

injection, fluorescein had already faded, while ICG fluorescence was

still very distinct, showing just a minor decrease from the peak value

at 20 min (Fig. 4, lower right panel). The advantage of ICG

compared with fluorescein was not only evident for the total

fluorescence intensity but also for the contrast that could be

obtained in the various epidermal and dermal layers. One hour after

injection, ICG fluorescence exhibited a prominent contrast,

whereas the images obtained with fluorescein as tracer appeared

Figure 4. Quantification of the fluorescence intensities at different time points after fluorescein or ICG injection. Fluorescence
intensities of representative areas (as shown in Fig. 3) were measured with ImageJ as described in the Methods section and are plotted against the
depth of the image slice in mm. For fluorescein five individuals were imaged with three regions, each (n = 15), for ICG nine individuals were tested
with three regions, each. Error bars represent SEM.
doi:10.1371/journal.pone.0023972.g004
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dim and flat (Fig. 5A). A quantification of the contrast via the

standard deviation of the fluorescence intensity revealed a much

better performance of ICG as compared to fluorescein with a peak

at 4.5 mm depth and a second one at 54 mm beneath the skin surface

(Fig. 5B). The first peak appears to contain some light reflected by

the stratum corneum. These data clearly show that ICG performs

considerably better than fluorescein starting from the time point of

20 minutes after dye injection throughout the possible comparison

period of 2 hours. Based on the striking stability and persistence of

the ICG fluorescence as compared to that of fluorescein, we

evaluated its signal up to 48 hours after injection. At that time the

peak intensity had declined to approximately 65% of the maximum

reached at 20 min (Fig. 6). However, the signal after 48 h still

exhibited sufficient contrast and brightness for morphological

assessment and was clearly superior to images obtained in

reflectance mode. These data indicate that ICG is an efficient in

vivo fluorescent dye in the skin, which allows flexible injection timing

prior to morphological evaluation via fluorescence microscopy in a

routine clinical setting.

Moreover, we investigated whether ICG is subject to photo-

bleaching – a common problem associated with fluorescein. To

that end we investigated uncovered ICG-contrasted skin sites that

were scanned at different time points up to 48 h (Fig. 7; legend)

Figure 5. Comparison between fluorescein and ICG images with respect to contrast 1 h after injection. A) Representative images at
13.5 mm depth. B) Quantification of the contrast (as given by the SD of the fluorescence intensity).
doi:10.1371/journal.pone.0023972.g005

Figure 6. Kinetics of ICG fluorescence intensity up to 48 h.
While fluorescein fluorescence was hardly detectable 2 h after injection,
ICG fluorescence was still well visible 48 h after the injection. Four
representative time points are indicated (n = 27, error bars represent
SEM).
doi:10.1371/journal.pone.0023972.g006
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and compared them to a control ICG-injected site that was

covered during the whole time period with a non-transparent

bandage. The effect of photobleaching was negligible, resulting in

just a minor reduction to approximately 87% of the control value

(Fig. 7). This indicated that repetitive scans after single ICG

injections have almost no impact on the fluorescence signal,

allowing for repeated morphological assessment via FCM of the

same skin site, for instance to monitor therapy efficacy.

The well-defined cellular structure that could be observed after

ICG injection by confocal fluorescence microscopy in vivo

encouraged us to test whether the cellular staining pattern could

be exploited for automated quantitative high-content imaging.

This is a method that extends the potential of microscopy to tissue

cytometry, by comprising analysis of thousands of cells, which

allows statistics or gating of cell populations similar to flow

cytometry [28]. We achieved this using the free software CellProfiler

[24,29] that allows for automatic loading of images and object

identification followed by quantitative analysis. Fluorescence

images with ICG staining (Fig. 8A) had to be inverted for proper

cell recognition. Using the parameters described in the Methods

section, adjacent cells were correctly separated (Fig. 8B), auto-

matically recognized as objects (Fig. 8C), and measured for size

and shape parameters. CellProfiler allows saving of the data for

thousands of objects and exporting of the values as a database,

which can be loaded in a companion software, the CellProfiler

Figure 7. There is only a limited extent of bleaching within
48 h. ICG fluorescence is shown 48 h after injection for an area that
was exposed to daylight and subject to repetitive scanning (at 2 min,
20 min, 1 h, 2 h, 4 h, 8 h, 24 h and 48 h) – or an area that was covered
for 48 h before imaging to protect it from bleaching.
doi:10.1371/journal.pone.0023972.g007

Figure 8. Automated cell recognition and analysis using CellProfiler. A) Representative confocal fluorescence image of the stratum spinosum
after ICG-injection. B) Outline of the cell borders after the cell recognition by the CellProfiler software. C) Objects identified by CellProfiler. D) Density
plot of cell area versus form factor (circularity) after analysis of 108000 objects (from 59 images) using CellProfiler Analyst.
doi:10.1371/journal.pone.0023972.g008
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Analyst [25]. This software then provides professional data

visualization and statistics tools – such as density plots to illustrate

correlations between different parameters (Fig. 8D).

After having demonstrated that ICG is well suited as contrast

agent in fluorescence microscopy of the skin in vivo, by providing a

resolution down to the sub-cellular level, we were interested in

testing its applicability for pathological assessment of lesional skin.

For that purpose we investigated samples of intradermal nevi,

irritant contact dermatitis and KTP-laser treatment induced

necrosis. This was performed 90 min after injection of ICG using

both reflectance and fluorescence mode microscopy. The

reflectance mode image of the dermal nevus 33 mm below the

skin surface demonstrated uniform lucid cells with bright

cytoplasm and central small dark round nuclei (Fig. 9A) as already

described before [30,31,32]. Due to the mere intercellular

localization of the dye, the nevoid cells appear in a negative

staining pattern (Fig. 9B), which allows for a precise morphological

analysis. Furthermore, the intercellular distribution of ICG

uncovers the morphology of single keratinocytes of the stratum

spinosum (Fig. 9A). In reflectance mode scanning, it is not possible

to reach a comparable resolution of these cellular details. Dermal

nevus cell nests are also depicted in a negative pattern (Fig. 9D). A

dermal (edged) papilla with a hyperrefractile dermal papillary ring

composed of melanocytes and melanin-rich keratinocytes is

illustrated in reflectance mode (Fig. 9E, asterisk). These cells

cannot be revealed by means of fluorescence because backscat-

tered light from refractive structures in reflectance mode is blocked

by the fluorescence band-pass filter. Fluorescence microscopy

exhibits the dermal papilla as a lightish round topology interposed

among deeper epidermal layers displayed in an intercellularly

staining pattern (Fig. 9D). Fig. 9E is clearly inferior in comparison

to Fig. 9F as dermal clusters of nevocytes become entirely apparent

in fluorescence images, and blood vessels are detectable only in

this setting. In case of the dermal nevus fluorescence scanning

provides additional morphological information in form of accurate

resolution of dermal cell clusters throughout the entire lesion. The

possibility to picture dermal vessels in the fluorescence mode offers

the assessment of vascular changes in a variety of skin pathologies

as well as along with treatment. The linkage of reflectance and

fluorescence mode permits the combination of the advantages of

each technique. Evaluation of melanin-rich keratinocytes solely

via reflectance mode and estimation of dermal vessels exclusively

via fluorescence mode exemplify synergistic morphological infor-

mation. Another pathological condition that we investigated by

Figure 9. In vivo confocal laser scan of a dermal nevus after
intradermal ICG injection. A) and B) Scan of a dermal nevus 33 mm
below the stratum corneum in reflectance mode (A) and in fluorescence
mode (B): red arrows are indicating uniform bright cells with bright
cytoplasm and central small dark nuclei (A); fluorescence mode reveals
a negative pattern of these nevocytes (B); red asterisks are indicating
keratinocytes of the stratum spinosum in both modes (A and B); in
fluorescence mode (B) the intercellular distribution of the dye exhibits a
well-defined morphology of singular cells in the stratum spinosum
which can only be evaluated in the fluorescence mode; yellow asterisk
is indicating a precise cellular pattern which cannot be detected in the
reflectance mode scanning. C) and D) Confocal scan of a dermal nevus
34.5 mm below the stratum corneum in reflectance mode (C) and in
fluorescence mode (D); dermal cell clusters are indicated by arrows; (C)
displays bright cells and (D) a negative pattern of these cells; asterisks
are indicating a dermal papilla: revealing a hyperrefractile dermal
papillary ring (C) but this edged papilla [37] cannot be detected in
fluorescence mode (D). E) and F): Laser scan of a dermal nevus 63 mm
below the stratum corneum in reflectance mode (E) and in fluorescence
mode (F); dermal cell clusters are indicated by red arrows and yellow
asterisks revealing a sharp negative pattern of nevocytes (F); yellow
arrows are indicating blood vessels (F) ; blue arrows and blue asterisks
are indicating the corresponding sites (E) in comparison to the yellow
symbols (F) displaying no detectable signal of cell structures.
doi:10.1371/journal.pone.0023972.g009

Figure 10. In vivo confocal laser scan of a contact dermatitis
area. A) and B): Laser scan of an irritant contact dermatitis at the
spinous layer/DEJ in reflectance mode (A) and in fluorescence mode (B)
after ICG injection intradermally; epidermal spongiosis is indicated by
red arrows (A and B); a yellow asterisk marks a structure, which is
indistinguishable from spongiosis in the reflectance mode (A) but which
is clearly identified as dermal papilla in ICG-mediated fluorescence
microscopy (B).
doi:10.1371/journal.pone.0023972.g010
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ICG-based in vivo fluorescence microscopy is irritant contact

dermatitis leading to eczema formation. Disruption of keratino-

cytes (spongiosis) is one of the key features of eczematous skin,

which is represented in Fig. 10A and B [33,34,35]. In both modes

several sites of spongiotic areas are visible revealing dark, round to

oval structures in reflectance mode (Fig. 10A) and a gradual

disappearance of the cell borders visible in fluorescence mode due

to the extracellular dye (Fig. 10B). The fluorescence mode provides

a clear advantage over reflectance mode, as dermal papilla often

appear equally as roundish dark areas in reflectance mode similar

to spongiotic areas, whereas they are clearly distinguishable in

fluorescence mode elucidating the morpholopical disparities by in

vivo microscopy without the need for histological analysis of

biopsies.

The dermal papilla displayed in the reflectance mode (Fig. 10A)

corresponds to a ‘‘black papilla’’ [36]. In fluorescence mode these

papillae at the dermal/epidermal junction (DEJ, Fig. 10B) are

displayed as round, dark structures surrounded by a lucid rim

caused by circumferentially arranged basal cells and solely dyeing

of the extracellular space. The DEJ first appears 55–65 mm below

the corneal layer, depending on the body site [37]. Fig. 9D shows

another case of a dermal papilla at a scanning depth of 34.5 mm

below the stratum corneum.

Furthermore, we assessed an example of a necrotic skin area by

ICG-based in vivo microscopy. A fluorescence mosaic scan of a

necrotic lesion induced by KTP-laser treatment is shown 7.4 mm

below the skin surface (Fig. 11A). The necrotic area is delimited

more precisely in fluorescence as compared to reflectance mode

(data not shown). Fig. 11B and C present a higher magnification of

the lesion, which clearly demonstrates the advantage of the

fluorescence microscopy. In reflectance mode, a normal honey-

comb pattern indicating the undamaged keratinocytes can be

revealed, whereas necrotic cells appear rather cloudy. However,

the difference is not easily visible in this mode (Fig. 11B). In

contrast to that, the fluorescence mode (Fig. 11C) displays a very

clear border between necrotic and viable cells as the dye is taken

up by necrotic cells due to the loss of barrier function.

Altogether our data clearly show that the combination of ICG

as fluorescent tracer with confocal in vivo fluorescence microscopy

offers a number of significant advantages for dermatological

diagnoses. First, it provides a minimal invasive method for

morphological assessment of healthy or diseased skin through

bypassing the need for biopsies and histology. It is evident that this

is also expanding the possibilities to investigate the same skin

samples at different time points so as to evaluate the efficacy of

treatment or the progression of a skin disease. Second, it is clearly

superior to fluorescein as fluorescent marker, based on much

longer fluorescence emission in vivo and higher photostability.

Third, the distinct cellular staining pattern that is possible with

ICG-mediated fluorescence as compared to the routinely used

reflectance microscopy allows the application of sophisticated

automated cell recognition and measurement approaches extend-

ing the microscopy investigation from a mere qualitative method

to a quantitative measurement tool. Finally, our results provide

evidence that this method of skin imaging allows a clear diagnostic

evaluation of pathologies exceeding currently used reflectance

microscopy.

Supporting Information

Figure S1 3D projection of an ICG-fluorescence stack.
Images of an ICG-injected area were recorded with an increment

of 4.5 mm from the stratum corneum to a depth of 200 mm. These

images were loaded to the ImageJ software as a stack, followed by

calculation of a 3D-projection using the ‘‘3D project’’ function of

ImageJ,

(GIF)
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