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Abstract
Objective Androgen deprivation therapy (ADT) is a common treatment option for men with biochemical relapse from
prostate cancer. ADT is associated with changes in mood, cognition, and quality of life, and most recently with increased
risk for Alzheimer’s disease (AD). This study examined changes in brain metabolism using positron emission tomography
(PET) in men undergoing intermittent ADT.
Methods Nine men with prostate cancer and a rising PSA (biochemical recurrence) without evidence of metastases were
treated with intermittent ADT consisting of 9 months of complete androgen blockade achieved with combined leuprolide
acetate and flutamide. Patients underwent resting [Fuorine-18] fluorodeoxyglucose PET (18F-FDGPET) at baseline (before
treatment) and again after 9 months of ADT.
Results Whole-brain mapping analysis after 9 months of androgen deprivation compared to pretreatment baseline revealed
decreased regional cerebral glucose metabolism in the cerebellum, posterior cingulate, and medial thalamus bilaterally.
Associations of brain metabolism with measurements of cognition and mood while on androgen deprivation revealed
positive correlations between the posterior cingulate, left inferior parietal lobule (BA40), and left mid temporal gyrus (BA39)
and spatial reasoning and a negative correlation between left inferior parietal lobule and verbal memory. Several mood
indices were negatively correlated with hypothalamus and brainstem.
Conclusion These findings suggest that complete androgen deprivation may result in changes in regional brain metabolism
associated with variation in mood, verbal memory, and spatial performance. Brain regions that were impacted from ADT are
similar and overlap with brain regions with metabolic decline found in early AD and diabetes, suggesting possible common
mechanisms.

Introduction

Prostate cancer is the most common form of non-skin
cancer diagnosed in men in the United States. Androgen
deprivation therapy (ADT) is a common treatment option
for men with localized prostate cancer (e.g., in combination
with radiation therapy) or for those with a rising PSA after

definitive therapy without evidence of metasases. In con-
trast to those with metastatic disease, such patients have no
or minimal disease-related symptoms and may live for
many years.

Physiological consequences of ADT may include obe-
sity, anemia, loss of bone mineral density, muscle atrophy,
hot flashes, gynecomastia, diabetes, and metabolic syn-
drome [1]. Changes in quality of life in men undergoing
ADT have been previously reported including changes in
mood and subjective symptoms of cognitive difficulties [2].

Recent population-based studies have suggested that men
undergoing ADT are twice as likely to develop Alzheimer’s
disease within a few years of initiating ADT [3–5]. While
not all studies support this connection [6], there is an
indication that ADT decreases cognitive function [7–9],
brain function [10], and neuronal structure in humans, all of
which are prodromal indices of progressive cognitive
decline and possible AD [11]. The disease mechanism of
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AD is unknown, and complex. However, several side
effects and impacts of ADT are known to be involved in
proposed AD disease mechanisms including loss of testos-
terone and estradiol [12–15], inflammatory processes, dis-
ruptions to the immune system [12, 16], abnormal lipid and
glucose metabolism [17, 18], reduced physical activity [19,
20], and disrupted sleep impacting the glymphatic system (a
possible method for brain toxin clearance) [21, 22].

The aim of this study was to determine if men undergoing
intermittent ADT evidence changes in brain metabolism as
measured by fluorine-18 fluorodeoxyglucose (18F-FDG)
positron emission tomography (PET) imaging. 18F-FDGPET
imaging is a sensitive method for measuring changes in
metabolic changes in the brain, and has been shown to be a
reliable method for detecting early declines in brain function
in Alzheimer’s disease that corresponds to declines in cog-
nitive and daily function as well as neuropathology [23].
Participants were a subset of men enrolled in a study
examining mood and cognitive changes from ADT [7]. We
examined patients prospectively, taking advantage of the
intermittent aspect of ADT to include a baseline before
treatment and repeated neuroimaging after 9 months of ADT,
while still on the treatment. Previous findings of declines in
spatial reasoning abilities [24] and studies relating parietal
and occipital regions involved in spatial processing [25] led
us to hypothesize that complete androgen blockade would
alter metabolism in parietal and occipital brain regions.

Materials and methods

Participants

Patients were recruited from the genitourinary oncology
clinic at the Seattle Cancer Care Alliance and the Urology
clinics at the University of Washington Medical Center.
Participants were part of a larger study examining cognitive
and mood changes from ADT [7], willing to undergo the
additional neuroimaging procedures, and met additional
criteria for PET imaging. Physicians and nurses informed
patients of the opportunity to participate and if they
demonstrated interest, they contacted the study coordinator
who conducted a brief phone screen to determine eligibility.
In order to be eligible for treatment with ADT, patients had
to have a rising prostate specific antigen (PSA) following
primary therapy (prostatectomy, external beam radiation, or
brachytherapy) without evidence of metastatic disease by
imaging on bone scan and computed tomography scan of
the chest, abdomen, and pelvis. Patients who had pain due
to prostate cancer, prior psychiatric illness involving hos-
pitalization, dementia, central nervous system metastasis,
history of systemic chemotherapy, and current renal or
hepatic dysfunction or diabetes or previous brain injury (>1

h loss of consciousness), surgery or known brain lesion or
anomaly that would interfere with PET procedures were not
eligible. All participants signed written informed consent
approved by the University of Washington Institutional
Review Board prior to study procedures.

Study design

Patients received ADT consisting of an anti-androgen (flu-
tamide 250 mg TID) and a GnRH analog (leuprolide acetate
7.5 mg IM (intramuscular) monthly for a total of 9 months
duration whereupon ADT was stopped. Patients underwent
resting 18F-FDG-PET at baseline before the start of treat-
ment and again after 9 months of ADT. Blood samples for
total testosterone (T) and estradiol (E2) were also obtained
at the same intervals.

Cognitive and mood measures

Tests included a complex spatial design task in which
participants construct complex designs using component
parts and the task is timed to completion [26], a mental
rotation task in which participants were asked to match
complex figures that had been rotated, and a higher score
indicates better performance [27]. Verbal memory tasks
included a list learning test in which participants heard a list
of words read to them followed by a short delay and recall
of the list [28], and a story recall task in which participants
heard a short story read to them followed by a short and
long delay recall [29]. A verbal fluency test, in which par-
ticipants were required to name as many words beginning
with a particular letter in 60 s [30]. For the Stroop test,
participants were timed and asked to read words, color
blocks, or name the ink color of printed words [31]. On the
self-ordered pointing test (SOPT), participants were
required to remember an increasing number of visual
designs presented in a changing array [32]. Mood assess-
ment included the profile of mood states (POMS) that uti-
lizes a set of mood adjectives and asks participants to rate
mood over the past week using a Likert scale. Subscales
include tension-anxiety (TA), depression-dejection (Dep),
anger-hostility (AH), vigor-activity (VA), fatigue-inertia
(FI), and confusion-bewilderment (CON) [33]. Tests and
questionnaires are described in additional detail in Cherrier
et al. [7].

18F-FDG-PET image acquisition and analysis

After intravenous injection of 370MBq [Fluorine-18]FDG
and 45 min uptake at rest in a quiet room with eyes open,
standard 18F-FDGPET brain imaging (20-min emission
scan and 25-min germanium-68 transmission scan for
attenuation correction) in a GE Advance scanner (GE
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Medical Systems, Milwaukee, Wisconsin), was performed
for each subject. Images were reconstructed to in-plane
resolution of ~6 mm (full-width-half-maximum). PET
image sets were co-registered and anatomically standar-
dized to the human brain atlas [34] using NEUROSTAT
(University of Utah) [35, 36]. Pixel intensities were nor-
malized to global cortical activity (set to 1000) and images
were smoothed with a Gaussian kernel with σ= 2.25 mm to
minimize residual anatomic differences across subjects. To
obtain regional values for metabolic activity from a stan-
dardized template, PET images were also processed using
quantitative data extraction algorithm, three-dimensional
stereotactic surface projections (3D-SSPs) [37, 38].

Statistical mapping

Regional metabolic changes pre- and post ADT were assessed
using voxelwise one-sample t statistics and probability integral
conversion to z-scores. Based on the number of voxels and
smoothness of the statistical map, a type I error rate was
controlled at 0.05 to account for multiple comparisons [39]. To
confirm voxelwise analyses, independent analysis using ste-
reotactically predefined volumes of interest was also per-
formed. In this analysis, stereotactically predefined regions
(medial and lateral frontal, parietal, and temporal association
cortices and precuneus/posterior cingulate) were applied to the
standardized and normalized 3D-SSP data sets as described
previously [37, 38]. To evaluate the association of cognition
and mood with metabolic activity after ADT, the individual
values obtained from the tests were used in a voxelwise cor-
relation analysis of the FDG-PET images over the entire
cohort. Correlation coefficients for each voxel were converted
to Z-scores (Fisher transformation) and peak locations of sig-
nificant correlations were mapped over the entire brain.
Regional metabolic changes at structures were examined using
a paired t test and general linear model controlling age as
covariates for change over time. For all statistical analyses,
peaks with Z-scores ≥4.0 were considered significant, con-
trolling the type I error rate approximately at p= 0.05 after
correction for multiple comparisons based on image smooth-
ness and voxel number. This Z and p value were selected
using established theory of statistical analysis methods for PET
images [40, 41].

Hormone analyses

A secondary analysis was performed to assess changes in
circulating hormone levels testosterone (T) and estradiol
(E2) in response to treatment. Serum samples were taken
during clinic visits at baseline, and on treatment and were
sent to the UWMC clinical laboratory. A repeated-
measure analysis of variance (ANOVA) with total tes-
tosterone and estradiol was used to assess change from

baseline. Information on statistical scripts, data, and
imaging analysis can be found at http://www.osf.io/
3yxdu.

Results

Nine ADT patients completed the screening visit and were
eligible to participate. One patient did not complete a second
imaging visit due to a scheduling conflict. Only participants
who completed all visits were included in the analyses. ADT
patients ranged in age from 50 to 75 years with a mean age of
64 years. Education ranged from 12 to 17 years with a mean
education level of 14.6 years. All participants were

Table 1 Demographics, serum hormone values, neuropsychological
and mood assessment scores

Mean (SD) Mean (SD)

Demographics

Age (years) 64.0 (8.4)

Education (years) 14.6 (2.4)

Baseline 9 months

Testosterone (ng/ml) 3.37 (0.77) 0.22 (0.07)**

Estradiol (pg/ml) 27.0 (7.2) 22.1 (4.48)

Spatial memory (route test) 16.71 (7.67) 21.57 (10.62)

Spatial ability (block design) 9.0 (0.0) 8.85 (0.37)

Spatial ability (mental rotation) 7.28 (1.38) 6.71 (2.28)

Verbal memory (proactive
interference)

20.57 (4.79) 21.21 (4.96)

Verbal memory (story recall) 32.46 (10.26) 39.28 (9.17)*

Verbal ability (verbal fluency) 30.00 (2.38) 27.42 (7.18)

Executive function (Stroop) 42.28 (5.49) 46.42 (9.18)

Executive function (SOPT) 11.28 (6.70) 11.42 (8.48)

POMS: aggression and hostility 45.85 (5.49) 47.57 (5.53)

POMS: vigor 60.71 (7.97) 58.4 (10.56)

POMS: concentration 48.57 (9.84) 49.42 (8.46)

POMS: tension and anxiety 46.71 (8.78) 47.14 (8.61)

POMS: fatigue 50.00 (11.0) 54.28 (10.90)

POMS: depression 46.14 (4.67) 48.14 (6.54)

*Verbal memory story recall—number of correctly recalled bits of
information after a delay p= 0.02; verbal ability verbal fluency—
number of words generated for two letters; executive function Stroop
—time to complete the interference trial; executive function self-
ordered pointing test (SOPT)—number of errors summed across all
trials. Profile of mood state (POMS) subscales

**Testosterone ng/ml change from baseline p= 0.00, esradiol pg/ml,
spatial memory route test—number of correctly recalled sequences
after a delay; spatial ability block design—number of correctly
completed designs; spatial ability mental rotation—number of
correctly identified figures; verbal memory proactive interference—
number of correctly recalled words summed across four trials
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Caucasian, non-hispanic. See Table 1 for demographics,
hormone, cognitive, and mood data.

Hormone analyses

A repeated-measure ANOVA revealed a significant change
over time for total testosterone F (1,6)= 115.9,
p < 0.01 and changed from 3.37 (0.77) nmol/l at
baseline to 0.22 (0.07) at month 9. Estradiol decreased from
27.0 (7.2) to 22.1 (4.48) pmol/l, but this was not a sig-
nificant decrease.

Voxelwise analysis of pre-/post-ADT

Whole-brain analysis of pretreatment (pre) compared to on
ADT (post) changes in metabolism revealed significant
declines cerebellum (4.2% decreased, Z=−5.09, p=
0.048), posterior cingulate (3% decreased, Z=−4.58, p=
0.021), and medial thalamus (bilateral) (4.8% decreased, Z
=−3.95, p= 0.006, p= 0.005 for right and left, respec-
tively) (Fig. 1).

Metabolic activity associated with cognition while
on ADT

Cortical glucose metabolism was associated positively and
negatively with select cognitive tasks. Correlation analysis
indicated a positive association between performance on a

spatial reasoning task (mental rotation) and the posterior
cingulate (PCing), left inferior parietal lobule (LPi) (BA40),
and left mid temporal lobe (BA39). Higher scores on the
mental rotation task indicate better performance. A positive
association was observed between the (Stroop test) (higher
score is better performance) and activation in left middle
frontal gyrus (GFm) (BA 6) and precuneus (PCu) (BA7)
(see Fig. 2).

Performance on a verbal memory task (story recall) and a
(verbal list learning task) revealed a negative association
between left inferior parietal lobule and BA 8 and 9. A
higher score on both of these verbal memory tasks indicates
better performance. A negative association for inferior
parietal lobule, supramarginal gyrus, superior temporal
gyrus, fusiform, and bilateral cerebellum was found for the
Stroop test (higher score indicates better performance) (see
Fig. 3).

Cortical brain activity was associated negatively with
mood. Scores on the POMS that measures mood were
negatively correlated with the brainstem and hypothalamus
including subscales of depression (DEP), tension/anxiety
(TA), and aggression/hostility (AH). The subscale scores of
the POMS are compared to normative values, which allows
for generation of t tests. The direction of the scales are such
that a higher score indicates more severe depression
symptoms (DEP), and more symptoms of tension and
anxiety (TA), and higher levels of aggression and hostility
(AH) (see Fig. 4).

Fig. 1 Voxelwise comparison of pre- and post-ADT treatment reveals
resting hypometabolic regions (i.e. regions showing a significant
decrease from baseline). Refer to color bar on the right that indicates
the corresponding Z-score of change to color, with lighter color
indicating a larger change in Z score. Top row indicates the pattern of
hypometabolic deficits on surface projected z-score maps. In subjects,
pre- and post-FDG-PET images were compared in a voxelwise paired
subtraction analysis and p values converted to Z-scores. Resultant Z-

score map was superimposed to an anatomical MRI template for better
visualization of hypometabolic pattern. Sagittal aspects are noted.
Second row indicates relevant structures identified on axial slices in
mm from the AC-PC line according to the stereotactic atlas [14].
(p < 0.05 after controlling type I error rate for multiple comparisons).
RT.LAT right lateral, LT.LAT left lateral, RT.MED right medial, LT.
MED left medial, PCu precuneus, DMT dorsomedial thalamus, Cb
cerebellum
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Discussion

Our findings indicate that otherwise healthy men, with non-
metastatic prostate cancer undergoing intermittent ADT
demonstrate decreases in brain metabolism in posterior

cingulate, cerebellum, and thalamus (dorsal medial)
(Fig. 1). We are not aware of a prior report of changes in
brain metabolism in response to ADT in humans, in which
the state of castration was compared to the eugonadal
baseline using a within subject design. Brain regions

Fig. 2 Surface projected maps of glucose metabolism correlated to
tasks with correlation coefficients converted to Z-scores and super-
imposed to structural MRI. Significant structures are as indicated by
arrows and labels. Sagittal aspects are noted. Upper panel: Voxelwise
linear regression of score on a spatial reasoning task with FDG-PET
images across all subjects reveals significant peaks in structures
including PCing: posterior cingulate, z= 4.2, left LPi: inferior parietal

lobule, z= 4.1 and, left GTm: middle temporal gyrus, 4.0. Lower
panel: Voxelwise linear regression of score on the Stroop test with
FDG-PET images reveals significantly correlated peaks in the PCu:
precuneus, z= 4.9 and the left GFm: middle frontal gyrus, z= 4.1. (p
< 0.05 after controlling type I error rate for multiple comparisons). RT.
LAT right lateral, LT.LAT left lateral, RT.MED right medial, LT.
MED left medial

Fig. 3 Cortical glucose metabolism negatively associated with cogni-
tion. Surface projected maps of glucose metabolism correlated to tasks
with correlation coefficients converted to Z-scores and superimposed to
structural MRI. Significant peaks are as indicated by arrows and labels.
Sagittal aspects are noted. Relevant structures also identified on axial
slices (right side) in mm from the AC-PC line according to the ste-
reotactic atlas. Upper panel (left): Voxelwise linear regression of score
on a story task with FDG-PET images across all subjects reveals a single
significant peak in the left LPi: inferior parietal lobule, z=−4.4.
Middle panel (left): Voxelwise linear regression of score on the verbal

list learning task with FDG-PET images reveals significantly correlated
peaks in the left GFm: middle frontal gyrus, z=−5.0, right NC: cau-
date, Z=−5.0, and bilateral GFs: superior frontal gyrus, Z=−5.0.
Lower panel (left) Voxelwise linear regression of score on the Stroop
test with FDG-PET images reveals significantly correlated peaks in the
bilateral LPi: inferior parietal lobule, z=−5.7, Gsm: supramarginal
gyrus, z=−4.3, and Cb: cerebellum, z=−4.2 and in the left GTs:
superior temporal gyrus, z=−5.5. (p < 0.05 after controlling type I
error rate for multiple comparisons). RT.LAT right lateral, LT.LAT left
lateral, RT.MED right medial, LT.MED left medial
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showing decline in metabolism from ADT overlap with
brain regions with metabolic decline from Alzheimer’s
disease (AD) as well as type-2 diabetes [42, 43].

The pathogenesis of AD is complex and multi-factorial.
However, there are possible reasons for concern of an AD
and ADT connection. Testosterone and estradiol, suppressed
by ADT have been previously shown in vivo in animal
models of AD and in humans to change serum amyloid-beta
(Aβ) levels and accumulation, which has a critical role in
amyloid plaque formation and neuronal death [12–15].

Ding et al. [13] examined the impact of loss of estrogen
via ovariectomy (OVX) in a triple-transgenic mouse model
of AD. OVX resulted in decreased brain glucose uptake
and increased abeta oligomer levels, which was reversed
with 17-β estradiol administration. Amyloid plaques along
with neurofibrillary tangles are the major neuropathologi-
cal findings in AD that provide for post-mortem con-
firmation of disease. Gonadotropin releasing hormone
(GnRH) receptors, in the hypothalamus, are part of the
homeostatic control for releasing hormones and gonadal
steroids. GnRH receptors activate immune cells that have
been shown to influence amyloid-beta and amyloid brain
plaques [12, 16]. ADT induces hot flashes and sleep dis-
turbance [21], and poor sleep disrupts the brain’s natural
abeta toxin removal process of the glymphatic system [22].
ADT adversely impacts physical activity and function,
increases fat mass, reduces lean muscle mass and increases
insulin resistance, all of which are indices of metabolic
syndrome [17–20]. Insulin resistance, is thought to be a
critical AD pathological mechanism in which insulin
dysregulation and downstream insulin degrading enzyme
impact neuronal death and plaque formation [44, 45].
Transgenic mouse models of AD, fed a high-fat diet
inducing both changes in lipids and insulin sensitivity,
show a more rapid accumulation of amyloid plaques in

brain. This has led to a characterization of AD as a “type
3” diabetes [46]. ADT may not have a direct causative
relationship with AD, however, the initiation of ADT and
related side effects may create a favorable environment for
a slow and ongoing disease process of AD to progress at a
more rapid pace [47].

Altered brain metabolism from ADT corresponded to
changes in cognition. A positive correlation between
performance on a spatial reasoning task (mental rotation) and
the posterior cingulate, left inferior parietal lobule (BA40), and
left mid temporal lobe (BA39) was observed. A significant
decline from baseline performance on this spatial
reasoning task was observed in the larger sample on this
measure [7]. An inability to orient or to wayfind is a common
early symptom in AD patients, with frequent incidents of
patients getting lost. In addition, AD patients perform poorly
on tasks of spatial orientation, and learning that is not entirely
accounted for by impairments in memory and new learning
[48, 49].

A positive association was found between a measure of
executive function (Stroop test) and middle frontal gyrus
(BA 6) and precuneus (Fig. 2). Other studies have shown an
association between frontal region activation and the Stroop
test [50] as well as a decline in executive functions from
ADT [8]. Declines in executive function are often promi-
nent along with memory declines in AD patients as well as
in type-2 diabetes [43, 51].

In humans, there is some indication of a decline of neural
activation from ADT in frontal regions while performing a
working memory task as measured by functional magnetic
resonance imaging. Chao et al. [52] reported decreased
medial prefrontal cortical activation during a working
memory task, as well as decreased connectivity between the
medial prefrontal cortex and other regions in men on ADT
compared to controls.

Fig. 4 Surface projected maps of glucose metabolism correlated to
tasks with correlation coefficients converted to Z-scores and super-
imposed to structural MRI. Significant peaks are as indicated by
arrows and labels. Sagittal aspects are noted. Relevant structures also
identified on axial slices in mm from the AC-PC line according to the
stereotactic atlas [14]. Voxelwise linear regression of scores on the

POMS (profile of mood state) that measures mood with FDG-PET
images across all subjects reveals significant peaks in the BS: brain-
stem, z=−5.0 and Hy: hypothalamus, z=−4.6 (z-score map for
anger/hostility shown). (p < 0.05 after controlling type I error rate for
multiple comparisons). RT.LAT right lateral, LT.LAT left lateral, RT.
MED right medial, LT.MED left medial
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Our findings revealed a negative association for two
verbal memory tasks (story recall and verbal list learning)
(Fig. 3), indicating that a decrease in glucose metabolism
during ADT was associated with better performance on
these tasks. Prior studies have reported mixed findings with
regard to verbal memory changes in men undergoing ADT
including both improved verbal memory [9] as well as
significant declines [53].

Pre-post changes in the thalamus and negative associations
between the hypothalamus and brainstem and mood were also
observed, suggesting that lower metabolic function was
associated with endorsement of higher levels of depression,
irritability, and anxiety. While the role of the hypothalamus in
integrating limbic functions is well characterized [54], the
association with more subtle changes in self-endorsed mood
has not been previously reported. Testosterone has been
shown to have an anxiolytic effect in animals, and our results
suggest a connection between the hypothalamus and mood
symptoms. Animal models generally support a connection
between the hypothalamus and aggression. Men undergoing
ADT have been shown to endorse significant mood symptoms
including depression, anxiety, and irritability [55].

Findings from this preliminary study must be interpreted
with caution due to the limited sample. Results should be
replicated with more subjects. Nonetheless, despite these
limitations, our study has several strengths including a within
subjects, repeated measure design with on treatment compared
to off treatment baseline. Thus, although the absolute sample
size is small, the within participant comparison adds strength
to the analysis. Further, the study establishment of a pre-ADT
baseline, which is challenging in clinical studies given a
patient’s desire to rapidly initiate treatment once a rise in PSA
(biochemical relapse) has been discovered. Men were carefully
screened to ensure no evidence of metastatic disease, and were
administered a consistent, predefined ADT regimen (leupro-
lide acetate and flutamide) and thorough evaluations of both
cognition and mood concurrently with neuroimaging. This is
in contrast to some studies of ADT that have included men
with various anti-androgen treatment regimens including
orchiectomy or have included men with varying time exposure
to ADT (months to years), or evaluated men after the initiation
of ADT.

Conclusion

Our results indicate changes in brain activity as measured
by FDG-PET imaging in men with prostate cancer under-
going androgen deprivation, compared to their pre-
androgen deprivation baseline. These changes occur in
brain regions associated with mood and higher-order cog-
nitive processing and were associated with behavioral
measures of mood and cognition. Associations between

hypothalamus and mood measures may help explain prior
findings of increased irritability and mood changes in men
with idiopathic hypogonadism (low testosterone) as well as
mood changes with androgen deprivation. The overlap of
brain regions with metabolic decline in ADT and early AD
and diabetes suggests possible common mechanisms.
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