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Soluble N-ethylmaleimide sensitive factor activating protein receptor (SNARE) proteins are
a large family of transmembrane proteins located in organelles and vesicles. The important
roles of SNARE proteins include initiating the vesicle fusion process and activating and
fusing proteins as they undergo exocytosis activity, and SNARE proteins are also vital for
the transport regulation of membrane proteins and non-regulatory vesicles. Therefore,
there is great significance in establishing a method to efficiently identify SNARE proteins.
However, the identification accuracy of the existing methods such as SNARE CNN is not
satisfied. In our study, we developed a method based on a support vector machine (SVM)
that can effectively recognize SNARE proteins. We used the position-specific scoring
matrix (PSSM) method to extract features of SNARE protein sequences, used the support
vector machine recursive elimination correlation bias reduction (SVM-RFE-CBR) algorithm
to rank the importance of features, and then screened out the optimal subset of feature
data based on the sorted results. We input the feature data into the model when building
the model, used 10-fold crossing validation for training, and tested model performance by
using an independent dataset. In independent tests, the ability of our method to identify
SNARE proteins achieved a sensitivity of 68%, specificity of 94%, accuracy of 92%, area
under the curve (AUC) of 84%, and Matthew’s correlation coefficient (MCC) of 0.48. The
results of the experiment show that the common evaluation indicators of our method are
excellent, indicating that our method performs better than other existing classification
methods in identifying SNARE proteins.

Keywords: SNARE proteins, position-specific scoring matrix, machine learning, support vector machine, SVM-
RFE-CBR

1 INTRODUCTION

N-ethylmaleimide sensitive factor (NSF) (Whiteheart et al., 2001) protein and soluble NSF
attachment proteins (SNAPS) (Whiteheart et al., 1993) are two essential factors for protein
transport between membranes (Hohl et al., 1998) (Hanson et al., 1997). They were first
discovered as essential proteins for protein transport from donor to receptor subcellular
structures during the processes of Golgi modification and secretion. The discovery of these two
proteins led to the discovery of multiple receptor proteins on transport vesicles and plasma
membranes and snap receptors, which are collectively called soluble N-ethylmaleimide-sensitive
factor activating protein receptor (SNARE) proteins (Ungar and Hughson, 2003; Zhao et al., 2019).
According to the SNARE theory, exocytosis and secretory processes are completed by precise
coordination between SNARE proteins. The specificity of membrane fusion is based on the specific
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binding of SNARE protein members. At the molecular level,
when the transport vesicle is close to the target membrane,
syntaxin1A/B on the target membrane receives a signal to
recognize, approach and combine with SNAP25, which is also
located on the target membrane. At the same time, VAMP2
(q-snare) on the transport vesicle also recognizes (Kweon et al.,
2003), draws close to and binds to form a 7S R-Q-SNARE
complex, which guides the attachment and fusion of the
transport vesicle and the target membrane, leading to the
secretion of substances in the transport vesicle into the new
subcellular structure or out of the cell through exocytosis,
completing the intracellular transport and extracellular
exocytosis and secretion processes.

The binding sites of SNARE proteins are specific, which is the
reason for the specificity and precision of exocytosis and secretion in
different organisms and organs (Fasshauer et al., 1998; Yin et al.,
2021). SNARE theory convincingly explains the key role of synapses
in the process of nerve impulse transmission at the molecular level
(Chen and Scheller, 2001). Its new insights in the fields of molecular
neurobiology and endocrinology have made research on SNARE
proteins a hot spot in the basic life sciences worldwide. Such
findings greatly enrich understanding of the regulation of
intracellular information transmission, substance transport and
exocytosis and secretion at the molecular level and improve
knowledge of the interaction between proteins and the plasma
membrane (Liu et al., 2019a; Wang et al., 2020a; Xu et al., 2021).

Due to the important roles of SNARE proteins in cell biology,
research on SNARE proteins is also developing, and a variety of
technologies are used to study SNARE proteins (Wang et al.,
2020b; Yin et al., 2020), including the establishment of a SNARE
protein database, the retrieval and classification of SNARE
proteins, bioinformatics technology that was used to predict
the role of SNARE proteins, and construction of a neural
network model to recognize SNARE proteins.

With the development of computational biology, the application
of machine learning to bioinformatics continues to be deep and
widespread (Jiang et al., 2013; Tao et al., 2020; Zhao et al., 2021).
Machine learning is complex and cross disciplinary across multiple
fields (Cheng, 2020). Machine learning obtains new knowledge
through learning from pre-existing knowledge and can
continuously advance itself based on large quantities of this pre-
existing knowledge and skills. Research onmachine learning includes
the study of computer algorithms, using data and previous techniques
to improve the performance of computer algorithms. Machine
learning also has significant implications for the development of
artificial intelligence, through which computers continuously
progress along a path of constant intelligence. A typical way to
predict proteins is to transform each protein sequence into a
numerical eigenvector used to represent the protein sequence,
training a classification model based on the eigenvectors of the
training samples and the labels. After feature construction, the
classifiers that make predictions about proteins include covariant
discriminant (CD) (Chou, 2000), support vector machine (SVM)
(Hua and Sun, 2001), K-nearest neighbor (KNN) (Shen and Chou,
2006), deep learning and ensemble classifiers (Shen and Chou, 2006).

In this study, based on SVM classifier (Liu et al., 2010), we
constructed a model to recognize SNARE proteins. We use

position-specific scoring matrix (PSSM) profiles of protein
sequences to extract features (Kumar et al., 2008), process the
feature data by the min-max normalization method, build a
model based on SVM, train the model with 10-fold cross
validation and measure the performance of the model on an
independent dataset.

2 MATERIALS AND METHODS

We developed a method to recognize SNARE proteins based on
PSSM (Chou and Shen, 2007; Liu et al., 2019b; Hong et al., 2020a;
Hong et al., 2020b) profiles and SVM. Method steps include data
collection, data processing, feature extraction, feature selection,
model training, and model performance evaluation. The overall
flow of our designed method is summarized in Figure 1, and each
section in the figure is described in detail in the following sections.
We carried out experiments through the above process,
constantly adjusted in our experiment, and finally constructed
an excellent method to identify SNARE proteins. The following is
a detailed description of the method.

2.1 Feature Extraction
It is very important to select good feature information for protein
recognition (Zuo et al., 2017; Zheng et al., 2019; Tang et al., 2020a;
Guo et al., 2020; Zhang et al., 2021). We chose the method based
on PSSM profiles to extract the feature information of protein
sequence data. We use the National Center for Biotechnology
Information basic local alignment search tool (NCBI-BLAST)
and select a non-redundant (NR) protein sequence database as a
comparison dataset. We use the prepared SNARE protein FASTA
sequence files to generate PSSM profiles. Each amino acid of the
original sequence in the PSSM profiles consists of a vector of 20
values. Then, we transform the original PSSM files into PSSM
profiles with 400 dimensions. Finally, 400-dimensional data are
extracted as the feature data of each protein sequence for the
experiment.

2.2 Data Processing
The feature data in the datasets are seriously unbalanced,
especially the ratio of positive samples to negative samples
in the independent dataset, which varies tremendously. The
model would exhibit the problem of poor generalization, and
the applicability would be low, so it is unable to effectively
identify SNARE proteins. Therefore, we need to choose the
appropriate method to deal with the data. In this study, the
data processing methods we chose included Z-score
standardization, min-max normalization and L2
regularization.

Normalization: Data can be changed to [0, one] ranges using
the normalization method. Normalization, as an effective way to
simplify calculation and scale down data values, can change the
absolute values of data in the dataset into a relationship of some
relative value. After normalization, the data can be calculated
conveniently and quickly. This is mainly for the convenience of
data processing, mapping the data to the range of 0–1, which will
be convenient and fast to use. The method is defined as:
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x* � x −min
max −min

, # (1)

The distribution of original data can be changed by
normalization, and then the weights of each feature dimension
can be balanced by varying the feature dimension, such as
converting the distribution of data from planar to circular.
Normalization can remove the influence of dimensionality on
the experimental results by reducing the difference in
dimensionality. After normalization, the data of different
variables can be compared. Although the maximum and
minimum values of the resulting data in the normalization
process are affected by outliers in the dataset, and the
resulting data are less robust, normalization does improve the
accuracy of iterations in the operational data process as well as the
efficiency of data convergence.

2.3 Feature Selection
Feature selection refers to sorting features by suitable techniques
and algorithms and filtering out the better characterized subset of
features based on the sorted results; this is a common technique in
bioinformatics (Cheng et al., 2018; Zhu et al., 2019; Zhao et al.,
2020a; Zhao et al., 2020b; Shao and Liu, 2021; Yu et al., 2021).
After feature selection, the optimal feature subset selected from
existing features is used to build the model, which can improve
the performance of the model. Feature selection is a very
important part of building models for pattern recognition and
is a high priority in data processing (Wei et al., 2018; Xue et al.,
2018; Li et al., 2020a; Yang et al., 2020a; Su et al., 2020; Wei et al.,
2020; Yu et al., 2020; Zhang et al., 2020; Zheng et al., 2020; Wang

et al., 2021a; Shang et al., 2021; Shao et al., 2021). Selecting the
effective features from the original feature dataset and removing
the redundant features can reduce the dimensionality of the
feature data, and using more effective feature data can
improve the performance of the model. Our original feature is
based on PSSM to extract 400 dimensional features. In these
original feature spaces, there will be irrelevant, noisy, and
redundant features. Suitable feature selection methods with
excellent performance are required for accurate screening of
redundant features. In our experiment, we finally chose the
SVM-RFE-CBR (Yan and Zhang, 2015) algorithm to screen
features after comparing multiple feature selection methods.
The algorithm ranks the importance of features and selects the
optimal subset of features based on the sorted results.

SVM-RFE-CBR is an improved algorithm based on support
vector machine recursive feature elimination (SVM-RFE), which
introduces the strategy of correlation deviation reduction (CBR)
into the process of feature elimination. SVM-RFE estimates
feature importance based on the coefficient of the SVM model,
and it is a powerful feature selection algorithm. There are linear
and nonlinear versions. The SVM-RFE-CBR method adds the
correlation reduction strategy (CBR) to the SVM-RFE algorithm
to reduce the potential deviation of the algorithm, and the result
of feature selection is improved by the integrated CBR strategy.
SVM-RFE uses the sequential backward selection algorithm in
SVM, which is based on the principle of maximum interval.
During the model training process, SVM-RFE sort features based
on the score of every feature, deletes the feature with the lowest
score, puts the remaining feature data into the next round of
training of the model, and finally outputs the feature sort result to

FIGURE 1 | Flow chart of SNARE proteins recognition based on PSSM profiles matrix and SVM.
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a table. The optimal feature subset can be selected according to
the results of sorting. SVM is an excellent machine learning
classification algorithm. The feature sort result derived from the
SVM model has better performance, and it is also more
convenient for subsequent experiments.

2.4 Support Vector Machine
SVM is currently a commonly used classifier in machine
learning that classifies data by supervised learning (Cheng
et al., 2019a; Cheng et al., 2019b). SVM is commonly used
in data dichotomization. In addition, SVM can classify
nonlinearly by using the kernel function (Ding et al., 2020a;
Liu et al., 2020a; Yang et al., 2020b). SVM was developed from
the generalized portrait algorithm in pattern recognition. The
basic idea of SVM is to construct a model that separates the
dataset accurately according to the geometric interval of the
hyperplane with the maximum separation of samples. SVM can
map the features of a dataset to points in space and draw a line
to distinguish these points effectively. SVM uses a hinge loss
function to computationally predict the presence of empirical
risk, and a regularization term is added to ensure its robustness
and correct rate. The process of SVM: Suppose the training set

is {(xi, yi)} N
i � 1

, xi ∈ RD,yi ∈ {+1, − 1}, xi is the ith sample, N is
the sample size, and D is the number of sample features. SVM
finding the optimal classification hyperplane.ω · x + b � 0 The
optimization problems that SVM needs to solve are:

min
1
2
||ω||2 + C∑N

i�1εi.#

s.t. yi(ω · xi + b)≥ 1 − εi, i � 1, 2, /, N

εi ≥ 0, i � 1, 2, /, N

(2)

Transforming the original problem into the dual problem:

min
1
2
∑N

i�1∑
N

j�1αiαjyiyj(xi · xj) −∑N

i�1αi . (3)

s.t.∑N

i�1yiαi � 0 .# (4)

0≤ αi ≤C, i � 1, 2, /, N αi is a Lagrangian

Finally, the solution of ω is:

ω � ∑N

i�1αiyixi.# (5)

When we use SVM to solve nonlinear problems, we need to
choose the appropriate kernel function (Yang et al., 2021a) (Ding
et al., 2020b) and then map the data to the high-dimensional
space to solve the linearly inseparable problem of the data in the
original space.

In the experiment, the Python version of a library for support
vector machine (LIBSVM) was selected to build an SVM model
and identify SNARE proteins. The selection of different kernel
functions using LIBSVM as well as the settings of kernel
parameters are described as follows: The kernel function (Ding
et al., 2020c) of SVM includes the linear kernel function (LKF),
polynomial kernel function (PKF), radial basis function (RBF),
and sigmoid kernel function (SKF). Formulas corresponding to
four kernel functions are as follows:

Linear kernel function defined as:

K(xi, xj) � xTi xj.# (6)

Polynomial kernel function:

K(xi, xj) � (νxTi xj + r)d, ]> 0.# (7)

Radial basis functions:

K(xi, xj) � exp( − ν
∣∣∣∣∣∣∣∣xi − xj

∣∣∣∣∣∣∣∣2), ]> 0.# (8)

Sigmoid kernel function:

K(xi, xj) � tanh(νxTi + r).# (9)

ν, r, and d in formulas are parameters of kernel function.
Parameters are different in different kernel functions. ν in the

formula represents the parameter gamma in the kernel function,
the default of which is 1/K (K is the number of classes), and g is
used to set it in the LIBSVM.

r in the formula represents the parameter r in the kernel
function, the default of which is 0, and r is used to set it in the
LIBSVM. d in the formula represents the parameter d in the
kernel function; it is used to set the highest number of times in the
polynomial kernel function, and its default value is 3.

SVM is a very powerful model that allows the decision
boundary to be very complex and performs well on both low-
dimensional data and high-dimensional data. SVM has been
widely used in bioinformatics, binding protein prediction,
protein methylation site prediction and so on. We use the
LIBSVM of Scikit-learn library integration in Python to train
and build the model. In our experimental process, we optimize
the parameters according to the results and finally build the
model with the best performance.

3 RESULTS AND DISCUSSION

3.1 Dataset
Our research is devoted to constructing a method to recognize
SNARE proteins. To establish a model to effectively distinguish
SNARE proteins and non-SNARE proteins, we collected a
SNARE protein dataset and a non-SNARE protein dataset for
our prediction model. The dataset we use has been used by Le,
N.Q.K. and V.-N. Nguyen (Le and Nguyen, 2019) previously. The
data come from the UniProt database, which is the most
informative and resource-free protein database. We collect all
SNARE proteins from the UniProt database according to the
keyword SNARE. To avoid the homology of the SNARE protein
sequence data that we collect, we use BLAST to address the
redundancy of the SNARE protein sequence and eliminate the
redundant sequence. Finally, 682 SNARE protein sequences are
obtained as a positive sample dataset. At the same time, we select
vesicular transport proteins as negative samples to establish a
non-SNARE protein dataset. We divide the two datasets into a
cross-validation dataset and an independent test dataset, and the
size and details of the datasets are summarized in Table 1.
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Table 1 shows that SNARE proteins and non-SNARE proteins
correspond to two datasets: a training dataset and an independent
test dataset, both of which include positive samples and negative
samples. We use the cross-validation method to train the model
with the training dataset, evaluate the performance of the model
developed in this study, and optimize the model by adjusting the
parameters according to the results of the training dataset. The
independent test dataset is used to test and measure the predictive
ability of the prediction model we developed.

3.2 Performance Measurements
Our research aims to establish a model to predict whether an
amino acid sequence is a SNARE protein. Therefore, we need to
use universally acknowledged evaluation indicators to measure
the performance of the model. When training the model, we
choose 10-fold cross validation as the training model after various
considerations and take the average value of the crossing
validation results as the result of model training. We optimize
the parameters of SVM, select the best parameters to build the
model, and evaluate the performance of the model through an
independent test dataset to avoid systematic deviation in the
process of cross validation. This study adopts some standard
evaluation indicators that are widely used in bioinformatics
research (Shen et al., 2019a; Shen et al., 2019b; Ao et al., 2020;
Li et al., 2020b; Liu et al., 2020b; Tang et al., 2020b; Yin et al., 2020;
Chen et al., 2021). The standard evaluation indicators include
sensitivity (Sn), specificity (Sp), accuracy (Acc), area under the
curve (AUC), Mathew’s correlation coefficient (MCC), and
F-score (Zhai et al., 2020; Wang et al., 2021b; Yang et al.,
2021b). The calculation formulas are as follows (TP means
true positive values, FP means false positive values, TN means
true negative values, FN means false negative values):

Sensitivity � TP
TP + FN

, 0≤ Sn≤ 1.# (10)

Speccificity � TN
TN + FP

, 0≤ Sp≤ 1.# (11)

Accurarcy � TN + TP
TP + TN + FN + FP

, 0≤Acc≤ 1.# (12)

MCC � TP*TN − FP*FN�����������������������������������(TP + FN)(TN + FN)(TP + FP)(TN + FP)√ , 0≤MCC≤ 1.#

(13)

F − score � 2*TP
2TP + FN + FP

, 0≤ F − score≤ 1.# (14)

In machine learning research, receiver operating characteristic
(ROC) curves are usually used to test the prediction performance
of the model. AUC is a floating-point number from 0 to one of
ROC. The AUC value can reflect the quality of the model. The

greater the value, the better the performance of the model. ROC
curves and AUCs are commonly used to compare the
performance of different models as machine learning
performance indicators, which is very reliable. MCC is often
used to measure imbalanced data sets, which is one of the most
important indicators to measure the performance of two kinds of
classification in machine learning. We use Python’s processing
library to process data.

3.3 Performance Comparison With Different
Feature Dimensions
We use the SVM-RFE-CBR algorithm to evaluate the original
400-dimensional feature data. We use MATLAB to implement
the SVM-REF-CBR algorithm to sort the features. When
sorting features, a performance comparison will be given.
The evaluation results are shown in Figure 2. From
Figure 2, it can be found that the ACC achieved highest
value, when the top 350-dimensional feature is used in the
experiment. Therefore, we choose 350-dimensional feature
data for the experiment.

We use the optimal 350-dimensional feature dataset after
sorting for the experiment. First, 350-dimensional feature data
are selected from the original feature training dataset and test
dataset files according to the index obtained by the SVM-RFE-
CBR algorithm. Then, the training dataset is 10-fold cross

TABLE 1 | Summary of SNARE protein and non-SNARE protein datasets.

Dataset SNARE Non-SANRE Total

Original dataset 682 2,583 3,265
Train dataset 644 2,234 2,878
Test dataset 38 349 387

FIGURE 2 | The results of dimension reduction by using SVM-RFE-CBR
algorithm.

TABLE 2 | Comparison of prediction results between SVM-RFE-CBR dimension
reduction and original dimension.

Feature-dimension Sn Sp Acc AUC MCC F-score

350 0.68 0.94 0.92 0.84 0.48 0.5
400 0.68 0.94 0.91 0.83 0.48 0.5

Comparison of prediction results between SVM-RFE-CBR dimension reduction and
original dimension. The bold values mean maximum value in the column.
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validated, and the model is optimized. After many experiments,
the optimal parameters of SVM are obtained. When we choose
the radial basis function, penalty coefficient (C) � “11”, gamma �
“0.1”, the model achieves the optimal performance. At the same
time, we also use the original 400-dimensional feature data for the
experiment and choose the optimal parameterization in the
experiment. The comparison of experimental results in
different dimensions is shown in Table 2.

The experimental results show that both Acc and MCC are
improved after feature dimensionality reduction, which
eliminates the redundant part of the original feature and
improves the performance of the model.

3.4 Comparison of Different Classifier
Performance on Dataset
With the development of computers, machine learning has
been widely used in bioinformatics (Tang et al., 2019; Wang

et al., 2020c; Fu et al., 2020; Cai et al., 2021; Wang et al., 2021c;
Jin et al., 2021), and there are many classification models,
including the linear classifier, SVM, naive byes, K-nearest
neighbor (KNN), decision tree (DT), and ensemble model
(random forest/GDBT, etc.). To obtain the most effective
classifier method to identify SNARE proteins, we use
various machine learning classifiers to construct a model of
SNARE protein recognition, including random forest, KNN
and naive Bayes.

We compare the experimental results of multiple machine
learning classifier training models with the performance
measurement results. The performance result of different
classifier shown in Table 3.

As we can observe from Table 3, the results of SVM on
training dataset are better than another classifier.

In particular, Sp � 0.970, Acc � 0.900. SVM shows higher
performance. Meanwhile, we compare the ROC curves of
different classifier method. The result shown in Figure 3. As
we can observe from Figure 3, The ROC curve of SVM is
obviously better than the other three classifiers.

3.5 Comparison of Different SNARE Protein
Identification Methods
We compare the experimental results of SNARE CNN with the
performance measurement results of our research method. The
independent test results of using different methods to identify
SNARE proteins are shown in Figure 4. Figure 4A shows the
result of performance compares between our classification

TABLE 3 | The result of performance compares between SVM and other
classification method.

Sn Sp Acc MCC

KNN 0.870 0.906 0.898 0.73
Random Forest 0.620 0.962 0.900 0.70
Naïve Bayes 0.853 0.595 0.624 0.28
SVM 0.650 0.970 0.900 0.70

The result of performances compares between SVM and other classification method.
The bold values mean maximum value in the column.

FIGURE 3 | ROC curves of different classifier methods.
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method and other classification method on training datasets.
Figure 4B shows the result of performance compares between our
classification method and other classification method on test
datasets.

The results show that our method gives good results in both
training and independent test datasets. To compare the
performance measurements of our method for identifying
SNARE proteins with other methods more accurately, we
compare the results of different methods on independent test
datasets.As we can observe from Figure 4B, the independent
test results of our method are better than SANRE CNN. Sn �
0.68, Sp � 0.940, Acc � 0.92 and MCC � 0.48, and all these
indicators reach the highest values using our method. As shown
above, ourmethod shows higher performance. These results clearly
demonstrate the superiority of our method over the existing
methods, especially when using an independent dataset test.
This means that our method can better recognize SNARE proteins.

4 DISCUSSION

Because of the importance of SNARE proteins and the vital
significance of SNARE proteins in vesicular transport, there is
an urgent need for classification methods to identify SNARE
proteins. Extracting meaningful features and selecting an
appropriate machine learning algorithm can greatly increase
the model performance of protein prediction. We propose a
method based on PSSM profiles to extract features and SVM
to construct a model to identify SNARE proteins. We normalize
the feature data and use the SVM-RFE-CBR algorithm to reduce
the dimensions of feature. Then, we use a 10-fold crossing
validation training model and use an independent dataset to

test the performance of the model (Li et al., 2017; Li et al., 2020c).
The accuracy, specificity, sensitivity, AUC, MCC and other
performance indicators of our method have excellent
experimental results. All results show that our model has
better performance than other machine learning methods and
advanced neural networks. Our method can effectively identify
SNARE proteins. Taken together, the method proposed in our
study is of great significance for the study of SNARE proteins and
may also contribute to the prediction of protein function. Future
works may include investigation of more kinds of proteins.
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