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Abstract: With an increased life expectancy among humans, aging has recently emerged as a major
focus in biomedical research. The lack of in vitro aging models—especially for neurological disorders,
where access to human brain tissues is limited—has hampered the progress in studies on human
brain aging and various age-associated neurodegenerative diseases at the cellular and molecular
level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling
pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore
the current cell models used to study neuronal aging in vitro, including immortalized cell lines,
primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived
neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the
key phenotypes associated with cellular senescence that have been observed by these models are
compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing
technology in order to further our understanding of brain aging and neurodegenerative diseases,
and discuss the future directions and challenges in the field.

Keywords: brain aging; neuronal senescence; human induced pluripotent stem cells (hiPSCs);
induced neurons (iNs); CRISPR; genome editing technology

1. Introduction

People worldwide are living longer because of improvements in medicine and public
health. The World Health Organization estimates that the world population over 60 years
old will nearly double from 12% to 22% between 2015 and 2050, reaching nearly 2.1 billion
individuals (https://www.who.int/ accessed on 1 May 2017). As the elderly population in-
creases, the financial burden of age-related health disorders will also increase, and effective
preventive and/or therapeutic approaches are urgently needed. Among various age-
related diseases, neurodegeneration, and the associated cognitive decline, is particularly
relevant owing to its great influence on health span and quality of life [1].

Biomedicines 2021, 9, 1635. https://doi.org/10.3390/biomedicines9111635 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-5081-4497
https://orcid.org/0000-0001-6941-6440
https://doi.org/10.3390/biomedicines9111635
https://doi.org/10.3390/biomedicines9111635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.who.int/
https://doi.org/10.3390/biomedicines9111635
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines9111635?type=check_update&version=3


Biomedicines 2021, 9, 1635 2 of 33

As age is inherently linked to an increased predisposition to many diseases as well
as an increased likelihood of death, people have been searching for ways to delay aging
for centuries. According to historical records, Qín Shı̌ Huáng, the first emperor who
unified ancient China and who laid the foundation of the Great Wall of China, launched an
obsessive search for the elixir of life before dying at the age of 50 in 210 B.C.E. Elsewhere
at about the same time, Alexander the Great, who conquered most of the known western
world before he died aged 32 around 323 B.C., may have been looking for the legendary
Fountain of Youth that healed the ravages of war wounds and age. Unfortunately, such
legendary artifacts have remained just legendary up to the present, and reversing the aging
process resides, as yet, in the territory of fairy tales. However, the search for the means
to delay aging has not ceased and it is now being performed by biologists rather than
servants of rulers of vast kingdoms. These researchers have been working to understand
the mechanisms that underlie the aging process so that we may be able to delay aging or
even potentially reverse it, at least to some degree [2–5].

The prolonged lifespan presents unique challenges to many of the postmitotic cells
that make up our bodies, and this results in us being highly susceptible to age-associated
disorders, including various neurodegenerative diseases. Animal studies, both in vivo and
in vitro, have provided significant insights into the molecular mechanisms associated with
senescent neurons and brain aging [6,7]. However, animal models of brain disorders have
been found to not necessarily reflect the complexity of various human conditions, and
unfortunately have not been very predictive when evaluating drug candidates for several
diseases. For example, Alzheimer’s disease (AD) is the most common type of dementia
and also one of the leading causes of death worldwide [8]. Nonetheless, decades of animal
research have failed to translate into any noteworthy advances that help to prevent or treat
AD [9]. In view of this failure, a different and human-relevant approach is critically needed.
In this review, we will discuss what constitutes neuronal senescence and the evidence
implicating senescence in brain dysfunction; we will also explore the current in vitro cell
models that are available for the study of neuronal aging. The latter promises to be a useful
strategy for the development of novel therapeutics that treat the pathologies associated
with brain aging.

2. The Signaling Pathways Associated with Neuronal Senescence and Brain Aging

Cells are the basic building blocks of all multicellular organisms. Cellular senescence
is thought to contribute to brain aging and age-related neurodegenerative diseases through
a variety of mechanisms [10,11]. Nevertheless, there are common signaling pathways
and hallmarks [12–14]; these include the DNA damage response, chromatin alterations,
mitochondria impairment, lysosome impairment, autophagy disruption, SASP (senescence
associated secretory phenotype) changes, and decreased synaptic plasticity—all of which
can be recognized in senescent neurons (Figure 1). Each of these domains is activated
during aging, and all appear to interact with each other. Cell senescence has been identified
as an important driver of mammalian brain aging [15–17].
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Figure 1. A schematic diagram of the signaling pathways associated with neuronal senescence and brain aging. Altered 
expression or activity of notable genes (black) in aged neurons are shown by up or down arrows, which indicate up or 
down regulation, respectively. The cellular processes affected are marked in blue. The metabolites are marked in red. The 
seven resulting brain-related functional changes are depicted. ER, endoplasmic reticulum; ROS, reactive oxygen species; 
SASP, senescence associated secretory phenotype. The figure was created with Biorender.com. 

2.1. DNA Damage and Repair 
The genomic integrity of an individual is constantly challenged by DNA replication 

errors, spontaneous hydrolysis reactions, and reactive oxygen species (ROS), all of which 
lead to nucleotide changes, single-strand breaks (SSB), and double-strand breaks (DSB). 
The DNA damage response (DDR) promotes DNA repair and is a guardian of our genome 
[18–20]. The DNA repair processes, which require a series of catalytic reactions mediated 
by multiple proteins, are affected by age [18]. It was reported that the activity level of non-
homologous end joining (NHEJ) gradually decreases with age [21]. When key proteins in 
the DDR are defective, accelerated aging ensues; this is due to an accumulation of muta-
tions that eventually cause cellular malfunctions, senescence, and apoptosis [22]. Indeed, 
unrepaired DNA damage and DNA mutations accumulate in an age-related manner 
[23,24]. Cells carrying mutations at defined loci have also been shown to increase with age 
in humans and mice [24,25]. The ATM mutation, which is involved in DSB signaling/re-
pair [26]; the ERCC1 and XPF mutations, which are involved in nucleotide excision repair 
(NER) and crosslink repair [27]; and the XPA/CSB mutation, which is also involved in 
NER, have been identified in the brain tissue of prematurely aging mice [28]. Recently, 
single-cell whole-genome sequencing has been used to perform genome-wide somatic sin-
gle-nucleotide variant (sSNV) identification across the human genome [29]. The presence 
of C > A variants has been shown to modestly increase in neurons with age and is known 
to be most closely associated with oxidative DNA damage [30]. These C > A variants are 
also known to be present in the neurons of individuals with Cockayne syndrome (CS) and 

Figure 1. A schematic diagram of the signaling pathways associated with neuronal senescence and brain aging. Altered
expression or activity of notable genes (black) in aged neurons are shown by up or down arrows, which indicate up or
down regulation, respectively. The cellular processes affected are marked in blue. The metabolites are marked in red. The
seven resulting brain-related functional changes are depicted. ER, endoplasmic reticulum; ROS, reactive oxygen species;
SASP, senescence associated secretory phenotype. The figure was created with Biorender.com accessed on 19 October 2021.

2.1. DNA Damage and Repair

The genomic integrity of an individual is constantly challenged by DNA replica-
tion errors, spontaneous hydrolysis reactions, and reactive oxygen species (ROS), all of
which lead to nucleotide changes, single-strand breaks (SSB), and double-strand breaks
(DSB). The DNA damage response (DDR) promotes DNA repair and is a guardian of
our genome [18–20]. The DNA repair processes, which require a series of catalytic reac-
tions mediated by multiple proteins, are affected by age [18]. It was reported that the
activity level of non-homologous end joining (NHEJ) gradually decreases with age [21].
When key proteins in the DDR are defective, accelerated aging ensues; this is due to an
accumulation of mutations that eventually cause cellular malfunctions, senescence, and
apoptosis [22]. Indeed, unrepaired DNA damage and DNA mutations accumulate in an
age-related manner [23,24]. Cells carrying mutations at defined loci have also been shown
to increase with age in humans and mice [24,25]. The ATM mutation, which is involved in
DSB signaling/repair [26]; the ERCC1 and XPF mutations, which are involved in nucleotide
excision repair (NER) and crosslink repair [27]; and the XPA/CSB mutation, which is also
involved in NER, have been identified in the brain tissue of prematurely aging mice [28].
Recently, single-cell whole-genome sequencing has been used to perform genome-wide
somatic single-nucleotide variant (sSNV) identification across the human genome [29].
The presence of C > A variants has been shown to modestly increase in neurons with
age and is known to be most closely associated with oxidative DNA damage [30]. These
C > A variants are also known to be present in the neurons of individuals with Cockayne
syndrome (CS) and xeroderma pigmentosum (XPC). sSNVs increase almost linearly with
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age in neurons obtained from the prefrontal cortex and the hippocampus of CS and XPC
individuals; they are also more abundant in individuals with neurodegenerative diseases.

DDR genes comprise less than 10% of the genes significantly affected by age in
mice [31]. The expression of ATM (ataxia telangiectasia mutated), a DDR gene and a key
initiator of DNA repair, is decreased in old mouse fibroblasts and brain tissues [32,33].
In mice with ataxia telangiectasia, the ATM mutation results in DNA repair deficiency
and an accumulation of DNA fragments; this activates the cyclic GMP–AMP synthase
(cGAS)-stimulator of interferon genes (STING) signaling, a DNA fragment sensor system,
and triggers chronic inflammation as well as premature senescence in the central nervous
system (CNS) [34]. Telomere repeat binding factor 2 (TRF2), which is essential for main-
taining the structure and function of telomeres, is down-modulated and impaired during
aging. This dysfunctionality causes DNA damage, ATM activation, γH2AX accumulation,
p21 induction, and increased β-galactosidase activity in primary mouse embryonic hip-
pocampal neurons and in human SH-SY5Y cells [35–37]. Severe DNA damage activates
a whole host of responses in aged mice that affect the cortex, hippocampus, peripheral
neurons, and Purkinje neurons, including p38 MAP kinase activation, ROS production
oxidative damage, heterochromatinization, IL-6 production, p21 induction, and increased
β-galactosidase activity (Figure 1). Furthermore, senescent-like neurons increase with
age [38]. Similarly, the altered expression of genes involved in the cell cycle (p53, CDKN1A,
CCND1), in inflammation (IL1B, IL6, PTGS2, SERPINE1), in stress response (p38 MAP
kinase), and in DDR (CHEK1) are present in the hippocampus of AD patients as well
as in that of old mice and old rats [39]. Higher levels of p53 and p21 have been found
in the brains of RAD6B-deficient mice that show signs of neuronal aging and degenera-
tion [40]. RAD6B participates in DNA DSB repair through the ubiquitination of histone
H2B, and a deficiency in this protein leads to genome instability, which is associated with
increased neurodegeneration and increased memory loss. The information summarized
above suggests that DNA repair genes are critical to various DNA damage responses, and
deficiencies in these genes bring about neuronal aging and its related disorders.

2.2. Epigenetic Changes

Gene expression in the aging brain depends on the interaction of the brain’s genetic
and epigenetic programing. Epigenetic modifications, which include alterations of DNA
methylation as well as histone modifications, result in a remodeling of chromatin struc-
ture and a reprograming of gene expression [41]. These processes have been shown to
be related to aging, neuropathology, and the progression of various neurodegenerative
diseases [42–44].

2.2.1. DNA Methylation

DNA methylation, one of the most important epigenetic modifications, is closely
involved in tissue-specific gene expression and the silencing of transposable elements. The
DNA methyltransferase family (DNMT1, DNMT3a, and DNMT3b) adds a methyl group to
the 5-carbon of cytosine to form 5-methylcytosine (5mC), often next to a guanine nucleotide
(a CpG site). CpG methylation has been shown to be related to neuroplasticity in neuronal
cells [45,46]. However, in various studies of brain aging, it has been pointed out that the
methylation of non-CpG sites, such as CpA, CpT, and CpC, seem to be involved in cognition
deficits [47,48]. DNA methylation primarily inhibits gene expression. The reverse process,
DNA demethylation, begins with the formation of 5-hydroxymethylcytosine (5hmC) by
ten-eleven translocation (TET) enzymes. The 5hmC phenomenon is generally associated
with increased gene expression. In the mouse and human brain, this form of cytosine is
enriched in synaptic genes and has a higher level in adult neurons [48,49]. The effects of
5hmC on neuronal senescence and the aging of the brain remains to be established [50].

Several lines of evidence suggest that DNA methylation plays a role in the expression
of genes involved in learning and the memory of adult CNS, and alterations to the ex-
pression levels of these genes seem to bring about memory loss and cognitive impairment
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during the brain aging process [51–59]. In previous studies, the global hypomethylation of
the genome were detected with age [60,61]. Hypomethylation of the promoters of p16INK4A

and p21CIP1/WAF1, two cell-cycle inhibitors and senescence markers, may play a role in
cellular senescence and aging. In naturally aging mouse models or human tissues, the
increased level of p21 and p16 proteins in the old group as compared to the young group
was observed [62,63]. It was experimentally determined that the cause of such an increase
was due to the reduced methylation of the promoter regions of the genes. There are 5 and
10 CpG islands found within 50 kbp upstream of the p16INK4A and p21CIP1/WAF1 promoter
regions of human cells, respectively, and DNA methylation mostly occurred in these CpG
island regions, which dictate the gene expression. The inhibition of DNMT-mediated
DNA methylation by 5-azacytidine (5-AzaC) or siRNA induced cellular senescence and
cell-cycle arrest in human primary cells, which was accompanied by a reduction of the
methylation level of the CpG islands upstream of the promoter region of p16INK4A and
p21CIP1/WAF1, and by the upregulation of p16 and p21 expression. This phenomenon was
also observed in prolonged cultured cells as compared to early-passage cells. These studies
suggest that hypomethylation may be an underlying contributor to cellular senescence
and aging [64,65]. On the other hand, a positive correlation exists between aging and
hypermethylation of specific promoters. For instance, Arc (activity-regulating cytoplasmic
genes) and Egr1 promoters in the neurons of old rats were found to have a higher degree of
methylation, and in agreement with this, the expression levels of the corresponding genes
were decreased; this seemed to result in memory decline [58,59]. Similarly, the methylation
of the REST promoter and the resulting suppression of expression set up a cascade of
epigenetic remodeling [66] that led to an impairment of the cognitive functioning of the
aging brain and the development of neurodegenerative diseases [67,68]. Likewise, the
level of KLOTHO—a glycosylated transmembrane protein that is expressed in the choroid
plexus and neurons of the brain as well as an anti-aging factor—decreased with age [69].
This was, in part, due to hypermethylation of 36 residues at six CpGs in the promoter of
old animals [70–72]. In addition, neurodegenerative diseases such as AD and Parkinson’s
disease (PD) have common abnormal DNA methylation profiles, which largely seem to
affect the expression of key genes involved in various pathological pathways, including
those associated with amyloid plaques and neurofibrillary tangles (NFTs) [43,73,74].

2.2.2. Histone Modification

The post-translational modification of histones is also an epigenetic mechanism
that controls the expression of genes related to brain functioning [43,75]. Via the post-
translational modification of the N-terminal tail of histones, the structure of chromatin
can be changed; this allows enzymes that promote or inhibit transcription to be recruited,
which further modifies the chromatin. There are many types of histone modification.
Among them, methylation and acetylation seem to be the ones most related to aging and
age-related diseases [76–81]. In various species, the methylation or acetylation status of
specific lysine residues on H3 and H4 has been found to have an important influence on
aging and diseases related to aging [82].

Previous studies showed that the primary changes in gene expression during aging
occur via a reduction in inhibitory markers (H3K9me3 and H3K27me3) and an accumula-
tion of activating markers (H3K27ac) [80,83,84]. Decreased levels of lamin B1, H3K27me3,
and H3K9me3 lead to a decrease in heterochromatin content, which has been found to be
related to aging [85]. The recruitment of EZH2, a key methylase of the H3K27 residue in the
promoter regions of p16INK4A and p21CIP1/WAF1, are reduced in senescent cells, which could
account for the decrease of suppressive histone marks in the promoter regions and the
increase of p16 and p21 expression in senescent cells [64]. While there seems to be an overall
reduction in repressive histone markers such as H3K9me3, a regional increase in H3K9me3
on specific promoters, such as the brain-derived neurotrophic factor (bdnf), has been detected
during aging; the latter results in the diminished expression of BDNF [86,87]. In addi-
tion to the levels of H3K27me3 and H3K9me3 changing with age, there are other histone
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modifications altered during cell senescence. For example, H3K9me, H3K9ac, H4K20me,
H4K20me2, H3.3, and H2A.2 are increased, while H3K9me2, H3.1, H3.2, H4, and H2A.1
are decreased during the aging process [88]. It is currently unclear how physiological aging
changes the landscape of inhibitory histone methylation. Nonetheless, changes in overall
histone methylation does not seem to determine the aging process, while the site-specific
methylation of aging-related genes also seems to be important. Further research is needed
to fully understand how changes in the histones present in heterochromatin are related to
brain aging.

The decrease in repressive histone methylation by H3K27 paves the way for the acety-
lation of the histone. H3K27ac is a marker that decorates the enhancers and promoters
of active genes. The acetylation and deacetylation of histones are carried out by histone
acetyltransferase HAT and deacetylases HDAC, respectively. It has been reported that
the expression of these related regulatory molecules changes in the elderly brain, and
thus may be associated with age-related changes in gene transcription [76]. Likewise,
lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) are also involved in acety-
lation/deacetylation. Among them, Sirtuin 1 (SIRT1), a KDAC, is well recognized as
a regulatory protein related to aging. SIRT1 is regulated by many biological processes,
including damage repair [89]. The expression level and activity of SIRT1 decline during
aging; this increases NF-κB transcription factor activity, which is required for the transacti-
vation of SASP members [90]. In addition, it has been found that the level and activity of
HDAC2 is increased in the hippocampus of aged mice, and that HDAC2 recruitment is
enriched on neuron-related genes such as Arc, Egr1, Homer1, and Narp. The reduction of
the acetylation of H3K9 and H3K14 leads to the reduced expression of these genes, which
then affects nerve functionality [91,92]. Other studies have indicated that a decrease in
H3K27ac near the bdnf promoter may be related to the increase in HDAC2 and HDAC4 in
old hippocampal neurons [93]. In summary, DNA methylation and histone modifications
are intertwined, and seem to bring about some of the changes in gene expression observed
during brain aging.

2.3. Mitochondrial Dysfunction

Mitochondria are the major sites of bioenergy production in eukaryotes, and they are
involved in pyruvate oxidation, the TCA cycle, electron transfer, adenosine triphosphate
(ATP) production, cytoplasmic calcium buffering, and various ROS-mediated signaling
pathways [94–97]. Mitochondrial function becomes impaired as they age, and this leads to
changes in mitochondrial respiration and to a reduction in energy (ATP) production, as well
as to extensive changes in the levels of metabolites related to mitochondrial function [98,99].
It has long been held that aging and aging-related degenerative diseases are the result of
free radicals, which interconvert with ROS and attack cells and tissues [100,101]. ROS is
also formed physiologically during OXPHOS (oxidative phosphorylation) and the energy
production process of mitochondria [99]. Toxic ROS, when produced during old age due to
a homeostatic imbalance related to excessive cellular oxidative stress, leads to damage in
the mtDNA and in the mitochondria themselves; this can be followed by a mitochondrial
crisis. Such a crisis can involve respiratory chain deficiency, ATP synthesis disorder, an
increase in calcium concentrations, lipid peroxidation, protein denaturation, and protein
aggregation [102,103]. These events ultimately result in cell apoptosis and brain aging [82].
A significant increase in ROS production has been observed in aged neurons, and there
also seems to be an increase in the markers associated with neuronal senescence, includ-
ing higher expression levels of p53 and the increased activation of phosphor-JNK and
phosphor-p38 MAPK [100,104]. A decrease in neurite outgrowth in older neurons has been
detected in primary cortical neurons isolated and cultured from adult mice [105]. Aged
neurons exhibit respiratory dysfunction, decreased mitochondrial membrane potential,
changes in mitochondrial membrane transport proteins, and mitochondrial calcium accu-
mulation [106]. These findings suggest that the presence of dysfunctional mitochondria
in aged neurons may be related to an age-dependent reduction in neuronal functions. In
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support of this hypothesis, an mtDNA 3860-bp deletion was found to be common in the
auditory nervous system of mice, and its presence increases with age; the presence of this
deletion may contribute to age-related hearing loss [107].

The decline in mitochondrial function caused by an aging brain is related to a de-
crease in the level of NAD+ and changes in the ratio of NAD+/NADH in the cell; this
affects the activity of NAD+ dependent enzymes, which are essential for the functioning
of neurons. These enzymes include SIRT1, an NAD-dependent deacetylase [108–110].
SIRT1 and AMPK, which activate PGC-1α/β, are the coactivators of the peroxisome
proliferator-activated receptor γ (PPARγ); they play an essential role in the biogenesis of
mitochondria [111]. In this context, PGC-1α has been suggested to exert neuroprotective ef-
fects against 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-induced PD [112,113].
Increasing the levels of PGC-1α, FNDC5, or BDNF in Neuro-2a cells is able to counteract
the effect of Aβ1-42 oligomers during neuronal apoptosis, and this effect is believed to
occur via an improvement in mitochondrial functioning [114,115]. PGC-1α modulates
mitochondrial function via the activation of the expression of ERRα, NRF-1, and PPARγ,
which are the transcription factors responsible for the expression of various nuclear genes
involved in mitochondrial biogenesis. These findings provide additional evidence for a
link between mitochondrial dysfunction and neuronal aging.

The occurrence of sarcopenia and muscle atrophy in the elderly may be related to the
loss of motor neurons [116]. The loss of spinal cord motor neurons with age is characterized
by a deficiency in mitochondrial respiratory complex I, decreased mtDNA, and a smaller
soma size, which suggests that mitochondrial dysfunction in aged motor neurons leads
to cell loss and the denervation of the skeletal muscle. An impairment of mitochondrial
quality is known to change mitochondrial transport in axons [117,118]. Newly generated
mitochondria are transported anteriorly from the soma to fill the axon mitochondrial
pool, while damaged mitochondria are transported retrogradely for repair or degradation.
Abnormal mitochondrial transport can thus lead to mitochondrial dysfunction and axon
degeneration in various neurological and psychiatric diseases [119–121]. Using neurons
derived from human iPSCs obtained from PD patients that were carrying the SNCA gene
duplication, it was found that the formation of oligomeric α-Syn leads to a decrease in
axonal mitochondrial transport [122]. α-Syn oligomerization impairs anterograde axonal
transport via the subcellular relocation of the transport regulators Miro1, KLC1, and Tau, as
well as through a decrease in ATP levels. These findings indicate that there is a connection
between mitochondrial dysfunction and aging-related neuronal diseases.

2.4. Autophagy-Lysosome Dysfunction

Autophagy is a lysosomal-mediated degradative process that affects nucleic acids,
proteins, lipids, and organelles; it plays a critical role in cellular and tissue homeosta-
sis [123,124], including differentiation, development, and aging [125,126]. By degrading
non-functional proteins and retired organelles, autophagy maintains a healthy supply of
metabolic energy. The crucial role that energy metabolic rate plays in the aging process
was acknowledged over a century ago, and it is well known that metabolism tends to
slow down with age, resulting in an energy imbalance [127,128]. Thus, the regulation
of autophagy and lysosomal functioning is expected to be linked to aging processes. In-
deed, autophagic activity declines in C. elegans, Drosophila, mouse, and human cells as
they age, and this is accompanied by a decrease in the expression of various autophagy-
related genes, such as ATG5, ATG7, and BECN1 in humans and Atg2, Atg8a, and Bchs
in mice and Drosophilla [129–132]. In aged wild-type mice, autophagy is diminished in
neuronal cells, as evidenced by a decrease of autophagolysosomal fusion, and the fact
that there is an impaired delivery of autophagy substrates to lysosomes in the hypotha-
lamus [133]. Decreased lysosomal activity has also been shown to be associated with the
aging process and age-associated diseases [134]. The accumulation of β-galactosidase and
GATA4 in senescent cells is in part due to the impaired degradation of these molecules (see
below) [135,136]. Functional studies using laboratory animals and humans support the es-
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sential role of autophagy in neural protection, anti-inflammation activity, genomic integrity,
and cellular/tissue homeostasis [126,137]. In addition, age-dependent autophagy deficits
have been found to be closely associated with several neurodegenerative diseases [138,139].
These studies collectively suggest that autophagy and lysosome impairment contribute to
brain aging.

Knowledge on the cellular pathways that modulate autophagy is likely to provide
insights into the brain aging process and also help to identify the modulators of the aging
processes. Nutrient deprivation is well recognized to be capable of inducing autophagy,
and dietary or caloric restriction has been widely shown to extend the lifespan of rodents
and to delay the aging process in other organisms [140–147]. The principal pathways
by which caloric restriction mediates life-extension are the nutrient sensors AMPK and
mTOR [148–151]. These pathways negatively impact each other, with AMPK being an
inducer of autophagy and mTOR being an inhibitor of autophagy. AMPK is activated
by AMP; it is an energy-sensing serine/threonine kinase that responds to a decrease in
cellular energy levels and is activated by caloric restriction [152–154]. mTOR, which is also a
serine/threonine protein kinase, forms two multiple protein complexes in mammalian cells,
mTORC1 and mTORC2 [155,156]. mTOR is suppressed by nutrient starvation and inhibits
autophagy and lysosomal functions, thus serving as a regulator of longevity and aging in
mice [157–160]. AMPK directly phosphorylates the autophagy initiator ULK1 (Unc-51-like
kinase 1), and this induces autophagy [161,162]. AMPK is also able to regulate autophagy
indirectly via the inhibition of mTORC1 through the phosphorylation of the tuberous
sclerosis complex 2 (TSC2), and/or through phosphorylation of the regulatory subunit
raptor [163–166]. The activation of AMPK positively promotes autophagy, maintains
mitochondrial quality control, reduces insulin resistance, and relieves oxidative stress in
AD [167]. Conversely, mTOR directly phosphorylates ULK1 and ATG13, which inhibits
the activity of the autophagosome initiation complex [168]. Metformin, which is known
to activate AMPK by impairing mitochondrial ATP production, has been shown to cause
an anti-aging effect via autophagy induction [168,169]. On the other hand, rapamycin, an
mTOR inhibitor that induces autophagy, has also been shown to extend the lifespan of wild-
type mice [170–172]. Rapamycin also protects against neuronal death when studied using
in vitro and in vivo models of neurodegenerative diseases [173,174]. When taken together,
the abovementioned studies collectively demonstrate the importance of autophagy and
lysosomes during the brain aging process, and the potential beneficial impact of modulators
that are able to activate AMPK and suppress mTOR, both of which induce autophagy
during an organism’s lifespan.

2.5. Senescence-Associated Secretory Phenotype (SASP)

In addition to the findings above, another important feature of cellular senescence
involves the complex secretion of inflammatory cytokines, chemokines, growth factors,
ROS, and metalloproteinases; these are collectively known as SASP [175]. Previous studies
have provided evidence that the components of the SASP are able to modulate many of the
physiological consequences that affect senescent cells, and do so in both a paracrine and an
autocrine manner [176]. Regarding senescent brain cells, the expression of various SASP
factors, such as IL-6 and/or monocyte chemotactic protein 1 (MCP-1), has been found to
be significantly higher in long-term cultured cortical neurons than in cells cultured for
only a few days [177,178]. Notably, this IL-6 induction is correlated with the up-regulation
of the REST protein, which is a marker of neuronal senescence. In brain tissue, IL-6
production, along with an increase in the activity of the senescence-associated enzyme
beta-galactosidase (SA-β-gal), has been observed in the cortical and Purkinje neurons
of old mice [38]. The GATA4 transcription factor has been identified as a key activator
of SASP genes [135]. GATA4 accumulates during cellular senescence, mainly due to its
increased protein stability. Interestingly, GATA4 stability has been found to be regulated
by autophagy. The autophagic receptor protein p62/SQSTM1 mediates the degradation
of GATA4 under normal conditions. However, once the cell experiences senescence-
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inducing stimuli, the interaction between GATA4 and p62 decreases, and GATA4 escapes
autophagic degradation and begins to accumulate. This accumulation of GATA4 initiates
a transcriptional circuit that activates NF-κB and the SASP. Furthermore, the molecules
that form the SASP have both an autocrine role, fostering the senescent phenotype, and
a paracrine role, inducing senescence in the surrounding cells. For example, it has been
shown that a conditioned medium from senescent cortical cells can induce paracrine
senescence in co-cultured mouse embryonic fibroblasts (MEFs) [178]. Taken together,
these findings suggest that senescent neuronal cells not only develop a functional SASP
phenotype, but they can also spread the senescence phenotype via various secreted factors
to surrounding cells such as astrocytes, microglia, or endothelial cells.

2.6. Calcium Homeostasis and Synaptic Plasticity

Age-associated cognitive decline is an important human experience that differs in
extent between individuals. Long-term potentiation (LTP) is the most remarkable form of
synaptic plasticity, and this is characterized by a persistent increase in synaptic efficacy
following the tetanic stimulation of an afferent pathway to one of the hippocampal sub-
regions. On the basis of its properties, LTP has been proposed as a biological substrate for
learning and/or memory. Although many of its exact molecular and cellular mechanisms
have yet to be fully understood, there is consensus that alterations in neuronal calcium
homeostasis contribute to age-related deficits in learning and memory. Indeed, several
lines of evidence show that the age-related changes in calcium homeostasis are driven, at
least in part, by changes in the expression of calcium channels. One of the first experiments
to support this hypothesis found that there was an age-related increase in calcium spike
duration, and that this can be used as a measure of calcium influx via the voltage-gated
calcium channels (VGCCs) [179]. Later, Thibault and Landfield’s group demonstrated
that CA1 pyramidal neurons from aged animals have an enhanced L-type VGCC density
when compared to young and middle-aged rats [180]. More importantly, this increase
in current density correlated with a decrease in Morris water-maze performance, which
suggests that the up-regulation of channel density and calcium spike duration contributes
significantly to the age-related decline that affects hippocampus-dependent learning [180].
In addition to these, it has been demonstrated that age-induced autophagy disturbances
and various SASP components can also bring about hippocampal LTP impairment, and
that this is associated with depressive-like behaviors and cognitive deficits in old animal
models [181,182].

Information processing in the brain is a highly complex process, and seems to princi-
pally rely on the activity of neurons and their interconnection via synapses. Both dendritic
morphology and the density of dendritic spines seem to undergo age-associated changes.
In the cortical neurons of animals and humans, numerous studies have shown that there
is a regression of the dendritic arbors of cortical neurons that comes with age. Total
dendritic length and complexity decrease with age when apical and basal dendrites are
examined [183]. Moreover, a decrease in dendritic spine density with age has been reported
in cortical neurons and in the CA3 hippocampal region, while the spine numbers in the rat
CA1 region and the human CA1 region seem to generally remain unchanged [184–186]. In
summary, aging affects neuronal function and plasticity at different levels, ranging from
biochemical changes and biophysical alterations to changes in cell morphology. Despite
the fact that these changes are multidirectional and vary across neuronal subtypes and
across different brain regions, they all contribute to age-related cognitive deficits.

3. Overview of In Vitro Cell Models for Neuronal Senescence

We now explore a series of modeling approaches that illustrate the use of in vitro cell
models for studying brain aging (Table 1). Although we cannot comprehensively review all
cell-based modeling that target neuronal senescence, these themes are drawn from across
the field in order to demonstrate how cell-based models are able to yield new insights into
the various scientific problems that are known to have significant cell-scale effects.
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Table 1. The characteristics of the in vitro cell models that can be used to study neuronal senescence.

Cell Line
[Ref] Source

Method of
Generating

Neurons

Characterization of
Neurons

Method of
Inducing Cellular Aging

(Reagent/Time)

Phenotypes of
Cellular Aging

Immortalized cell lines

SH-SY5Y
(ATCC CRL-2266)

[187–189]

Human
neuroblastoma

– RA
– RA+BDNF
– RA+TPAF
– RA+dbcAMP
– NGF

Marker expression:
– Pan-neuronal: Tuj1,

NeuN, NSE,
neurofilaments

– Dendritic: MAP2
– Axonal: Tau, SMI312
– Synaptic: synapsin I,

synaptophysin,
PSD-95

Functional
characterization:

– Calcium activity
– Action potential

H2O2/24 h

D-galactose/2~3 days

H2O2

– Cell viability↓
– LDH ↑
– Caspase 3 activity↑
– Mitochondrial membrane

potential (∆Ψm) ↓
– ROS level ↑
– Autophagy ↑

D-galactose

– Cell viability ↓
– Growth inhibition
– Growth inhibition
– Autophagy ↑
– Involvement of

necroptotic pathway

Neuro-2a
(ATCC CCL-131)

[190,191]

Mouse
neuroblastoma

– RA
– dbcAMP
– TPA

PC-12
(ATCC CRL-1721)

[192]
Rat adrenal gland – NGF

P19
(ATCC CRL-1825)

[193]

Mouse
embryonic
carcinoma

– RA

Primary neuronal cultures
Primary
neurons

[178,189,194–207]

Rodent (mouse or rat)
hippocampus or cortex

– Animal dissection
and appropriate
culture conditions

D-galactose/~12 DIV

Long term culture/ 6~35
DIV

Long-term culture
– SA-β-gal activity ↑
– Growth inhibition
– Intracellular Ca2+ ↑
– BER ↓
– TopoIIβ expression ↑
– ∆Ψm ↓
– ROS ↑
– p21CIP1/WAF1 ↑
– γH2AX foci ↑
– Nuclear membrane

abnormalities
– Autophagosome

accumulation
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Table 1. Cont.

Cell Line
[Ref] Source

Method of
Generating

Neurons

Characterization of
Neurons

Method of
Inducing Cellular Aging

(Reagent/Time)

Phenotypes of
Cellular Aging

Human fibroblast (hFib)-
converted neurons

hFib-converted
neurons [208–211]

Human fibroblasts from
donor individuals

– Using transcription
factors

– Using microRNAs
and small molecules

Preserve
age-associated
features

Epigenetic
modification

Human induced pluripotent
stem cell (hiPSC)-derived

neurons

hiPSC-derived
neurons [212–214]

Human iPSCs derived
from donor individuals

– Embryoid body
formation

– Using microRNAs,
small molecules and
growth factors

– Using transcription
factors

– Expression of
progerin

– Telomerase inhibitor
at iPSC stage

– Application of
stressors

– Nuclear morphology
abnormalities

– Loss of the nuclear
lamina-associated
proteins

– Formation of DNA
double strand breaks
(γH2AX)

– Mitochondrial
dysfunction

– Neurite degeneration

Note. RA, retinoic acid; BDNF, brain-derived neurotrophic factor; TPA, tetradecanoylphorbol-13-acetate; dbcAMP, dibutyl cyclic AMP; NGF, nerve growth factor; LDH, lactate dehydrogenase; ROS, reactive
oxygen species; BER, base excision repair.
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3.1. Immortalized Cell Lines

Traditional in vitro cell culture techniques for neurological studies have usually in-
volved 2D monolayers grown in standard tissue-culture dishes/plates. These are often
based on the use of immortalized cell lines such as murine embryonic carcinoma (P19)
cells [215], murine neuroblastoma (Neuro-2a) cells [216], pheochromocytoma (PC-12) cells
derived from the rat adrenal medulla [217], or human neuroblastoma SK-N-SH (SH-SY5Y)
cells [218]. The P19 cell line, which is pluripotent and can be maintained in an undifferenti-
ated state, can be induced to give derivatives that represent the three germ layers, namely
the endoderm, mesoderm, and ectoderm, depending on the treatment used [215]. The treat-
ment of aggregated P19 cells with retinoic acid (RA) results in their differentiation into neu-
rons and glial cells, as identified by antibodies against tubulin, neurofilaments, and GFAP,
respectively [219]. The Neuro-2a cell line, which is similar to P19, can also be differentiated
into neurons in response to various stimuli, including RA, 12-O-Tetradecanoylphorbol-13-
acetate (TPA), dibutyl cyclic AMP (dbcAMP), and a number of trophic factors [220–224].
The differentiated Neuro-2a cells exhibited the characteristics of neurons, including neurite
outgrowth and the heightened expression of neuronal markers [225,226]. In contrast to the
above, pheochromocytoma PC-12 cells can be induced to differentiate into neuron-like cells
by the nerve growth factor (NGF); this involves the expression of neurofilaments and the
appearance of neurite outgrowth [227]. More importantly, NGF-treated PC-12 cells release
several neurotransmitters, including dopamine, noradrenaline, and acetylcholine [228–230];
this means that they can serve as a good cellular model for neuronal differentiation and
neurodegeneration [231]. The human SH-SY5Y is the prototype of various cell models that
are used to study neuronal differentiation and cellular senescence. Many studies have
reported the use of RA to differentiate SH-SY5Y into neuron-like cells. Sequential treatment
with RA, BDNF, TPA, and/or dbcAMP has also been used for differentiation into various
neuronal subtypes [232–235]. The morphological changes associated with the various
neuronal phenotypes and the expression of a number of neuronal marker genes, such as
Tuj1, MAP2, NSE, NeuN, and synaptophysin, are the criteria used when studying such
differentiation [236–239]. Finally, the SH-SY5Y cell line has also been employed to study
neurodegenerative diseases, including AD, PD, neurotoxicity, ischemia, and amyotrophic
lateral sclerosis (ALS) [207,240–248].

The major advantages of the immortalized cell models for neurological research in-
clude the following: (1) they are easy to work with and are a cost-effective approach;
(2) these self-proliferating cells are an unlimited source; and (3) they are highly accessible
for genetic manipulation (Table 2). However, the lack of standard procedures for the
maintenance and differentiation of these cell lines, even though the cell lines are easy
to culture, can create variable and sometimes inconsistent experimental results [249,250].
Moreover, due to their cancerous origins, they grow robustly and can lack various rele-
vant attributes/functions typically associated with normal neurons in vivo. For instance,
oxidative stress is considered to be an important contributing factor to aging, and ROS
perturbation is known to cause senescence and cellular death in cell culture [251,252].
Indeed, H2O2 treatment of SH-SY5Y, PC-12, or P19-derived neuron-like cells caused a
decrease in neuronal survival via caspase-dependent apoptosis [192,193,207]. Nevertheless,
no immortalized cell line has been found to have the ability to show a strong expression
of various well-established senescence markers, such as p16 and p21, or the clear pres-
ence of SA-β-gal activity. However, Kim et al. and Lee et al., when using D-galactose to
generate intracellular H2O2 via galactose oxidase, reported that there was an inhibition
of RA-induced SH-SY5Y neuronal differentiation, and that this was accompanied by an
increase in SA-β-gal positive cells [187,188]. Overall, the study of cellular senescence using
cancer-derived cell lines remains a challenge.
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Table 2. The advantages and disadvantages of the various in vitro cell models used to study neuronal senescence.

Benefits Drawbacks

Immortalized cell lines

– Easier to work with and
cost-effective

– Proliferating cells
– Accessible for genetic manipulation

– Need to be induced into
neuron-like cells

– Immortalized with dysregulated
cell cycles and cancer phenotypes

Primary neuronal cultures

– Genetically more stable than
neuronal cell lines

– Maintain many crucial markers and
functions as observed in vivo

– Non-human

Human fibroblast (hFib)-converted
neurons

– Epigenetic aging is maintained
– Able to convert into various

neuronal subtypes
– Time efficiency (skip hiPSC

generation)

– The starting cell source is limited
– Need to be induced into

neuron-like cells
– Costly

Human induced pluripotent stem cell
(hiPSC)-derived neurons

– Theoretically expand infinitely
– Able to differentiate into various

neuronal subtypes
– 3D organoids
– Accessible for genetic manipulation

– Largely rejuvenated
– Need to be induced into

neuron-like cells
– Costly

3.2. Primary Neuronal Cultures

Primary neurons can be cultured and differentiated into neurons that have a range of
neuronal characteristics, including axons, dendrites, dendritic spines, and synapse, and
therefore have great potential to overcome many of the difficulties inherent in immortalized
cell lines. More importantly, unlike the cell line models described previously, they differen-
tiate without specific inducers [253,254]. They are similar to human neurons in terms of
morphology and physiology; primary cultures are thus suitable for investigating neuronal
differentiation, aging, and degeneration [255]. The life span of these individual neuronal
cells can be prolonged by the use of optimized culture media; they are also amenable to
treatments with chemical reagents and may be subjected to electrophysiological inves-
tigations [256]. Geng et al. reported that SA-β-gal expression is increased in cultured
primary hippocampal neurons at DIV (days in vitro) 20 [197]. Cerebellar granule neurons
(CGNs) in culture can survive for 5 weeks, which is then followed by cellular degeneration
involving a number of molecular changes, including elevated SA-β-gal activity and an
increased intracellular Ca2+ level, with the latter suggesting the dysregulation of calcium
homeostasis [194]. The sensitivity of CGNs to N-ethyl-N-nitrosourea (ENU) increases in
proportion to the age of the culture. Based on the results of alkaline comet assays, there
is a reduction in base excision repair (BER) activity as CGNs age in culture. In addition,
mitochondrial dysfunction during long-term neuronal culture has been demonstrated by
Dong et al. [196]. An age-related reduction in mitochondrial membrane potential (∆Ψm)
in neuronal cultures has been found, and so has an increase in ROS generation. These
findings indicate that there is an age-related decrease in mitochondrial function, and that
the proportion of the senescent cells increases accordingly during the long-term culture
of hippocampal neurons. Moreover, aging-associated dysfunctional autophagy has been
found to contribute to the senescence transition in neuronal cells, as reported by Moreno-
Blas et al. [178]. A higher level of SA-β-gal activity and an accumulation of lipofuscin have
been shown to occur during long-term cortical neuronal cultures (DIV40), which have been
found to be accompanied by an increased expression of p21CIP1/WAF1 and an increase in
γH2AX foci. Nuclear morphology abnormalities and a blockage of autophagy flow, as
indicated by the elevated levels of LC3 and p62, have also been detected in aged cortical
neurons. Although in vitro primary cultures have provided important clues about the
mechanisms behind neuronal senescence, one prominent drawback of these cells is the
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fact that they are neurons derived from rodents, and thus they can never form a human
genome-based model (Table 2).

3.3. Human Neurons Directly Converted from Fibroblast (Fib-iNs)

Neuroscientists face a major obstacle when trying to develop drugs to treat brain
disorders. Specifically, even when a drug works really well on mice, they still fall short
when used to treat humans. One example of this is the development of drugs to treat AD;
it has proven to be unusually difficult to do this, with a 99.6% failure rate over the period
of 2002–2012 [257]. Currently, the success rate continues at the same low level based on the
records of the US Food and Drug Administration (FDA). One of the potential reasons for
this is the species gap that exists between rodent models and human studies. The latest
studies have shown that the differences between the brains of humans and mice are larger
than expected [258,259], which might account for the translation failures when transferring
drug treatments for neurological diseases from mice to humans. Therefore, based on the
above, many believe that human models are likely to be more accurate at recapturing
human physiology and clinical pathology.

The direct conversion of human fibroblasts into induced neurons (Fib-iNs) allows
for the generation of human neurons with mature marker expression and functional-
ity [260,261]. The reprogramming of fibroblasts into functional neurons was first achieved
by over-expressing a set of transcription factors (TFs), including BRN2, ASCL1, MYT1L, and
NEUROD1, all of which are important for the development of neuronal lineages [260,262].
Later, a number of other studies also reported the successful conversion of other cell
types into functional neurons by using the same set of TFs [263–267]. The field has since
progressed rapidly and has begun to investigate the mechanisms involved in the direct
conversion of cells and the identification of the best strategy to use. This has included the
use of novel TFs, various microRNAs, and a number of other small molecules for gener-
ating a range of neuronal subtypes (comprehensively reviewed in two reviews [268,269]).
In contrast to the rejuvenating character of human-induced pluripotent stem cell (hiPSC)-
derived neuronal cells (hiPSC-iNs) (see below), Fib-iNs preserve many signatures of aging
phenotypes, including transcriptomic, epigenetic, nuclear morphological, mitochondrial,
and other aspects of cellular senescence [208–211], which makes them appropriate for
the studies of neuronal aging in vitro. In practical terms, one major drawback of Fib-iNs
is their limited cell numbers. Although a variety of cell types have been demonstrated
to be converted into iNs, the major source for Fib-iN experiments are adult human skin
fibroblasts. Their expandability is limited typically to under twenty passages from an
invasive biopsy. The limited starting material makes Fib-iNs inappropriate for a range of
later applications, including mechanistic study, drug screening, and transplantation, all of
which require relatively large amounts of cells.

3.4. Human iPSC-Derived Neurons (hiPSC-iNs)

Due to the extreme sensitivity of the in vitro manipulation of human mature neurons
as well as their very limited availability, the study of the human brain at the cellular and
molecular level remains a major challenge. In the last decade, research on the hiPSCs
have begun to create great hopes for therapeutic application in various diseases and in
regenerative medicine [270]. hiPSC-derived and differentiated cells allow researchers to
study the impact of a distinct cell type on health and disease, as well as for therapeutic
drug screens to be performed on a human genetic background.

3.4.1. Neuronal Differentiation of hiPSCs

The conventional approach to neuronal differentiation from hiPSCs involves first
directing iPSCs differentiation into embryoid bodies and then into neural progenitor cells
(NPCs), which is followed by differentiation into functional neurons. The stepwise proce-
dures are principally based on various animal studies of neurodevelopment in which the
major events of mammalian neural commitment have been identified. During early em-
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bryonic development, neural induction relies on complex interactions between bone mor-
phogenetic protein (BMP) and the transforming growth factor β (TGFβ), fibroblast growth
factor (FGF), sonic hedgehog (SHH), Notch, WNT, and RA signaling pathways [271–274].
These signaling pathways can be modulated by small molecules and/or growth factors
in order to direct human embryonic stem cells (ESCs) or iPSCs into neuronal cell fates.
For instance, researchers have routinely used FGF2 to induce and then maintain neural
progenitor cells starting from the ESC or iPSC stage [275–278]; this is because FGF signaling
have been implicated in the induction and patterning of mesoderm and neural tissues
in vertebrate embryos. In 2009, Chambers and Studer’s group described a method by
which they differentiated human ESCs or iPSCs into neural cells by dual inhibition of
the SMAD signaling pathways [279]. In addition, RA also plays important roles in many
aspects of neural development and activity in a developing embryo. In the absence of
RA signaling, the posterior hindbrain is not formed and the development of the anterior
spinal cord is affected [280]. Similarly, in the dorso–ventral axis of the neural tube, RA
works synergistically with other molecules such as the SHH, FGF, BMP, and WNT signaling
members, in order to determine the fates of sensory neurons, interneurons, and motor
neurons. Thus, RA has been used by many research groups at concentrations of 1–10 µM
in medium to bring about hESC neural differentiation [281–285]. The conventional strategy
of hESC or hiPSC differentiation into mature neurons usually requires 2–3 months, which
mimics human neural development in vivo [286,287].

The generation of functional neurons from hiPSCs by direct reprogramming with TFs
offers an alternative route for lineage conversion. Previous studies by the Wernig laboratory
have shown that a combination of TFs, BRN2, ASCL1, and MYT1L transforms both human
ESCs and iPSCs into glutamatergic neurons [260]. Strikingly, the three TFs induced the
hiPSCs into neuron-like cells in a short period of time, with the cells exhibiting bipolar
morphologies as early as day 3 of the differentiation [260]. The expression of neuronal
markers, such as class III β-tubulin (Tuj1) and MAP2, as well as the functional characteristics
of action potential generation, were detectable by day 8. Soon after this, the same group
reported that hiPSCs can be converted into functional neuronal cells, with nearly 100% yield
and purity in less than 2 weeks by the expression of only a single TF such as NEUROG2 or
NEUROD1 [288]. The rapid conversion to a neuronal fate of cells has demonstrated that
there is a faster path to TF-based neural induction compared to conventional differentiation
using growth factors or signaling molecules. Subsequently, our group and others have
reported distinct sets of TFs that could promote ESC or iPSC differentiation towards
numerous cell types in the brain, including glutamatergic, dopaminergic, GABAergic,
serotonergic, and motoneurons [288–292], as well as astrocytes, oligodendrocytes, and
microglia [293–295]. This reprogramming strategy permits the cells to skip the progenitor
stage and accelerates the time course of neuronal differentiation and maturation. This
presents a unique opportunity to understand how the aging process impacts these cells
and how various neurodegenerative disorders occur.

3.4.2. Approaches for Carrying out an In Vitro Aging-like Process Using
hiPSC-Derived Neurons

In contrast to Fib-iNs, hiPSCs, once they are successfully converted from somatic
cells, can theoretically expand infinitely. These properties make hiPSC differentiation
suitable for the generation of large numbers of neurons and their subsequent application
in mechanistic studies, drug screening, and transplantation, all of which require relatively
large amounts of material. However, the rejuvenation effect of iPSC reprogramming is
a major drawback when attempting to model age-related diseases [211,268,296]. After
iPSC reprogramming has occurred, many signs of cellular aging such as nuclear envelope
integrity and mitochondrial function are improved, and the aged epigenome is reset to
zero [297–300]. The telomeres of iPSCs are also longer than in the parent differentiated
cells, and are comparable in length to the telomeres of control ESCs [301].

In fact, iPSC-based disease models derived from patients with neurodegenerative
disorders typically exhibited no disease-associated phenotypes under normal culture
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conditions [213,214,302]. Our group also demonstrated that hiPSC-iNs derived from
an AD patient with the APP_D678H mutation show no significant changes in neuronal
morphology, gene expression levels, and AD pathological characteristics, such as Aβ

accumulation and Tau protein hyperphosphorylation, during differentiation and early
maturation, even compared to its isogenic controls (Figure 2C–G). These observations
suggest that patient iPSCs can successfully differentiate into mature iNs under normal
conditions, and may only mimic the phenotypic features at the pre-clinical stage of a
disease or perhaps at an early stage of a disease. As aging is the primary risk factor for AD,
the patient iPSC-iNs might recapitulate AD-like pathologies only when they are switched
to an aged status.
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Figure 2. The early mature hiPSC-iNs derived from an AD patient show no significant changes in neuronal morphology and
AD pathological characteristics. (A) The hiPSCs are induced to differentiate into neuronal cells by the Ngn2 overexpression
method. Senescence-like features can be elicited by various strategies in mature hiPSC-iNs. (B) SA-β-gal activity is increased
in the hiPSC-iNs after a prolonged culture of 8 weeks. Scale bar, 50 µm. (C) The diagram presents human APP protein
and the D678H (the 678th amino acid using the APP770 numbering) mutation within the Aβ region of AD-iPSC (upper
panel). Direct sequencing of the APP exon 16 PCR products derived from the patient revealed a GAC-to-CAC nucleotide
substitution in the Aβ region of the patient’s APP gene. The CRISPR-edited isogenic hiPSC clones were confirmed by Sanger
sequencing (lower panel). (D) Representative images of isogenic iPSC-derived glutamatergic neurons immunolabeled for
the dendritic and axonal markers, MAP2 and Smi312, respectively, at day 22. Scale bar, 50 µm. (E) The amount of Aβ40 and
Aβ42 secreted from the isogenic iPSC-derived neurons (n = 4). (F) Western blot analysis was used to monitor the expression
of phosphorylated tau at T181, S262, S396, and total tau in the isogenic iPSC-derived neurons. GAPDH (glyceraldehyde-3-
phosphate dehydrogenase) was used to confirm similar protein loadings across the samples. (G) Quantitative results of (F).
The intensity of the pTau signals was normalized against total Tau.
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In the last few years, researchers have used various strategies to express a relevant
phenotype for neurodegenerative disorders in iPSC models. For example, Lorenz Studer
and colleagues demonstrated that aging characteristics can be reintroduced into iPSC-
derived neurons by overexpressing progerin, a mutant form of the lamin A (LMNA) protein
that is responsible for the premature aging disorder Hutchinson–Gilford Progeria [213].
Using this type of approach, dopaminergic neurons derived from Parkinson’s patient
iPSCs have been shown to develop increased disease-associated phenotypes, including
the folding and blebbing of the nuclear membrane, the formation of DNA double-strand
breaks, mitochondrial ROS (mtROS), and the breakdown of established neurites. The same
group also developed an alternative and potentially more physiological approach to induce
aging; they did this by pharmacologically inhibiting telomerase activity [214]. These hPSC-
derived neurons with shorter telomeres present with aged-like features such as increased
DNA damage, mtROS, and reduced dendrite numbers. In addition, the induction of DNA
damage using chemical stressors has been shown to result in dysfunctional DNA damage
repair and other age-related features, including augmented SA-β-gal staining, decreased
proliferation, and reduced differentiation capacity, as well as an elevated level of ROS [212].
Thus, even though age-inducing strategies have successfully recapitulated certain types
of pathological aging in iPSC derivatives, which represent a significant step forward in
modeling age in vitro with iPSCs, it remains unclear whether these approaches imitate
normal human aging. More recently, our group found that SA-β-gal activity increased
as a function of time upon the prolonged culture of hiPSC-iNs for 8 weeks (Figure 2B). It
will be interesting to determine to what extent these different strategies may be combined
to provide a more complete picture of actual cellular senescence using human neurons
in vitro.

4. Application of Genome Editing Technology to hiPSC-Derived Neurons in Order to
Study Cellular Senescence and Carry out Drug Discovery

Genetic manipulation, the process of inducing changes in gene expression level or
introducing particular gene variants, has proven to be an indispensable tool in recent
biomedical research. Previous conventional methods of genomic sequence replacement
in mammalian cells using exogenous donor DNA via homologous recombination (HR),
and the correct insertion of exogenous DNA do allow the targeted insertion of virtually
any DNA sequence in a genome, but the reported efficiencies are low (<1%). To address
this need, the advent of technologies using DNA-binding zinc-finger nuclease (ZFN) and
transcription activator-like effector nucleases (TALENs) has greatly improved the efficiency
of the genome editing of mammalian cells [303,304]. Furthermore, clustered regularly
interspaced short palindromic repeats (CRISPR) with the CRISPR-associated protein (Cas9)
system have been demonstrated to have revolutionary potential when engineering the
genome of cultured cells and animal model systems; they are capable of carrying out the
editing at a much high efficiency [305,306]. The latter approach has become a powerful
tool for biological research and has opened up a new therapeutic avenue for the treatment
of neurological diseases. Briefly, the CRISPR/Cas9 system contains two components:
a single-guide RNA (sgRNA) and an endonuclease (Cas9). The sgRNA/Cas9 complex
is able to bind to a specific locus on the genome, and it then induces a double-strand
DNA break (DSB), which is subsequently repaired by two of the cells’ major repairing
mechanisms, namely non-homologous end-joining (NHEJ) and homology-directed repair
(HDR) [307]. During the process of DNA repair, the targeted DNA sequence can be
modified by the introduction of a small insertion and/or deletion (indel) mutation using
NHEJ, or by the insertion of a functional DNA fragment using HDR. The CRISPR/Cas9
system has proven to be highly efficient at gene disruption, by knocking in a gene or DNA
fragment, or correcting genetic defects in various human cells [308]. For genetic functional
screening, a new approach has been created from the CRISPR/Cas9 system; this approach
uses a catalytically inactive Cas9 (dCas9) that is fused to either a transcription repressor
(KRAB) [309–311] or a transcription activator (VP64) [312–314]. The result is either gene
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repression (CRISPR interference, CRISPRi) or gene activation (CRISPR activation, CRISPRa)
in a mammalian cell system, including hiPSCs.

4.1. The CRISPR/Cas9-Mediated Genome Editing and Gene Expression in hiPSCs

Accompanied by the development of hiPSC-derived neuronal models, gene editing
technologies have significantly improved our understanding of age-associated neuronal
senescence, as well as of neurodegenerative disorders. The use of hiPSCs from patients to
generate disease models has provided an invaluable tool for studying the early pathogenic
mechanisms acting in neurological disorders that have monogenic variant/mutation. In
order to compare phenotypic effects robustly in vitro, an isogenic line, in which the known
gene mutation is corrected by the CRISPR/Cas9 method, is necessary in order to ensure that
the observed differences are attributable to a specific genetic defect. For example, we gen-
erated hiPSC lines from AD patients that carry the APP mutation as well as gene-corrected
isogenic clones, and then used these to assess the therapeutic potential of a Chinese herbal
medicine [302]. Moreover, CRISPR/Cas9 was also utilized to create mutations in iPSC
lines from healthy control subjects. This was particularly helpful when exploring rare
diseases where there is reduced accessibility to patient-derived samples that allow for
the generation of patient-derived iPSCs, or when there is difficulty in obtaining patient
samples with a specific genotype. The genome editing of isogenic lines also allowed the
study of many variants with the same genetic background at once, which can be more
practical than gathering a large number of patient and control lines.

More recently, the integration of CRISPR-based functional genomics and stem-cell
technology has enabled the scalable interrogation of gene function in human neurons. The
CRISPR-based platform overcomes the greatest constraint in this area, namely the off-target
effects associated with the conventional RNA interference (RNAi) approach when carrying
out genome-wide functional screening. For instance, Tian et al. reported the first genome-
wide CRISPRi and CRISPRa screens targeting hiPSC-derived neurons and uncovered
several pathways that control neuronal survival and the response of cells to oxidative
stress [315,316]. Liu et al. developed a CRISPRa approach to systematically identify the
regulators of neuronal-fate specification [317]. To investigate the genetic and epigenetic
bases of cellular aging, Wang and colleague carried out a CRISPR/Cas9-based screen that
identified KAT7 (a histone acetyltransferase gene) as a driver of cellular senescence in
human mesenchymal precursor cells [318]. The prioritization of genes identified from
functional genomic screens seems to be a good approach in the development of anti-aging
interventions and therapies.

4.2. The Inducible CRISPR/Cas9 Systems in hiPSC-iNs

Protein overexpression and gene knockdown or knockout are key technologies when
studying molecular mechanisms in neuroscience research. However, conventional genetic
manipulation methods are inadequate when studying senescence processes in mature
neurons as they may cause early lethality at the hiPSC or neural progenitor stage. It has
been suggested that fine-tuning the expression of some lethality-causing genes or essential
genes in differentiated (and aged) neurons is necessary in order to be able to analyze their
functions. Nevertheless, post-mitotic neurons are generally difficult to culture and are
particularly resistant to the delivery and expression of recombinant genes, thereby often
limiting experimental approaches. To address this issue, an inducible approach that will
allow the genetic manipulation of mature neurons would be highly desirable in order to
facilitate research on the molecular basis of neuronal function, especially the aging process
(Figure 3). The available tools, namely inducible systems such as Tet-on and Cre-loxP, have
been used extensively for gene regulation using in in vitro and in vivo models [319]. Briefly,
the inducible functional cassette is knocked into a genomic safe harbor (e.g., AAVS1) in
hiPSCs via CRISPR/Cas9-mediated HDR. After neuronal differentiation, temporal control
of gene expression or gene inactivation in the mature hiPSC-iNs is achieved by the addition
of either doxycycline (Dox) or Cre protein, respectively. Recently, Ding and colleague
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reported that they were able to generate a human gene-editable iPSC line that could be
used to efficiently introduce specific mutations through the addition of designed sgRNAs,
and these modified cells could then be induced to differentiate into disease-modeling
cells [320]. The inducible system using CRISPR technology, combined with the hiPSC-iN
approach, is becoming a valuable tool for the study of molecular mechanisms during
neuronal senescence, as well as being useful for drug discovery.
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5. Conclusions and Perspectives

Neurons are among the longest living cells in the human body. Most of them are
generated during embryonic development, with only a few new neurons being produced
after birth [321]. Neurons from primary human sources are also exceptionally difficult to
obtain and maintain, which makes their direct study highly challenging. Thus, hiPSC-iNs
generated from human donors present a unique opportunity to begin to understand how
the aging process impacts these cells and then gives rise to various neurodegenerative
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diseases. This review summarizes the key features of cellular aging that appear to drive
neurodegeneration, compares the currently available in vitro platforms, and highlights
various hiPSC-iN approaches that are being used for next-generation human cellular
modeling. Although hiPSCs are largely rejuvenated and have erased most aging signatures,
we have demonstrated that the senescence-like features can be elicited in mature hiPSC-iNs
upon prolonged culture (Figure 2B).

In fact, the brain is composed of a variety of cell types, including neurons, astrocytes,
oligodendrocytes, microglia, and endothelial cells, all of which work in concert to perform
activities throughout the whole human lifetime. The effects of aging vary depending on the
brain region of interest and the different cell types present, and cells may sometimes even
move in the opposite direction to normal aging [322]. Thus, co-cultures of neurons and other
types of cells are extremely useful tools in vitro when evaluating cell-to-cell interactions that
rely on direct contact or the release of soluble factors. This makes them a suitable method
for the study of the contribution of various cell types to neuronal senescence. Human
cerebral organoids have recently emerged as a state-of-the-art technology for modeling
human brain development in three-dimensions (3D). This may eventually represent an
alternative strategy for the better recapitulation of human brain aging in vitro [323]. In
summary, there is currently great interest in determining the extent to which various
available strategies can be combined in order to provide a more complete picture of actual
cellular senescence in human neurons (Figure 4).
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Figure 4. Schematic representation of the workflow of hiPSC generation, genome editing, and neuronal differentiation
from an individual’s somatic cells, and their major applications in the area of human healthy aging. A healthy person’s
or patient’s somatic cells are reprogrammed into a pluripotent stage. To generate isogenic control iPSCs for the follow-up
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analyses, the mutation in the patient’s iPSCs can be corrected using CRISPR-mediated editing. Similarly, a specific disease-
causing mutation can be introduced into the genome in the control hiPSCs in order to allow for disease modeling. These
hiPSC lines are then differentiated into disease-associated cell types in a 2D environment; these cell types can include
neurons, astrocytes, oligodendrocytes, or microglia. Alternatively, they can be differentiated into brain organoids in a 3D
environment. Following an aging-like process, the hiPSC-derived brain cells display a number of senescence phenotypes
that can be assayed in vitro. Furthermore, the hiPSC derivatives can be used for drug screening, for the discovery of new
drugs, for toxicity testing, and as models for the study of the mechanisms involved in human neuronal aging in vitro and
in vivo. The figure was created with Biorender.com accessed on 19 October 2021.

In this review, we propose that the iPSC-to-iN paradigm should be able to provide
a new platform for the study of the mechanisms associated with brain development,
brain maturation, and brain aging at the cellular level. In addition, because hiPSCs are
reprogrammed and rejuvenated from human adult cells by a complete erasing of age-
associated and senescence-associated features such as DNA methylation patterns, they also
represent a proof of concept that many aspects of cellular aging are reversible. Consequently,
such a platform could have important implications for the identification of drug targets
that can slow down or potentially reverse aging phenotypes.
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