
fbioe-08-601216 December 4, 2020 Time: 11:28 # 1

ORIGINAL RESEARCH
published: 07 December 2020

doi: 10.3389/fbioe.2020.601216

Edited by:
Christian Bergaud,

Laboratoire d’Analyse et
d’Architecture des Systèmes (LAAS),

France

Reviewed by:
Wendell Karlos Tomazelli Coltro,

Universidade Federal de Goiás, Brazil
Manas Ranjan Gartia,

Louisiana State University,
United States

*Correspondence:
Luca Boselli

luca.boselli@iit.it
Pier P. Pompa

pierpaolo.pompa@iit.it

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Nanobiotechnology,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 31 August 2020
Accepted: 16 November 2020
Published: 07 December 2020

Citation:
Donati P, Pomili T, Boselli L and
Pompa PP (2020) Colorimetric

Nanoplasmonics to Spot
Hyperglycemia From Saliva.

Front. Bioeng. Biotechnol. 8:601216.
doi: 10.3389/fbioe.2020.601216

Colorimetric Nanoplasmonics to
Spot Hyperglycemia From Saliva
Paolo Donati†, Tania Pomili†, Luca Boselli* and Pier P. Pompa*

Nanobiointeractions and Nanodiagnostics, Istituto Italiano di Tecnologia, Genova, Italy

Early diagnostics and point-of-care (POC) devices can save people’s lives or drastically
improve their quality. In particular, millions of diabetic patients worldwide benefit from
POC devices for frequent self-monitoring of blood glucose. Yet, this still involves invasive
sampling processes, which are quite discomforting for frequent measurements, or
implantable devices dedicated to selected chronic patients, thus precluding large-
scale monitoring of the globally increasing diabetic disorders. Here, we report a
non-invasive colorimetric sensing platform to identify hyperglycemia from saliva. We
designed plasmonic multibranched gold nanostructures, able to rapidly change their
shape and color (naked-eye detection) in the presence of hyperglycemic conditions. This
“reshaping approach” provides a fast visual response and high sensitivity, overcoming
common detection issues related to signal (color intensity) losses and bio-matrix
interferences. Notably, optimal performances of the assay were achieved in real
biological samples, where the biomolecular environment was found to play a key role.
Finally, we developed a dipstick prototype as a rapid home-testing kit.

Keywords: plasmonics, colorimetric sensors, hyperglycemia, gold nanoparticles, reshaping

INTRODUCTION

Point of care (POC) devices for self-monitoring of blood glucose are a life-changing technology
and nowadays a norm for diabetes control. However, commercially available devices generally
employ a relatively expensive hardware (reading system) and require a quite invasive sampling
process (finger-pricks) involving a certain physical discomfort, especially for patients necessitating
frequent measurements. It is worth mentioning that repeated finger-prick sampling also presents
some risk, due to possible exposure to blood-borne pathogens and infections (Thompson and
Perz, 2009). For these reasons, small implantable sensors have recently entered the clinical use
for chronic patients, and different non-invasive approaches, such as near-infrared transcutaneous
spectroscopy (Yadav et al., 2015), breath acetone measurements (Saasa et al., 2018), and other
optical and electrical/electrochemical sensing techniques, are currently under investigation in the
field (Bharathi and Nogami, 2001; Luo et al., 2004; Wu et al., 2007; Jv et al., 2010; Jiang et al., 2010;
Xiong et al., 2015; Xu et al., 2017; Cao et al., 2019; Shokrekhodaei and Quinones, 2020).

An interesting alternative currently attracting tremendous interest in the diagnostic community
is the use of saliva as biological source (Kaufman and Lamster, 2000; Zhang et al., 2016; Kim
et al., 2019; To et al., 2020). Saliva holds a huge variety of well-known disease-related biomarkers,
including glucose, representing an ideal medium for the development of non-invasive tools for
self-monitoring of hyperglycemia (Elkington et al., 2014; Zhang W. et al., 2015; Zhang et al.,
2016). Several studies showed good correlation between the glucose amount present in saliva
and in blood (Gupta et al., 2017). However, salivary glucose was found to be ca. 100 times less
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concentrated (Zhang W. et al., 2015). This requires the new
salivary POCs to gain a breakthrough in terms of sensitivity,
while maintaining rapidity, accuracy, and clear readout. A few
examples in this context have been recently reported (Elkington
et al., 2014), including pioneering works on wearable devices (de
Castro et al., 2019; Arakawa et al., 2020), yet many opportunities
in this field remain unexplored.

In this framework, for example, gold nanoparticles (GNPs)
present enormous potential for the development of a new
generation of highly sensitive sensors (Liu and Lu, 2003; Luo
et al., 2004; Pingarrón et al., 2008; Sperling et al., 2008; Zhang
et al., 2012; Valentini and Pompa, 2013, 2016; Howes et al.,
2014; Chen et al., 2016; Valentini et al., 2017; Qin et al.,
2018; Quesada-González and Merkoçi, 2018; Donati et al.,
2019; Hao et al., 2019; Loynachan et al., 2019; Quesada-
González et al., 2019), due to their unique size-, shape-, and
dispersion-state-dependent plasmonic properties, which can be
exploited for the realization of “naked-eye detection” assays
(Baron et al., 2005; Wang et al., 2006; Song et al., 2011;
Liu et al., 2012; Zhao et al., 2016; Donati et al., 2019; Lu
et al., 2019; Xu et al., 2019). Common colorimetric approaches
involve target-mediated GNP aggregation/assembly strategies or
growth/etching processes (Valentini et al., 2013; Rao et al., 2019).
The “aggregation approach” can be very fast and sensitive, but it
often requires precise NP functionalization to ensure selectivity.
In addition, in biological media, the “biomolecular corona” can
potentially mask the prepared functionality, often promoting
non-specific interactions (i.e., NP uncontrolled aggregation)
(Monopoli et al., 2012; Del Pino et al., 2014; Castagnola
et al., 2017). Generally, the “growth approach” also presents
some drawbacks in complex media, since the surrounding
proteins and metabolites could interact with the reagents
involved, while protein adsorption onto the GNPs can interfere
in the nanostructure growth (i.e., inhibiting the process or
even acting as shape directing agents) (Chakraborty et al.,
2018; Chakraborty and Parak, 2019). Nevertheless, some very
interesting examples are reported in the literature (Rodríguez-
Lorenzo et al., 2012). A more promising strategy is the
“etching approach” involving, in the case of glucose sensors,
the glucose oxidase (GOx) enzyme. GOx is able to react
specifically with glucose in complex media producing H2O2
that, via Fenton or Fenton-like reactions, transforms in the
free radical form able to rapidly oxidize (and partially dissolve)
the GNPs (Rao et al., 2019). A colorimetric assay for blood
glucose determination using this mechanism was explored on
gold nanorods and the color change was obtained following
the particle corrosion and shortening in presence of glucose
(Liu et al., 2013).

Here, to gain the high sensitivity necessary for rapid glucose
detection at salivary concentration, we developed a novel
strategy combining multibranched (spiky) GNPs, GOx, and
bromine (Br−) mediated particle reshaping, which allows for
a rapid color change without any optical density (OD) loss,
typically related to NP dissolution. Furthermore, we transferred
our sensing technology onto a substrate, obtaining a rapid
and highly sensitive colorimetric home-testing prototype for
self-monitoring of salivary glucose levels.

RESULTS

For simplicity, basic chemical aspects and optimizations of
the sensing platform were preliminarily explored in water
solvent and in absence of enzyme (Figure 1). A synthetic
procedure for highly responsive multibranched GNPs (MGNPs)
was optimized for the current strategy, slightly modifying
a previously reported method (Maiorano et al., 2011). The
prepared colloidal suspensions were fully characterized (see
Supplementary Material and Supplementary Figures S1, S2).
The MGNPs were monodisperse, presenting an average size of
about 60 nm. The selected stabilizing agent (Hepes) guaranteed
high NP reactivity and colloidal stability. Concerning the particle
shape, the tips represented the more sensitive units (where the
lowest energy plasmon mode is mainly localized) (Rodríguez-
Lorenzo et al., 2009), therefore the nanostructures were tuned
to obtain multiple short tips (average length of c.a. 8 nm) to
gain clear color distinction with minimal morphological changes
(i.e., through preferential tips gold oxidation). Since the spiky
structure is responsible of the MGNPs blue color, the NPs
gradually change to the characteristic red color when becoming
spherical (Kumar et al., 2007; Rodríguez-Lorenzo et al., 2011;
Potenza et al., 2017).

We first evaluated the MGNP responses to different pH
values (Supplementary Figure S3) and halogens (Figure 1B)
in presence or absence (negative control) of H2O2. At certain
conditions, H2O2 can itself oxidize GNP surface atoms, leading
to etching and morphological changes. However, this process has
low efficiency and normally occurs on a much larger timescale
(several hours) compared to our aimed few-minute response
(Tsung et al., 2006). Therefore, we evaluated the effect of three
different halogens (I−, Br−, and Cl−) potentially able, in acidic
conditions, to boost the oxidation process and promote a quick
color change (Yuan et al., 2015; Zhang Z. et al., 2015; Zhu et al.,
2015; Cheng et al., 2019).

As expected, in presence of H2O2 and Br− (2:1 molar ratio),
MGNPs presented faster LSPR blue-shift when lowering the
pH (see Supplementary Figure S3). Nevertheless, all tested
conditions showed a remarkable λmax shift within 10 min, and
pH = 5 was selected as the optimal condition for the enzyme
activity as well as NP stability (Supplementary Figure S3B).
Concerning the halogen ions tested, bromine resulted the best
candidate, promoting a fast (within 10 min) and wide LSPR shift
in presence of a relatively low H2O2 concentration (together
with a relatively small shift for the control), while iodine ions
led to drastic blue-shift, independently of H2O2 (Figure 1B).
No interesting effects were observed using chlorine ions for
this platform. In presence of Br− at established concentration,
increasing the amount of H2O2 led to faster morphological
changes (Figure 1C and Supplementary Figure S4), but at
high concentrations (≥10 mM) harsher etching involved also
some OD loss (see Supplementary Figure S5). However, within
the concentration range of interest (1–3 mM), irreversible
corrosion of the nanostructure was avoided (or very limited)
even on the long-term (see the plateau in Figures 1C,D),
while keeping relatively fast spectral changes. When carefully
dosing the MGNPs/Br−/H2O2 stoichiometry, we could achieve
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FIGURE 1 | Screening of the chemical conditions for the colorimetric assay. (A) Schematics of the reactions involved in the MGNP morphological changes in water.
(B) LSPR λmax evolution over time related to MGNP reaction with H2O2 (3 mM) in presence of optimized concentrations of different halogens (more info in
Supplementary Material). Control (Ctrl) performed in absence of H2O2. (C) LSPR λmax evolution of MGNPs exposed to Br− (5 mM) with increasing H2O2

concentration (1–30 mM). (D) Absorption spectra related to the MGNP reshaping process for optimized reaction conditions (see Supplementary Material). All
reactions were carried out at pH = 5.

a final absorbance as intense as the starting one (Figure 1D),
and an almost linear LSPR evolution pathway with minor
intensity differences. However, in water, the presented platform
has significant limitations, due to some uncontrolled etching
occurring in the control, with relatively small variations in the
reagents molar ratio.

Adapting this platform to real working conditions in saliva,
employing glucose spikes, GOx enzyme, and a large excess of
Br− (see scheme in Figure 2A) resulted in a strikingly better
performance than the previous one. The system was so stable
that we could employ much larger Br− concentration than in
water, without affecting the control. Proteins and metabolites
present in saliva can rapidly coat the MGNPs forming the so-
called biomolecular corona, which can act as an organic shield
protecting and stabilizing the surface atoms (see Supplementary
Figure S6). In particular, proteins (i.e., mucin) promote higher
colloidal stability limiting the surface availability by steric

hindrance, while salivary thiols (i.e., cysteine, glutathione and
others) can act as surface ligands (Yang et al., 2007; Boselli et al.,
2017). These factors together firmly preserve the MGNP shape
even in presence of a large excess of Br− that otherwise would
lead to uncontrolled fast etching and immediate color change
even in absence of glucose. Indeed, the saliva medium allowed for
a significant extension of the dynamic range of the assay along
with a faster response, meaning that resolution and sensitivity
were also strongly improved (see Figure 2B). Analyzing the
physiological control (no added glucose), no significant spectral
changes were observed, indicating a better resolution of the
nanosensor in saliva compared to non-biological media (see
Figures 1B, 2A,B). This is a key point since it excludes the
possibility of false positives, due to spontaneous color changes
of the MGNPs in the test timeframe (10–20 min); furthermore,
it guarantees a faster naked-eye recognizable color distinction,
due exclusively to the glucose present in saliva. The presence
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FIGURE 2 | In vitro colorimetric assay using MGNPs suspended in saliva: (A) schematics of the mechanisms involved; (B) LSPR 1λmax evolution over time related
to the reshaping in saliva and in water (the two model platforms performance are compared at their own Br− optimized conditions while involving the same particles
number, and H2O2 final concentration, 2 mM). TEM micrographs related to the MGNPs before (C) and after (D) the assay with non-supplemented saliva (blue) and
with glucose supplement to simulate hyperglycemia condition (red). (E) Statistical TEM analysis measuring tips (numbers and lengths) and “core” dimensional
variation between control and sample nanostructures (p < 0.001 in all cases). Statistical significance was determined by Mann-Whitney test (***p < 0.001). See
experimental details in Supplementary Material.
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of non-physiological glucose concentrations in saliva (≥2 mM),
reproducing hyperglycemia conditions, indeed promoted a fast
spectral change with a large blue-shift of the LSPR λmax, and no
significant OD loss (Supplementary Figure S7).

The molecular mechanism underlying the sensing strategy
can be divided in two phases, one involving the oxidant species
production and a second in which such species trigger a series
of reactions, leading to MGNP morphological changes. The
first part is quite well-known, at least in its separate steps: the
glucose/GOx-generated H2O2 reacts with the Br− present in
stoichiometric excess (even if part of it might be sequestrated by
saliva components), producing Br2, Br3

− and HBrO (the latter
eventually converting to Br2) (Yuan et al., 2015; Zhu et al., 2015).

In the second phase, the bromine oxidant species can
interact with MGNPs through multiple pathways: beyond direct
gold surface oxidation, the reaction mechanism responsible for
the reshaping process is likely to involve the biomolecular
corona (including salivary proteins and thiols). It may be
envisaged that the surface atoms of the MGNP tips are less
protected by the protein layer, thus being more prone to
oxidation than the particle core. The structural changes are
also promoted by oxidation of the salivary thiol ligands by
Br2 (Wu et al., 1996), leading to an unanchored surface (with
high tension) that can immediately start rearranging. This
reshaping process is probably additionally boosted by the Br−
excess coordination (Jang et al., 2012). Furthermore, a series of
gold oxidation/reduction reactions (promoted by Br2 and R-SH

species, respectively) can also promote gold atoms migration
from surface convexity to the concavity (from higher to lower
surface potential), leading to the more thermodynamically stable
spherical shape (Xia et al., 2009). In this case, R-SH species would
play a double role, protecting the shape in absence of glucose but
also supporting the reshaping (instead of the etching) in presence
of hyperglycemic conditions.

The reshaping process in saliva was also analyzed by TEM
(Figures 2C–E and Supplementary Figure S8), confirming no
significant differences in the morphology of MGNP control
(in absence of glucose supplement) with respect to primary
particles, while an evident smoothening of the nanostructure
surface was observed in hyperglycemic conditions, obtaining
quasi-spherical GNP shape. Furthermore, statistical geometrical
measurements (Figure 2E) showed a final size distribution
compatible with a redistribution of the MGNP gold atoms
onto the surface concavities, with a negligible loss of the
metal atoms. The “core size” increase of the nanostructure,
indeed, can be considered as another evidence in favor of gold
atoms rearrangement process and particle reshaping, against
irreversible “MGNPs dissolution” (see Figures 2C,E). The
described results demonstrated that we were able to achieve
sensitive glucose detection without losing the optical signal (color
intensity), which is a significant technological advancement,
especially aiming at “naked-eye” detection.

In order to realize a portable home-testing device prototype,
the sensing platform was transferred onto a solid substrate.

FIGURE 3 | Glucose colorimetric assay prototype for home-testing of saliva samples. (A) Schematics of the assay. The blue color of the membrane (due to the
MGNPs on its surface) changes to pink/red if the saliva sample presents hyperglycemic conditions. (B) Colorimetric assay applied to human saliva (ctrl) and to
human saliva supplemented with glucose at the concentration of 15 mg/dL (0.8 mM, S1) and 30 mg/dL (1.6 mM, S2). (C) Reflectance spectra of the membrane
substrates, related to ctrl and S2 (picture in inset), showing a clear blue-shift (from λ = 600–550 nm). HR-SEM micrographs of (D) ctrl assay (blue) and (E) sample S2
(red) assay (scale bars: 100 nm).
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Among the different materials tested (including cellulose
acetate, nitrocellulose, PVDF), a porous nylon membrane was
selected, presenting well structured (ordered) surface and a
good balance between wettability and hydrophobicity (see
Supplementary Figure S9), enabling stable adsorption of
MGNPs. By placing the membrane in a syringe filter holder,
we could homogeneously immobilize a reproducible particle
amount in a few seconds by simple injection. Additionally,
few microlitres of the enzyme were also deposited to have
all the reagents, otherwise suffering for long-term stability,
dryed on the substrate, and ready for the analysis (see
Supplementary Material).

The use of a solid substrate, led to a significant improvement
of the reagents stability. While colloidal dispersions of MGNPs
in water lose their morphological and plasmonic properties
overtime, the on-substrate assay showed excellent stability up
to 6 months, meaning that also the enzyme functionality was
maintained (see Supplementary Figure S10). An additional
advantage is that, even after glucose testing, the “test strip” could
be stored, keeping the outcome unaltered for ≥6 months.

Saliva samples were tested with this dipstick-like colorimetric
assay prototype as depicted in the schematics reported in
Figure 3A. A small amount (20 µL) of glucose supplemented
saliva (with glucose above physiological concentrations) was
sufficient to trigger a rapid color change from blue to red
(Figure 3B) within 5–15 min, depending on the glucose

concentration. Further controls related to the assay are reported
in Supplementary Figure S11.

After assessing hyperglycemic saliva and non-supplemented
saliva (control), the substrates were analyzed by using reflectance
spectroscopy (Figure 3C) and scanning electron microscopy
(SEM, Figures 3D,E). From the reflectance spectra, glucose
supplemented saliva appeared to be ca. 50 nm blue-shifted
compared to the control (consistent with the data observed
in suspension), with the curves minima corresponding to
the particles LSPR. From SEM imaging, we could observe
the nanostructure morphology directly on the membrane,
confirming the reshaping process also on the substrate, with
spherical GNPs on the test membrane after exposure to
hyperglycemic saliva.

The assay prototype was finally optimized for analysis on real
samples, considering that physiological glucose concentration
in saliva is commonly <2 mg/dL (<130 mg/dL in human
serum) while it is≥4 mg/dL for hyperglycemic condition (≥160–
200 mg/dL in human serum) (Abikshyeet et al., 2012). It is
important to stress that the correlation between hematic and
salivary glucose is not based on a constant ratio over the whole
range of concentrations (Abikshyeet et al., 2012).

For this reason, aiming at an ON/OFF response as an alarm
bell for healthcare, we set our threshold about ≥4 ± 0.5 mg/dL.
For salivary glucose concentrations above this range values, the
assay must produce an evident color change.

FIGURE 4 | Assay performance analysis in real saliva samples. (A) Validation of the RGB-based readout. Six saliva samples were involved in this study (the average
of two experimental replicates is reported). Besides the basal glucose concentration, all samples were normalized through glucose spike at 2.5, 4, and 6 mg/dL, the
RGB coordinates values were measured at t = 0 and 15 min with a smartphone app (ColorGrab), and the 1RGB was calculated. Statistical significance was
determined using a one-way ANOVA and Tukey’s multiple comparison test (****P < 0.0001). A representative image of the assay at the four different concentrations
is reported in the inset. (B) Assay results for clinical saliva samples from both diabetic subjects (donors 1–12) and healthy subjects (donor 13–20). The “ON” outcome
(red dots) refers to 1RGB ≥ 30 ± 10.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 December 2020 | Volume 8 | Article 601216

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-601216 December 4, 2020 Time: 11:28 # 7

Donati et al. Nano-Colorimetric Salivary Test for Hyperglycemia

To numerically estimate the colorimetric changes of our
device and perform statistical data analysis, RGB coordinates
of the substrate were acquired using a smartphone app (see
Supplementary Material).

A proof-of-concept experiment was performed measuring
multiple saliva samples from different healthy donors with the
addition of increasing concentrations of glucose from basal
physiological values (<2 mg/dL) to hyperglycemic ones (4 and
6 mg/dL). A significant difference in the color variation was
observed between physiological and hyperglycemic conditions by
both naked-eye and RGB analysis, identifying our colorimetric
threshold as 1RGB ≥ 30± 10 (see Figure 4).

1RGB values were also employed to measure the limit
of detection (LOD). In this context, the assay performances
were very good and reproducible using different independently
produced devices to analyze the same saliva sample from a donor,
reaching a LOD of 0.4 mg/dL (see Supplementary Figure S12),
in line with the best performing glucose colorimetric sensors
reported (Gabriel et al., 2016; de Castro et al., 2019). However,
some variability on the LOD values was expected when analyzing
saliva samples from multiple different donors (presenting some
difference in the composition), resulting in a more representative
average value of 1.4 mg/dL (see Supplementary Material).
Such LOD value is still appropriate for our ON/OFF detection,
allowing to cope with the intrinsic biological variability or real
clinical samples.

Further validation of the assay prototype was performed
through a small clinical study involving twenty different saliva
samples, 12 from diabetic subjects and 8 from healthy subjects
(see Figure 4B). The analysis was carried out using in parallel
a commercial high-sensitive glucose kit (as standard reference
technique) and our device. We observed good reliability of our
rapid test (95%) from this screening, attesting concrete potential
for future applications.

DISCUSSION

The nanoscale architecture of MGNPs and their sensitive
plasmonic features were exploited for the development of a
novel colorimetric assay for hyperglycemia, demonstrated to
be effective in real saliva samples. Interestingly, the sensing
platform, when operating in salivary medium, showed improved
solidity and better dynamic range than in water, suggesting a
proactive role of the biomolecular corona both in stabilizing
the nanosensor and in promoting the reshaping process (instead
of etching). The technological transfer from solution to the
solid substrate finally led to the realization of a dipstick-like
prototype for non-invasive self-monitoring of glycemia. The
assay was finally validated as a rapid test (15 min) on various

clinical samples, showing good reliability and, with further
technological development, great potential for future home-
testing applications. Overall, it is important to stress that
the designed sensing platform could be easily adapted for
the monitoring of several other pathologies, directly involving
different oxidase enzymes.
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