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Abstract
Farmland birds are among the most threatened bird species in Europe, largely as a re-
sult of agricultural intensification which has driven widespread biodiversity losses. 
Breeding waders associated with grassland and arable habitats are particularly vulner-
able and a frequent focus of agri‐environment schemes (AES) designed to halt and re-
verse population declines. We review existing literature, providing a quantitative 
assessment of the effectiveness of policy and management interventions used 
throughout Europe to improve population and demographic metrics of grassland‐
breeding waders. Targeted AES and site protection measures were more likely to be 
effective than less targeted AES and were ten times more likely to be effective than 
would be expected by chance, particularly for population trend and productivity met-
rics. Positive effects of AES and site protection did not appear synergistic. Management 
interventions which had the greatest chance of increasing population growth or pro-
ductivity included modification of mowing regimes, increasing wet conditions, and the 
use of nest protection. Success rates varied according to the species and metric being 
evaluated. None of the policy or management interventions we evaluated were associ-
ated with a significant risk of negative impacts on breeding waders. Our findings sup-
port the use of agri‐environment schemes, site protection, and management measures 
for grassland‐breeding wader conservation in Europe. Due to publication bias, our 
findings are most applicable to intensively managed agricultural landscapes. More 
studies are needed to identify measures that increase chick survival. Despite broadly 
effective conservation measures already in use, grassland‐breeding waders in Europe 
continue to decline. More research is needed to improve the likelihood and magnitude 
of positive outcomes, coupled with wider implementation of effective measures to 
substantially increase favorable land management for these species.
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1  | INTRODUC TION

Farmland birds are declining across Europe (BirdLife International 
2015; Donald, Green, & Heath, 2001), a pattern matched by other as-
pects of biodiversity (Pe’er et al., 2014) leading to long‐term declines 
in once common and dominant species across the continent (Inger 
et al., 2015). Declines have primarily been attributed to changes 
in land management, including both intensification of agriculture 
and land abandonment (Chamberlain, Fuller, Bunce, Duckworth, & 
Shrubb, 2000; Donald, Sanderson, Burfield, & van Bommel, 2006), 
as well as to associated practices such as the application of pesti-
cides and herbicides, changes in cropping patterns and type, and 
natural system modifications including hydrological changes to favor 
agricultural production (Chamberlain & Fuller, 2000; Flohre et al., 
2011). This combination of factors has reduced ecological heteroge-
neity and also food resources for wildlife at critical times of the year 
(Benton, Vickery, & Wilson, 2003; Burns et al., 2016; Chamberlain 
et al., 2000).

Agricultural intensification was largely driven by the EU’s 
Common Agricultural Policy (CAP). The ensuing negative impacts of 
intensification on biodiversity have led to several major CAP reforms 
and the development of agri‐environment schemes (AES) which 
pay farmers for land management that benefits biodiversity; how-
ever, solutions to halt or reverse biodiversity declines have thus far 
proved inadequate (Donald, Pisano, Rayment, & Pain, 2002; Donald 
et al., 2006; Pe’er et al., 2014).

Throughout Europe, birds associated with grasslands and agricul-
tural habitats comprise the highest proportion of threatened species 
(23%; BirdLife International 2015). Grassland‐breeding waders are 
especially sensitive and include Eurasian oystercatcher Haematopus 
ostralegus, northern lapwing Vanellus vanellus, black‐tailed godwit 
Limosa limosa, Eurasian curlew Numenius arquata, common redshank 
Tringa totanus, ruff Calidris pugnax, the Baltic‐breeding population of 
dunlin Calidris alpina schinzii, and common snipe Gallinago gallinago. 
Since the early 1980s, these species have shown rapid population 
declines throughout Europe (European Bird Census Council 2015): 
four are classified as “vulnerable” (oystercatcher, lapwing, redshank, 
and curlew) and two as endangered (black‐tailed godwit and ruff) on 
the red list of the EU27 (BirdLife International 2015), four (oyster-
catcher, lapwing, black‐tailed godwit, and curlew) are listed as “near 
threatened” on the global IUCN red list (IUCN 2015), while Baltic 
dunlin is one of the most vulnerable wader populations in Europe 
(Thorup, 2006). Despite these conservation concerns, only ruff and 
Baltic dunlin feature on the EU Birds Directive Annex l list of threat-
ened species, while all except dunlin can be hunted under certain 
restrictions. None are priorities for funding under the EU’s LIFE pro-
gram (European Commission 2014).

A likely demographic driver of population declines is low pro-
ductivity (Roodbergen, van der Werf, & Hoetker, 2012) due to a 
combination of: (a) earlier cropping, mowing, and grazing dates 
with agricultural intensification and climate change (Kleijn et al., 
2010) resulting in destruction of eggs and chicks by agricultural ma-
chinery and livestock (e.g., Kruk, Noordervliet, & terKeurs, 1997); 

(b) reduced food quality and/or availability in intensively managed 
grassland monocultures or as a result of large‐scale drainage, re-
sulting in poorer chick growth and/or survival (Kentie, Hooijmeijer, 
Trimbos, Groen, & Piersma, 2013; Schekkerman & Beintema, 2007); 
and (c) increased predation of eggs and chicks due to high preda-
tor densities, combined with greater susceptibility to predation in 
degraded breeding habitat (Bolton, Tyler, Smith, & Bamford, 2007; 
Kentie, Both, Hooijmeijer, & Piersma, 2015; Roos, Smart, Gibbons, 
& Wilson, 2018; Schekkerman, Teunissen, & Oosterveld, 2009; 
Teunissen, Schekkerman, Willems, & Majoor, 2008).

Considerable efforts have been made in some countries to con-
serve grassland‐breeding birds (Kleijn & Sutherland, 2003). Although 
some local projects have been successful (e.g., Peach, Lovett, 
Wotton, & Jeffs, 2001; Perkins, Maggs, Watson, & Wilson, 2011), 
declines continue at a national and European scale. Numerous stud-
ies have evaluated the success of conservation measures at various 
scales (e.g., Breeuwer et al., 2009; Kleijn, Berendse, Smit, & Gilissen, 
2001; Kleijn & Sutherland, 2003; O’Brien & Wilson, 2011; Smart 
et al., 2014; Walker et al., 2018), but Europe‐wide evaluations of 
both AES and underlying conservation management measures are 
largely lacking.

Large‐scale conservation action requires: (a) the effective use of 
policy instruments to facilitate positive change and (b) the adoption 
of meaningful management interventions (Vickery & Tayleur, 2018). 
Within Europe, the EU Birds Directive, Common Agricultural Policy, 
and associated national legislation provide key policy mechanisms 
to support the establishment of Special Protected Areas (SPAs) and 
agri‐environment schemes for bird conservation, while a range of 
different management interventions may be deployed at sites to ad-
dress threats or facilitate population recovery. Here, we review and 
quantitatively assess the effectiveness of both policy and manage-
ment interventions that have been used throughout Europe in an 
attempt to improve breeding conditions for grassland‐breeding wad-
ers and to halt declines and/or restore populations. By quantitatively 
assessing these broad policy mechanisms, we provide much‐needed 
evidence about their overall effectiveness. This is particularly rele-
vant at a time of significant political change in the UK and ongoing 
policy reform in Europe. By evaluating the effectiveness of more 
specific management interventions, we test the extent to which par-
ticular measures are more or less likely to be successful, and under 
which circumstances, in order to inform future management pre-
scriptions for grassland‐breeding waders.

2  | METHODS

2.1 | Literature review

A systematic review of the primary scientific literature was con-
ducted using ISI Web of Knowledge. Keyword search and logic 
terms were selected to identify studies on the relevant species 
dealing with conservation management approaches and outcomes 
(Supporting Information Appendix S1). This search generated 4,897 
results which were then screened by title, abstract, and content (SF 
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and AC), resulting in a final set of 58 studies and 481 records (lines of 
data). Qualifying studies had to evaluate the impact of management 
interventions on the relevant species during the breeding season in 
Europe, in relation to measures of abundance, occupancy, changes 
in these metrics, survival, or reproductive success. In addition to 
the primary scientific literature, MR identified 16 relevant gray lit-
erature studies which contributed a further 107 records (Supporting 
Information Appendix S2).

2.2 | Data extraction and synthesis

SF (primary literature) and MR (gray literature) constructed the ana-
lytical dataset, extracting data for each study. Each record in the 
dataset included study “meta‐data” information (e.g., location) and 
variables to be included in subsequent analyses, including analytical 
information from each study (e.g., sample size), the species evalu-
ated, and key data on the range of interventions evaluated and their 
effect on the population and/or demographic metric(s) measured 
(Supporting Information Appendix S3; Table S2). Where a study 
tested the effect of interventions on multiple metrics and/or species 
simultaneously, we extracted each metric and species combination 
as a separate record (Supporting Information Appendix S3). We ex-
cluded records for ruff from the analysis as the number of records (2) 
was too small for meaningful inclusion.

2.2.1 | Interventions

We simplified our assessment of interventions by categorizing them 
into eight broad classes (Supporting Information Table S2): two 
address policy mechanisms: AES and site protection; six test man-
agement interventions: mowing, grazing, agrochemicals (fertilizer, 
herbicides, or pesticides), water management (both groundwater and 
surface water), nest protection (either from agricultural activities or 
predation; Supporting Information Appendix S3), predator control. 
Management measures are often used individually or in combination 
and may form the basis by which AES are implemented or protected 
areas are managed (Supporting Information Figure S1). For this rea-
son, policy and management interventions are analyzed separately.

While interventions on the ground may be heterogeneous in 
their approaches (Supporting Information Table S2), they are simpli-
fied for the purposes of our analysis. Agri‐environment schemes and 
their component management measures can vary substantially by 
country, so we simplified our further classification of scheme type 
into two broad categories: “higher‐level” schemes available in certain 
countries (e.g., UK, the Netherlands) targeted at achieving outcomes 
for waders specifically, and “basic” schemes, which included generic 
“biodiversity‐friendly” interventions not targeted at particular spe-
cies. For simplicity and to deal with model convergence problems, 
we did not distinguish between different types of site protection, 
such as local nature reserves, national (e.g., Site of Special Scientific 
Interest in the UK), or international (e.g., Natura 2000) designations. 
However, we acknowledge that there may, in some cases, be an as-
sociation between certain forms of site protection and the use or 

prohibition of particular management interventions. For each in-
tervention, we determined whether it was (a) not evaluated by the 
study; (b) applied, if the study evaluated the effect of applying or 
increasing the intervention above the baseline reference level; or (c) 
reduced, if the study evaluated the effect of removing or decreas-
ing the intervention below the baseline reference level (Supporting 
Information Table S2). SF and MR cross‐checked a subset of records 
to ensure consistency in classification.

2.2.2 | Population and demographic metrics

Studies evaluated the effects of one or more interventions on: abun-
dance, abundance change, occupancy, occupancy change, adult 
survival, or productivity (nest survival, chick survival, fledglings per 
pair, and recruitment). For simplicity and to resolve model conver-
gence problems, we pooled metrics into three categories: count 
(abundance/occupancy), trend (abundance/occupancy change), and 
productivity (nest/chick survival and fledglings per pair). There were 
too few studies evaluating survival or recruitment for these metrics 
to be included in the analysis. Because of likely spatial bias in the 
deployment of interventions, such that they are targeted at wader 
“hotspots” of occurrence and/or abundance (Kleijn & Sutherland, 
2003), we tested for interactions between intervention success and 
metric category. We specifically focused on intervention success in 
relation to trend and productivity metrics when interpreting the re-
sults. These metrics are more likely to reflect the effectiveness of in-
terventions, as opposed to count metrics, which may be particularly 
affected by interventions being targeted toward locations with high 
densities of breeding waders.

2.2.3 | Effect size

Where possible, we extracted the effect size of the metric in re-
sponse to interventions (Supporting Information Appendix S3). 
However, due to having a limited number of suitable studies in each 
intervention category and a lack of common reporting metrics across 
studies, we cannot provide a formal estimate of pooled effect size 
using meta‐analysis approaches which incorporate uncertainty and 
study sample size and biases (Koricheva, Gurevitch, & Mengersen, 
2013). Instead, to inform the reader about the potential magnitude of 
effect associated with different interventions, we provide the effect 
size range for each intervention (Supporting Information Table S3).

2.3 | Statistical analysis

We used the probability of intervention success or failure as the main 
metric to assess the effectiveness of interventions. This was modeled 
using generalized linear mixed‐effects models (GLMMs) with a bino-
mial error distribution and a logit link function (Supporting Information 
Table S4). All models were fitted using glmer in the lme4 package in R 
(Bates et al., 2014; R Core Team 2015) unless specified otherwise.

In three separate analyses, we modeled success rate for (a) 
individual interventions overall (both policy and management 
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interventions); (b) variation in individual interventions between spe-
cies and metric categories; and (c) interventions applied in combi-
nation. Because of its low frequency of occurrence, failure rate was 
modeled only for individual interventions overall.

2.3.1 | Response variables

For the analysis of intervention success, we classified an intervention 
outcome as successful if there was a statistically significant, positive 
impact on a metric (1), or as unsuccessful if there was a non‐signifi-
cant or significant, negative impact (0, Supporting Information Table 
S2). For the analysis of intervention failure, we classified failures as 
significant, negative outcomes (1), in contrast to non‐significant or 
positive impact interventions (0). We considered an intervention to 
have a measurable impact if the predicted probability of success (suc-
cess rate) or failure (failure rate) across studies differed significantly 
from the expectation that the same outcome could occur by chance, 
based on the p = 0.05 threshold for significance of the underlying 
studies. If the modeled 95% confidence intervals on the success (or 
failure) rate did not overlap 5%, this indicated an intervention that 
succeeded (or failed) more often than expected by chance, which we 
regarded as an indicator of effectiveness.

2.3.2 | Evaluating the importance of 
confounding covariates

The probability of success or failure could vary with potentially 
confounding covariates which we were not expressly interested in: 
study duration, the analytical approach used, sample size, litera-
ture type, study quality, and metric bias (Supporting Information 
Table S2). Hence, we first modeled whether any of these covari-
ates affected success rate. Literature type was the only signifi-
cant covariate when applying single‐term deletion and likelihood 
ratio tests to a global GLMM of potential confounding variables 
(Supporting Information Table S5). Primary literature studies had a 
lower success rate than gray literature studies. However, including 
literature type as a fixed effect in subsequent models created con-
vergence problems, so we included study as a random intercept 
term in all models to account for at least some of the variance at-
tributable to literature type.

Evaluating overall success and failure rates of individual 
interventions
We first modeled overall success rate of individual interventions in 
nine separate models (Analysis 1a, Supporting Information Table 
S4). For each intervention, we filtered the data to use only those 
records where the focal intervention was evaluated. If the filtered 
dataset included only records with a single level of the interven-
tion (e.g., only records where the intervention was applied and 
none where it was reduced), success (πi) was fitted in an inter-
cept‐only model with both study (a1) and species (a2) as random 
intercepts:

If the dataset included two levels of the intervention (e.g., graz-
ing applied and reduced), success was fitted against the intervention 
covariate:

We modeled overall failure rates of individual interventions in 
eight separate models as above (Analysis 1b; Supporting Information 
Table S4; we were unable to model the probability of failure of pred-
ator control due to unsolvable convergence issues).

Evaluating species‐ and metric‐specific responses
Next, we modeled individual intervention success as above, but 
added either a species (Analysis 2a) or a metric (Analysis 2b) co-
variate to each of the nine models to examine differences in suc-
cess between species and the population or demographic metric 
evaluated (Supporting Information Table S4). Models were fitted 
as either:

for interventions with only a single level, or as:

for interventions with two levels. To solve problems with model 
convergence as a result of complete or quasi‐complete separation 
and/or singularities, we (a) refitted some models with a reduced 
dataset to exclude categories with too few observations and (b) ap-
plied a Bayesian framework to model fitting using bglmer in the blme 
package, which applies a weak prior to the fixed effect parameters 
(Supporting Information Table S4; Dorie, 2015).

There were insufficient failures to examine variation in the like-
lihood of failed interventions between species or metrics. Due to 
the limited sample size, we were also unable to examine whether 
metric‐specific responses varied between species.

Evaluating interventions applied in combination
While the above analyses assessed the effectiveness of interven-
tions individually, in many cases, the focal intervention is applied 
alongside others, which may result in an overestimate of the effec-
tiveness of the focal intervention if (a) success rate is attributable 
to the combined suite or to one of the other interventions in the 
suite and (b) a study did not control for the combined application 
of interventions using a multivariate framework. Consequently, we 
also modeled intervention effectiveness in combination (Analysis 
3a). We explicitly sought to examine the combined effectiveness of 
policy mechanisms separately from management interventions, be-
cause the two are intrinsically linked (AES success will be a function 
of the managements adopted), and because some studies evaluated 
policy measures without considering the underlying management 
interventions.

First, we examined the success rate of AES and site protection 
in combination, while controlling for species as a fixed covariate 

logit(�i)=�+a1i+a2i+�i

logit(�i)=�+�1× Interventioni+a1i+a2i+�i

logit(�i)=�+�1× (Species orMetric)i+a1i+�i

logit(�i)= �+�1× (Species orMetric)i+�2× Interventioni

+�3× (Species orMetric)i ∗ Interventioni+a1i+�i
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and study (a1) as a random intercept. We filtered the dataset to in-
clude only records where these interventions were evaluated and 
then combined the three different possible combinations of AES 
and site protection as levels of a single categorical variable (Policy 
Mechanism variable levels: AES + no site protection; no AES + site 
protection; AES + site protection) and modeled success rate as:

Secondly, we modeled the success rate of management interven-
tions applied in combination (Analysis 3b) as:

where the significance of each intervention was tested using 
single‐term deletion and likelihood ratio tests. We were unable to 
model the interactive effects between interventions and species, 
or between interventions and metric category, due to sample size 
limitations. We ranked unique intervention combinations according 
to their model‐predicted probability of success to evaluate whether 
using more interventions in combination tended to result in higher 
success rates.

3  | RESULTS

3.1 | Literature review summary

Published studies were heavily biased toward the UK and the 
Netherlands (45% and 26% of studies, respectively, see Supporting 
Information Figure S2). Agri‐environment schemes were the most 
studied intervention (42% of studies, Supporting Information Figure 
S3), while lapwing was the most commonly studied species (73% of 
studies, Supporting Information Figure S4). Productivity was the 
most frequently evaluated metric in relation to conservation inter-
ventions (50% of studies, Supporting Information Figure S5), closely 
followed by abundance and occupancy (49%) and abundance and oc-
cupancy change (30%).

3.1.1 | Evaluating overall success and failure rates of 
individual interventions

The predicted probability of success of AES (Figure 1a) and site 
protection were six and ten times more likely than expected by 
chance to be associated with a positive outcome for breeding wad-
ers. Higher‐level AES (Figure 1b) had a higher probability of success 
than basic‐level AES. Apart from applying mowing, applying agro-
chemicals, reducing wet conditions, and applying predator control, 
most management interventions were found to be associated with 
a fourfold to eightfold greater probability of a successful outcome 
than expected by chance (Figure 1c, Supporting Information Table 
S6). Applying mowing or grazing and reducing wet conditions tended 
to have the highest probabilities of failure, though in no cases were 
these significantly greater than expected by chance (Supporting 
Information Figure S6, Table S6).

3.1.2 | Evaluating species‐ and metric‐
specific responses

Agri‐environment schemes, particularly higher‐level AES, were most 
likely to be successful for black‐tailed godwit, lapwing, redshank, 
and snipe (Figure 2a,b, Supporting Information Table S6). Only for 
oystercatcher and curlew did AES fail to increase the probability of 
success from random. Site protection was likely to be effective for 
all species apart from curlew. Reduced mowing was most likely to 
succeed for black‐tailed godwit and lapwing (Figure 2c, Supporting 
Information Table S6). Applying grazing was most likely to be suc-
cessful for black‐tailed godwit, lapwing, oystercatcher, and red-
shank, while both reduced grazing and reduced agrochemical use 
were most likely to succeed for black‐tailed godwit and lapwing. 
Both nest protection and increasing wet conditions were most likely 
to be successful for black‐tailed godwit, lapwing, and redshank. 
Applying predator control did not result in a greater likelihood of 
success than expected by chance for either curlew or lapwing, the 
only two species evaluated.

When evaluating the probability of intervention success ac-
cording to metric, wader productivity was most likely to respond 
positively to AES, with a greater than 50% probability of a positive 
impact. Wader population change was most likely to respond posi-
tively to site protection, with a 60% chance of positive abundance or 
occupancy change through time. Wader population trends and pro-
ductivity were most likely to respond positively to higher‐level AES 
interventions, and positive outcomes tended to be more likely for 
both of these metrics under higher‐level AES as compared to basic‐
level AES (Figure 3a,b, Supporting Information Table S6).

When evaluating management interventions, applying mow-
ing was most likely to positively impact trend metrics (Figure 3c, 
Supporting Information Table S6), while reductions in mowing were 
most likely to increase productivity, in both cases with a more than 
50% mean probability of success. The effects of manipulating graz-
ing were most apparent when evaluating variation in count met-
rics, but with a lower rate of success. While reducing the input of 
agrochemicals had a high probability of increasing both count and 
productivity metrics, there was a high level of uncertainty associ-
ated with this intervention. Increasing wet conditions was associ-
ated with significantly more positive count and productivity metrics 
about 40% of the time, while nest protection was most likely to pos-
itively influence both productivity and trend metrics with a similar 
frequency of success. Applying predator control did not result in 
a greater likelihood of success than expected by chance for either 
trend or productivity metrics.

3.1.3 | Evaluating interventions applied in 
combination

There was no evidence that AES and site protection in combination 
provided any greater likelihood of success over AES (Tukey contrast, 
p = 1.0) or site protection (p = 0.31) alone (Figure 4). We found no 
indication that success rate depends on one single management 

logit(�i)=�+�1PolicyMechanism+�2×Speciesi+a1i+�i

logit(�i)=�+�1×mowingi+�2×grazingi+�3×agrochemicalsi+�4×wateri+�5

×nest protectioni+�6×predator controli+�7×Speciesi+a1i+�i
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intervention when multiple interventions were applied in combina-
tion (Supporting Information Table S7), and the probability of success 
did not appear to be related to the number of interventions used in 
combination (Supporting Information Figure S7). While the uncer-
tainty of the likelihood of success increased for all interventions 
in comparison with Analysis 1, only the effectiveness of predator 
control was notably affected when controlling for other interven-
tions, with a greater likelihood of success than expected by chance, 
in contrast to Analysis 1 (Figure 5, Supporting Information Table S6).

4  | DISCUSSION

Our assessment of policy mechanisms and management interven-
tions aimed at conserving European grassland‐breeding waders 
found evidence supporting the positive impacts of agri‐environment 

schemes and site protection, as well as a range of broad manage-
ment interventions. Although the literature was largely biased to-
ward studies in Western Europe, our review nevertheless provides 
one of the most comprehensive assessments of the effectiveness 
of wader conservation measures in European intensive agricultural 
landscapes to date, and importantly indicates that interventions as 
currently applied are unlikely to negatively impact breeding wader 
communities.

4.1 | The success of policy interventions

Current evidence supporting the positive conservation impacts of 
AES is mixed (e.g., Perkins et al., 2011; Baker, Freeman, Grice, & 
Siriwardena, 2012; but see Verhulst, Kleijn, & Berendse, 2007; Davey 
et al., 2010), with broader assessments of these schemes delivering 
largely equivocal results (e.g., Batary, Dicks, Kleijn, & Sutherland, 

F I G U R E  1  The predicted probability (mean ± 95% confidence interval) that an intervention will result in a successful outcome for (a) AES 
and site protection; (b) basic‐ vs. higher‐level AES; and (c) management interventions. The dotted horizontal line represents the threshold at 
which we would expect success by random chance, at a significance level of p = 0.05. Solid vertical lines separate probabilities predicted by 
different models, while dotted vertical lines separate intervention levels
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2015; Kleijn & Sutherland, 2003; Scheper et al., 2013). Although 
our analyses of overall probability of success and species‐level suc-
cess are potentially confounded by schemes being targeted at areas 
with already high wader densities, we explicitly test for differences 
between count, trend, and productivity metrics to reduce the likely 
impact of this “spatial bias” problem on our inferences, with trend 
and productivity metrics more likely to reflect genuine biological re-
sponses to interventions. Our review identifies positive outcomes 
for wader population trends and productivity associated with the 
use of AES, especially the use of targeted schemes, providing evi-
dence that the Europe‐wide investment in AES (Batary et al., 2015) 
can indeed benefit breeding waders.

Our findings also support the effectiveness of site protection, 
for example, through the EU’s Natura 2000 network (Donald et al., 
2007; Pe’er et al., 2014), with positive outcomes being especially 
frequent for wader population trends. Although we did not identify 
a synergistic or additive effect of both AES and site protection in 
our analysis, there is evidence that this can happen in some circum-
stances (Smart et al., 2014).

While AES and site protection are therefore likely to be effec-
tive, broad policy tools for wader conservation, the extent of their 
success at improving breeding conditions will depend on underlying 

management interventions, the range of species, and habitat con-
ditions at a site, and the scale at which these tools are applied. 
Protected sites with multiple breeding species will likely require a 
range of management measures targeted toward the differing re-
quirements of individual species; similarly, the effectiveness of AES 
will depend on applying schemes at a sufficiently broad scale and 
including a range of prescriptions which can be suitably tailored to 
local conditions. As such, a “one‐size‐fits‐all” approach to either pol-
icy tool is unlikely to provide the conservation benefit that could be 
achieved through a more flexible, outcomes‐driven, evidence‐based 
approach (e.g., Perkins et al., 2011).

4.2 | The success of management interventions

Broadly speaking, our assessment indicates that conservation 
management can produce positive impacts for breeding waders. 
However, the most effective use of particular interventions requires 
considering their specific timing, duration, and intensity and the 
characteristics of the particular site or habitat. For example, due to 
contrasting habitat requirements, intervention responses may vary 
between species breeding at the same site (e.g., Buchanan, Pearce‐
Higgins, Douglas, & Grant, 2017) and may have contrasting impacts 

F I G U R E  2  The species‐specific predicted probability of success (mean ± 95% confidence interval) of (a) AES and site protection; (b) basic‐ 
vs. higher‐level AES; and (c) management interventions. The dotted horizontal line represents the 5% threshold for success as expected by 
random chance. Solid vertical lines separate probabilities predicted by different models, while dotted vertical lines separate intervention 
levels. Species were not evaluated for an intervention if sample sizes were insufficient (generally <5 records)
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on occupancy and abundance, productivity, and survival. Our as-
sessment provides only a broad evaluation of the overall patterns, 
whereas responses are likely to vary with local context.

4.2.1 | Mowing and grazing

Early and frequent mowing in intensively farmed areas can be dam-
aging for nests and young chicks, or can reduce the subsequent 
availability of invertebrates for surviving chicks (Kentie et al., 2013; 
Schekkerman et al., 2009). In other cases, mowing tall swards can 
create or maintain appropriate open habitat and a short sward, 
particularly in extensively farmed/abandoned areas (Devereux, 
Mckeever, Benton, & Whittingham, 2004; Vickery et al., 2001). Our 
results indicate that mowing as a conservation tool requires careful 
consideration. While mowing can benefit abundance and occupancy 
trends, for example, by creating suitable sward structure and poten-
tially attracting breeding birds into an area, reductions in frequency 
or delays in the timing of mowing have a high likelihood of enhanc-
ing wader productivity. Therefore, when applied as a conservation 
measure, mowing during the breeding season should be avoided as 
it is likely to destroy nests or chicks, or reduce food resources for 
chicks.

Our findings suggest that grazing benefits several wader spe-
cies, likely by creating and maintaining a more heterogeneous and 
less dense sward structure and composition preferred for nesting 
and foraging (Norris et al., 1998; Sharps, Garbutt, Hiddink, Smart, 
& Skov, 2016; Verhulst, Kleijn, Loonen, Berendse, & Smit, 2011; 
Żmihorski, Pärt, Gustafson, & Berg, 2016). However, particular 
habitat requirements are likely to be species‐specific, possibly 
requiring an experimental approach to identify the most ben-
eficial grazing strategy (Durant, Tichit, Kerneis, & Fritz, 2008). 
Furthermore, inherent risks to grazing management need careful 
consideration when determining the appropriate stocking density 
and timing and duration of grazing. Although our results are mar-
ginal as to whether reducing grazing is likely to enhance produc-
tivity, previous work suggests that even light grazing may lead to 
significant nest mortality through trampling, depending upon the 
livestock involved, or alter vegetation structure thereby increas-
ing nest predation (Hart, Milsom, Baxter, Kelly, & Parkin, 2002; 
Mandema, Tinbergen, Ens, & Bakker, 2013; Pakanen, Luukkonen, 
& Koivula, 2011; Sharps, Smart, Skov, Garbutt, & Hiddink, 2015; 
Sharps et al., 2016). Our results support this potential for nega-
tive effects, as there is a trend toward applied grazing leading to 
an increased likelihood of management failure. Potential solutions 

F I G U R E  3  The metric‐specific predicted probability of success (mean ± 95% confidence interval) of (a) AES and site protection; (b) basic‐ 
vs. higher‐level AES; and (c) management interventions. The dotted horizontal line represents the 5% threshold for success as expected by 
random chance. Solid vertical lines separate probabilities predicted by different models, while dotted vertical lines separate intervention 
levels. A metric was not evaluated for an intervention if its sample size was insufficient (generally <5 records)
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for reducing nest mortality while maintaining appropriate habitat 
include grazing prior to and/or after the main nesting period, em-
ploying rotational grazing through time or across different com-
partments, or further reducing stocking density below currently 
recommended levels (Pakanen, Aikio, Luukkonen, & Koivula, 
2016; Sharps et al., 2016). Ideally, designing optimal management 
requires information to model the potentially complex popula-
tion and demographic impacts of different grazing regimes (e.g., 
Sabatier, Doyen, & Tichit, 2010).

4.2.2 | Agrochemicals

Organic farming has previously been shown to increase breed-
ing wader abundance (Henderson et al., 2012; Piha, Tiainen, 
Holopainen, & Vepsalainen, 2007), and our findings suggest that 
reductions in agrochemical use are broadly associated with higher 
wader abundance and occupancy. While few studies have closely 
investigated the potential mechanisms responsible for this effect, 
reduced agrochemical use may increase invertebrate abundance 
(Boatman et al., 2004), which has declined considerably over the 
past 30 years (Hallmann et al, 2017), and/or increase production of 
a more herb‐rich, less dense sward (Kentie et al., 2013). Both factors 
are likely to enhance productivity, though our results only suggest a 
trend in this direction.

4.2.3 | Wet conditions

Improving wet conditions by raising water levels, reducing drainage, 
or using scrapes and foot drains to create open water, can be an im-
portant determinant of occupancy and nesting density at the start of 
the breeding season (Eglington et al., 2008; Smart, Gill, Sutherland, 
& Watkinson, 2006). Furthermore, wet conditions can provide criti-
cal foraging habitat with high food availability for both adults and 
chicks, particularly later in the breeding season when the water 
table is lower (Eglington et al., 2010; Kahlert, Clausen, Hounisen, & 
Petersen, 2007). Our results indicate that improved wet conditions 
can support greater numbers and higher occupancy of waders and 
can also benefit productivity, though certain species may respond 
more favorably than others, which should be considered when ma-
nipulating water levels at sites with multiple breeding species.

F I G U R E  4  The predicted probability of success (mean ± 95% 
confidence interval) for AES and site protection alone, as well as 
combined. The dotted horizontal line represents the 5% threshold 
for success as expected by random chance
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F I G U R E  5  The predicted probability of success (mean ± 95% confidence interval) of different management interventions, controlling for 
the use of multiple interventions in combination. The dotted horizontal line represents the 5% threshold for success as expected by random 
chance
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4.2.4 | Nest protection and predator control

Low productivity as a consequence of nest and chick predation 
and destruction by agricultural activities is likely a key factor lim-
iting European wader populations (MacDonald & Bolton, 2008; 
Roodbergen et al., 2012). Nest protection and predator control 
may both reduce nest and chick loss, but can differ in their ap-
propriateness and success depending on the specific manage-
ment context. Our results indicate nest protection can benefit 
productivity and also abundance/occupancy trends, but effec-
tiveness may be species‐dependent. Nest protection requires 
careful consideration of potential trade‐offs and should also be 
combined with habitat improvement for chicks to avoid creating 
an ecological trap (Kentie et al., 2013). Leaving unmown patches 
around or using markers at individual nests may reduce agricul-
tural nest loss, but increase vulnerability to predation (Kragten, 
Nagel, & De Snoo, 2008; Kentie et al., 2015; but see Zámečník, 
Kubelka, & Šálek, 2018). While effective at increasing nest survival 
(Pauliny, Larsson, & Blomqvist, 2008; Smith, Pullin, Stewart, & 
Sutherland, 2011), nest cages are unlikely to benefit chick survival 
and may potentially increase predation risk of incubating adults 
or result in nest abandonment (Isaksson, Wallander, & Larsson, 
2007). Fencing is also effective at increasing nest survival (Malpas 
et al., 2013; Smith et al., 2011), and for large fenced areas may ad-
ditionally enhance chick survival (Rickenbach et al., 2011). Fences 
may encourage higher settlement densities due to predator exclu-
sion, as suggested by observed positive effects on abundance/oc-
cupancy trends, which can consequently improve group defense 
against avian predators (Berg, Lindberg, & Kallebrink, 1992). While 
both can have significant positive effects on productivity, cages 
and fencing have high maintenance costs and any successful pred-
ator incursions may be costly.

An alternative approach to nest protection is control of general-
ist predators, including foxes, corvids, and mustelids (Bolton et al., 
2007; Fletcher, Aebischer, Baines, Foster, & Hoodless, 2010). When 
considered alone, the success rate of predator control was highly 
variable and unlikely to benefit productivity more than expected 
by chance, although it was found to be more successful when con-
trolling for the combined application of other interventions. While 
previously reviewed as generally effective at increasing produc-
tivity and population size (Côté & Sutherland, 1997; Smith, Pullin, 
Stewart, & Sutherland, 2010), the success of predator control for 
waders may depend on the specific predators, their spatial and tem-
poral abundance, the effectiveness of different control measures, 
the sustained use of control measures over time (Bodey, Mcdonald, 
Sheldon, & Bearhop, 2011; Bolton et al., 2007), as well as the suite of 
other interventions being used, which may account for the variable 
responses among the studies conducted.

4.3 | Study limitations

Our findings are heavily biased toward Western European intensive 
pastoral and arable landscapes. In the more extensively managed 

grasslands of Central and Eastern Europe, different levels and types 
of management may be needed to increase heterogeneity and im-
prove habitat suitability (Żmihorski, Kotowska, Berg, & Pärt, 2016). 
For example, mowing and grazing may be critical for maintaining 
open landscapes and preventing secondary succession in aban-
doned grasslands (Baldi, Batary, & Erdos, 2005). While our findings 
are therefore likely to be most relevant in the largely intensive ag-
ricultural landscapes of Western Europe, our assessment of the ef-
fectiveness of policy and management measures can also likely be 
extrapolated to areas of Central and Eastern Europe experiencing 
farmland bird declines as a consequence of agricultural intensifica-
tion (e.g., Reif & Vermouzek, 2018).

Although we accounted for a study bias toward lapwing by in-
cluding species as a random effect or covariate where possible, and 
by considering species‐specific variation in intervention success, a 
limited sample size reduced our ability to examine the effective-
ness of particular interventions for certain species. Furthermore, 
relatively few studies examined the effect of interventions on 
chick survival; thus, while measures may be effective at increasing 
nest success, evidence for an overall impact on population‐level 
productivity is more limited. Our findings may also be biased to-
ward those studies reporting successful measures, though nega-
tive effects of AES have proved highly publishable and an inversed 
bias may be as likely. Also, we emphasize that our estimation of 
the probability of success of interventions is likely conservative, as 
we rated “success” as an intervention having a significant positive 
effect; thus, studies with insufficient statistical power to detect 
a significant effect will rate as “unsuccessful” in our analysis, but 
may potentially have a positive effect. This conservative assess-
ment may contribute to our finding that while most conservation 
measures are more successful than expected by chance alone, 
most are unlikely to succeed more than 50% of the time. With 
more studies reporting effect sizes, a formal meta‐analysis could 
in future provide an estimate of overall effect size on breeding 
waders for the interventions we evaluated, overcoming this lim-
itation of our analysis.

Finally, a large proportion of studies examined count metrics, 
which could be particularly biased by non‐random use of inter-
ventions with respect to spatial patterns in wader occurrence 
or density, an issue highlighted by Kleijn and Sutherland (2003). 
We therefore suggest that our findings examining trend and pro-
ductivity metrics are likely the most insightful, although accept 
that without appropriate study design or statistical controls, 
studies evaluating these metrics may also potentially be subject 
to a degree of spatial bias. However, our analysis shows that the 
success rate for count metrics was not consistently greater than 
other metrics across all interventions (Figure 3), suggesting that 
our results are not simply a function of the non‐random distri-
bution of interventions. This adds confidence to our analysis of 
overall effects (Analysis 1), variation between species (Analysis 
2a) and the analysis of interventions applied in combination 
(Analysis 3), which are based on results combined across differ-
ent metrics.
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5  | CONCLUSION AND MANAGEMENT 
IMPLIC ATIONS

Our assessment suggests that policy and management measures 
already in place in many European countries to conserve grassland‐
breeding waders in intensive agricultural landscapes are broadly 
effective, although success rate may vary substantially depending 
on context and the interventions used. In particular, we advocate 
the use of measures that improve productivity, which is likely to be 
driving wader population declines and limiting recovery. Our results 
indicate that AES and site protection are likely key policy tools for 
improving wader productivity and population trends, while impor-
tant management interventions are likely to include a reduction in 
mowing, careful application of light grazing, reduced use of agro-
chemicals, and increasing wet conditions, though their success is 
likely to be context‐dependent. Where predation limits breeding 
success, nest protection, preferably fencing, and/or predator con-
trol are recommended, although success may depend on the spe-
cific context as well as on the use of the above measures which also 
improve habitat condition. More studies investigating the ability of 
interventions to improve chick survival are required since this may 
be a key factor limiting populations despite positive outcomes for 
nest survival.

While our assessment shows that conservation measures are 
more successful at achieving positive outcomes than expected 
by chance, wader populations continue to decline. This suggests 
that success rates may not be as high as they need to be, that the 
magnitude of positive effects may be too small (see Supporting 
Information Table S3 for summary of effect size ranges), and/or 
the scale at which they are applied is unable to compensate for 
declines occurring outside managed areas. Restoration of sustain-
able wader populations in the wider countryside will depend on 
the implementation of effective measures at a much greater scale 
to increase the amount of land managed favorably for these and 
other grassland species (Vickery & Tayleur, 2018; Walker et al., 
2018). This will be governed by the level of support and funding 
provided by Europe‐wide institutions and national governments, 
which ultimately will depend on sufficient social will to drive the 
changes needed to protect and restore farmland biodiversity. The 
future status of grassland‐breeding waders across Europe will to a 
large extent depend on further developments in agricultural prac-
tices and policy. These are important messages at a time of uncer-
tainty for national and European institutions.
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