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Abstract

Summary: Epigenetic modifications reflect key aspects of transcriptional regulation, and many epigenomic datasets
have been generated under different biological contexts to provide insights into regulatory processes. However, the
technical noise in epigenomic datasets and the many dimensions (features) examined make it challenging to effect-
ively extract biologically meaningful inferences from these datasets. We developed a package that reduces noise
while normalizing the epigenomic data by a novel normalization method, followed by integrative dimensional reduc-
tion by learning and assigning epigenetic states. This package, called S3V2-IDEAS, can be used to identify epigenetic
states for multiple features, or identify discretized signal intensity levels and a master peak list across different cell
types for a single feature. We illustrate the outputs and performance of S3V2-IDEAS using 137 epigenomics datasets
from the VISION project that provides ValIdated Systematic IntegratiON of epigenomic data in hematopoiesis.

Availability and implementation: S3V2-IDEAS pipeline is freely available as open source software released under an
MIT license at: https://github.com/guanjue/S3V2_IDEAS_ESMP.

Contact: rch8@psu.edu or gzx103@psu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The tens of thousands of epigenomic datasets now available are po-
tentially great resources to better understand the associations of epi-
genetic modifications with mechanisms of transcriptional regulation
(Bernstein et al., 2010; ENCODE Project Consortium, 2012;
Martens and Stunnenberg, 2013; Moore et al., 2020; Stunnenberg
et al., 2016; Xiang, et al., 2020a, b; Yue et al., 2014). However,
integrating these resources for global inferences about regulation is
challenging for many reasons. In this application note, we focus on
two issues. First, technical differences in procedures and biological
samples analyzed in different laboratories introduce noise and biases
that can obscure true biological differences (Meyer and Liu, 2014;
Shao et al., 2012; Xiang et al., 2020a,b). Second, certain combina-
tions of epigenetic modifications often appear together, but those
combinations of modifications (epigenetic states) need to be learned
from integrative modeling across epigenomic datasets simultaneous-
ly across multiple cell types (Ernst and Kellis, 2012; Hoffman et al.,
2012; Zhang et al., 2016).

Here, we introduce a package, named S3V2-IDEAS, that builds
upon our prior works and provides an improved, integrated work-
flow that will facilitate usability. In this pipeline, we address the first
issue (noise and bias in data) by incorporating an improved version
of the S3norm method (Xiang et al., 2020b), which can simultan-
eously normalize signals in foreground and signals in background.
In contrast to S3norm, in which each 200 bp bin was assessed as ei-
ther foreground (peak) or background, in the improved version
(S3V2) the reads within each bin are split into foreground reads and
background reads. This strategy has been used in several previous
studies (Mahony et al., 2014; Tarbell and Liu, 2019). After splitting
reads, a single signal track can be converted into a foreground signal
track and a background noise track. For the background noise track,
both non-zero mean and non-zero standard deviations are matched
across datasets, which can reduce the noise in some datasets
(Fig. 1A, Supplementary Methods and Supplementary Figs S1D and
S2). To address the second challenge (integration across multiple
features and cell types), we performed genome segmentation using
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the Integrative and Discriminative Epigenome Annotation System
(IDEAS), which learns epigenetic state models from the normalized
epigenomic signals simultaneously along the genome and across cell
types to improve consistency of state assignments across different cell
types (Zhang et al., 2016; Zhang and Hardison, 2017). Moreover,
the IDEAS model can jointly estimate the state of a genomic region
by using the information in a set of similar cell types, so that the state
can be accurately estimated even for cell types with missing data
(Zhang and Mahony, 2019). The S3V2-IDEAS pipeline incorporates
both S3V2 normalization and IDEAS segmentation so that the advan-
tages of both methods can be used to normalize, denoise and integrate
multi-dimensional epigenomic datasets across different cell types.

2 Implementations

The inputs to S3V2-IDEAS are (i) average read counts of each epi-
genetic feature in each cell type (bigWig), (ii) an annotation file that
includes the names of the cell types and the epigenetic features of
bigwig files and (iii) information about the mapped genome, such as
chromosome sizes and black-listed regions (Amemiya et al., 2019;
Boyle et al., 2014; Kent et al., 2002, 2010; Yue et al., 2014).

The S3V2-IDEAS incorporates two major modules. First, it uses
the S3V2 method to normalize and denoise the epigenomic datasets
(Fig. 1A). The second module of the package incorporates the
IDEAS genome segmentation model to integrate the epigenomic sig-
nal into tracks of epigenetic state assignments for each bin in each
cell type (Fig. 1B and C). The second module can operate in either of
two modes. When the input data include multiple epigenetic fea-
tures, the module executes an epigenetic states mode (ES mode),
which integrates the signals of multiple epigenomic features into epi-
genetic states as done previously (Fig. 1B). When the input data in-
clude one epigenetic feature, the module executes a signal intensity
state mode (IS mode) to quantize the signal of that one epigenomic
feature into discrete signal levels (Fig. 1C). In the IS mode, a master
peak list (Fig. 1D) can be extracted from the signal intensity state
tracks by a novel hierarchical method which provides way to inte-
grate the epigenomic information across cell types (Supplementary
Figs S5 and S6).

3 Results and discussion

The S3V2-IDEAS produces three outputs: the normalized signal
tracks and the -log10 P-value tracks based on the background model

(Fig. 1A); a list of epigenetic states or signal intensity states and the
corresponding state track in each cell type (Fig. 1B and C). An add-
itional master peak list can be produced in the IS mode (Fig. 1D).

To illustrate these results, we applied the S3V2-IDEAS to data-
sets compiled by the ValIdated and Systematic integratION of epige-
nomic data project (VISION) (Hardison et al., 2020; Heuston et al.,
2018; Xiang et al., 2020a,b). The ES mode can integrate seven epi-
genetic features to a 27 epigenetic states model (Fig. 1B). Compared
with our previous analysis (Xiang et al. 2020a,b), the genome seg-
mentation tracks from this S3V2-IDEAS are more consistent be-
tween biological replicates (Supplementary Figs S2C, D and S3D).
The de-noising by S3V2 improves the accuracy of peak calling in
ChIP-seq datasets (Supplementary Fig. S2E).

We illustrate the IS mode by limiting our analysis to only the
ATAC-seq. In the IS mode, the ATAC-seq signal tracks can be first
normalized and discretized into tracks of signal intensity levels
(Fig. 1C). Then, a master peak list can be extracted from these state
tracks (Fig. 1D). A master peak list is a straightforward way to ob-
tain a coherent set of chromatin accessible peaks across cell types,
which can be challenging for larger numbers of cell types
(Meuleman et al., 2020). Comparing with the one produced by sim-
ply pooling and merging the MACS2 peaks in all cell type (Zhang
et al., 2008), the IS mode master peak list pinpoints functional ele-
ments with higher accuracy (Supplementary Figs S6 and S7).

These results indicate that the S3V2-IDEAS should be versatile
and effective tool for integrative analyses of epigenomic datasets.
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