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Abstract: Nerve growth factor (NGF) is a protein essential to neurons survival, which interacts with
its receptor as a non-covalent dimer. Peptides belonging to NGF N-terminal domain are able to
mimic the activity of the whole protein. Such activity is affected by the presence of copper ions. The
metal is released in the synaptic cleft where proteins, not yet identified, may bind and transfer to
human copper transporter 1 (hCtr1), for copper uptake in neurons. The measurements of the stability
constants of copper complexes formed by amyloid beta and hCtr1 peptide fragments suggest that
beta-amyloid (Aβ) can perform this task. In this work, the stability constant values of copper complex
species formed with the dimeric form of N-terminal domain, sequence 1–15 of the protein, were
determined by means of potentiometric measurements. At physiological pH, NGF peptides bind
one equivalent of copper ion with higher affinity of Aβ and lower than hCtr1 peptide fragments.
Therefore, in the synaptic cleft, NGF may act as a potential copper chelating molecule, ionophore or
chaperone for hCtr1 for metal uptake. Copper dyshomeostasis and mild acidic environment may
modify the balance between metal, NGF, and Aβ, with consequences on the metal cellular uptake
and therefore be among causes of the Alzheimer’s disease onset.

Keywords: copper; NGF; Ctr-1; Alzheimer’s; protein; peptidomimetic; potentiometry; stability
constants; beta amyloid; metallostasis

1. Introduction

Copper performs several essential functions as a cofactor in many enzymes in the living
systems and it is required for the development and function of the human brain [1–3]. In
recent years, it has been shown that copper, analogously to zinc, plays a role as modulator
of cellular signal transduction pathways [4–6]. Copper is stored in synaptic vesicles and
is released by electrical depolarization in the synaptic cleft of glutamatergic synapses at
concentration values that can reach 100 µM [7]. Copper may have inhibitory or stimulating
effect on synaptic plasticity, affecting memory and learning processes although the mecha-
nisms by which the metal performs these functions remain largely undefined [8,9]. The
dual effect may be related to the metal binding by different proteins expressed in neurons
and released in the synapses as beta-amyloid (Aβ) [10].

The actual biological function of Aβ is still unknown. The polypeptide may control
copper efflux in the synapses and it has been demonstrated that the polypeptide improves
memory formation [11], synaptic plasticity, and neuronal survival [12].

In particular, the monomeric form of Aβ activates the cyclic AMP response element-
binding protein (CREB), which in turn promotes the transcription and release of the
brain-derived neurotrophic factor (BDNF) a neurotrophin (NT) strongly involved in long
term potentiation (LTP) and memory formation [13].
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It is worth noting that it has been demonstrated that copper ions may modulate
kinase signaling networks of neuronal tissues induced by neurotrophins [14]. The nerve
growth factor (NGF) is the first discovered member of NTs family [15]. NGF is essential
for the development, survival, and activity of neurons [16,17]. NGF initiates the signaling
pathways through the binding to tropomyosin receptor kinase A (TrkA) triggering a
signaling cascade up to the activation of CREB [18,19].

Copper ions enhance NGF functionality and the effect seems related to the presence
of metal binding site in the N-terminus domain of NGF [20]. NGF(1-14), a peptide encom-
passing the first 14 residue of NGF, is able to bind copper ions and mimic whole protein
signal transduction activating CREB [21]. The NGF interacts with TrkA as a non-covalent
dimer, so a dimeric form of the peptide NGF(1–14) has been tested, showing higher activity
than monomers in the release of BDNF [14].

NGF signaling pathways control also the post-translational modifications of the amy-
loid precursor protein (APP) and then Aβ production in neurons [22–24]. Moreover,
the deprivation in NGF determines Aβ aggregation and tau hyperphosphorylation in
Alzheimer’s disease (AD) [25] while NGF addition protects against cell death and toxicity
triggered by Aβ but the underlying mechanism remains unclear [26]. On the other hand,
astrocytes activated by Aβ stimulate NGF secretion, whose excess in turn causes the death
of hippocampal neurons [27].

In the dynamic environment present at the synaptic cleft, a potential interconnec-
tion among copper, Aβ, and NGF, could be one of the key components of the memory
formation process.

Therefore, the dyshomeostasis of copper could be at the basis of Aβ and/or NGF
dysfunctions; conversely, a malfunction in the metabolic pathways could negatively af-
fect the normal influx of copper into neurons [28]. The consequences could lead to the
development of the progressive neurodegenerative disorder such as Alzheimer’s disease
(AD) [29,30].

In the brains of patients affected by AD, a high copper concentration, up to 0.4 mM, is
localized in senile plaques composed of amyloid aggregates [31]; however, the involvement
of copper in AD is still controversial [32]. Studies show copper deficiency in patients
affected by AD, and consequently a need to enhance copper levels so to restore normal
metal concentration [33,34]; differently, other experiments point to metal overload and
consequent demand to reduce copper concentration [35,36].

Copper dyshomeostasis with an increase in the labile pool of metal and a parallel
decrease in the copper bound to proteins or peptides is the main interpretation [37–39]. A
local imbalance of copper between extra- and intra-cellular spaces may drive its binding to
Aβ, which may result in formation of oligomeric fibrils, amyloid, or amorphous aggregates,
depending on the metal ion/peptide molar ratio.

Aβ may play the role of handling copper cellular influx/efflux via binding metal and
transfer it to human copper transporter 1 (hCtr1), the main protein responsible for Cu
import into cells [40]. Studies carried out with the peptide model showed that a peptide
encompassing the first 14 residues of hCtr1 binds copper ions with higher affinity than
N-terminal Aβ peptides [41]. For this reason, it is relevant to know the affinity of Aβ
towards copper ions and many studies have been carried out with different techniques to
determine the coordination environment of copper complexes formed with Aβ [42,43].

The pH value is another environmental condition that influences Aβ aggregation and
Aβ copper binding. The brain pH is imbalanced towards mild acidic condition in aging
and patients with AD [44]. A lowering of pH favors Aβ aggregation and strongly alters the
release of pro-inflammatory cytokine affecting the uptake of Aβ by microglial cells [45].

Pathologies, such as ischemic stroke, induce a local decrease of extracellular pH due
to an inflammatory insult that is as supposed to be an early event in AD progression [46].
Furthermore, the pH influences copper complex speciation with Aβ and mild acidosis can
promote conformational changes or reactive oxygen species production promoting Aβ
aggregate precipitation [47].
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NGF has been postulated as potential therapeutic agent for the treatment of AD and
its side effects, as loss of memory, and taking into account that NGF can bind copper ions in
the same spaces shared by Aβ, it may be of interest to determine its affinity for copper(II).

Potentiometry is a technique that determines the stability constant values with a
certain accuracy and permits also detection of minor species. This experimental technique
may be the ideal choice when conditions allow for its application that can be limited by
some factors such as poor solubility of longer or hydrophobic peptides. For this reason,
potentiometric measurements have been carried out on shorter and more soluble Aβ
fragments, in particular the N-terminal ones where the copper binding sites are found [43].

In this paper, we report the stability constant values and copper coordination environ-
ment of a 30-mer peptide of NGF, namely the dimeric form of N-terminal domain 1-15 of
the protein obtained by disulfide bridge between cysteine units in position 15 (Figure 1).
The obtained data are compared to those reported for the monomeric peptide NGF(1-14)
encompassing the N-terminal 14 residues of the NGF protein; the comparison of the affinity
constants was extended to those obtained in this work on peptide encompassing the reverse
rNGF(14-1) and another with a scrambled sNGF(1-14) sequence to highlight the role of
primary sequence in copper binding. Finally, a comparison was made between the affinity
constants obtained so far with those of the complexes formed by the copper(II) with Aβ
and hCtr1 peptides. This comparison can be helpful to elucidate a molecular-level network
among Aβ, NGF, and copper uptake by neurons which can alter synaptic activities under
pathophysiologically relevant conditions.
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Figure 1. Structure of dNGF(1-15) and primary sequence of NGF N-terminal peptides. In red histidine residues that can act
as metal anchoring sites.

2. Results
2.1. Protonation Constants

Peptides protonation constant values were determined by means of potentiometric
titrations and are reported in Table 1 together with those of NGF(1-14) peptide. The
monomeric ligands rNGF(14-1) and sNGF(1-14) show four proton accepting centers, as ex-
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pected. The highest pK value corresponds to the N-terminal amino group. The protonation
equilibria of the two histidine residues overlap and the average value for the protonation
constant values of the imidazole residues is similar to that reported for analogous pep-
tides [48,49]. The lowest pK value belongs to carboxylate side chain of glutamate and it
agrees with that found for other peptides containing glutamic acid residues [50].

Table 1. Protonation constant (log βpqr) and pK values (T = 298 ◦K and I = 0.1 M KNO3) a.

Species NGF(1-14) b rNGF(14-1) sNGF(1-14) dNGF(1-15)

LH 7.56 7.82 (2) 7.85 (3) 7.65 (5)
LH2 14.13 14.51 (2) 14.65 (3) 15.35 (2)
LH3 20.14 20.60 (2) 20.87 (3) -
LH4 24.44 24.88 (2) 25.11 (4) 28.77 (6)
LH5 - 35.12 (4)
LH6 - 41.31 (4)
LH7 - 46.62 (4)
LH8 - 50.75 (4)

pK COO- 4.13 4.28 4.23 4.13
pK COO- - - - 5.28

pK His 6.01 6.09 6.22 6.21
pK His 6.57 6.69 6.81 6.35

pK His (×2) - - - (6.71 × 2)
pK NH2 7.56 7.82 7.85 7.65
pK NH2 - 7.70

a Standard deviations (3σ values) are given in parentheses. b Reference [20].

The dimeric peptide d(NGF1-15) was obtained by disulfide bridge between two
units of the sequence 1–15 of the protein, exploiting the cysteine present in position 15.
Therefore, the number of protonation sites is double compared to that of monomeric
peptides, scrambled and reverse. The pK values of N-terminal groups are very similar
to that of monomer NGF(1-14). Protonation reactions of the four imidazole side chains
take place in completely overlapping reactions and the measured pK values are in a range
between 6.7 and 6.2. The pK value of one carboxylate is the same of monomer peptide
NGF(1-14) whereas the other carboxylate is significantly less acidic with a pK of 5.28.

2.2. Speciation and Characterization of Copper-Peptide Complexes

The stability constants of the Cu2+ complexes are listed in Table 2. The metal ion
speciation for each peptide, at 1:1 metal-to-ligand molar ratio, is shown in Figure 2.

[CuLH] is the first complex species formed by rNGF(14-1) and sNGF(1-14) and reaches
its maximum percentage of formation at pH 5 (Figure 2). The calculated stability constant
values (logK(111) = logβ(111) − logβ(011)) are 6.33 and 6.12, for rNGF(14-1) and sNGF(1-14)
respectively; the value obtained for reverse sequence is more similar to that of NGF(1-14)
(logK(111) = 6.53). The logK(111) values are in the range 6.0–6.5, then higher than those of
similar Cu2+ complexes of peptide fragments in which the metal ion is bound to one imidazole
nitrogen and one carboxylate [48,51,52]. Indeed, these values are in good agreement with
those reported for analogous complex species formed by Aβ peptide fragments for which
metal ions have been shown to form a macrochelate with a 2Nim, COO coordination mode
(log K = 6.18) [53,54].
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Table 2. Stability constants (log βpqr) and pK values of copper(II) complexes a.

Species (pqr) b logβpqr
NGF(1-14)c

logβpqr
rNGF(14-1)

logβpqr
sNGF(1-14)

logβpqr
dNGF(1-15)

CuLH5 - - - 41.18 (3)
CuLH3 - - - 31.56 (2)
CuLH2 - - - 25.91 (5)
CuLH 14.09 14.15 (1) 13.97 (4) 17.79 (5)
CuL 8.72 8.77 (1) 8.32 (5) 8.21 (4)

CuLH-1 3.27 2.33 (2) −2.74 (3) -
CuLH-2 −4.02 −6.15 (4) −5.58 (8) -
CuLH-3 −13.34 −14.67 (2) −13.27 (4) -

pK (n/m)

pK (5/3) - - - 4.81 × 2
pK (3/2) - - - 5.65
pK (2/1) - - - 8.12
pK (1/0) 5.37 5.38 5.65 9.57

pK (0/−1) 5.45 6.43 5.57 -
pK (−1/−2) 7.29 8.48 8.33 -
pK (−2/−3) 9.30 8.52 7.69 -

a Standard deviations (3σ values) are given in parentheses; b pCu + qH + rL = CupHqLr;
βbqr = [CupHqLr]/[Cu]p[H]q[L]r; c Ref. [20]. Charges are omitted for clarity; pK(n/m) values reflect the pK value
of copper(II) complexes; [L] = 1 × 10−3 M; molar ratio 1:1.

Table 3. Spectroscopic parameters of Copper (II) complexes.

Peptide pH
UV-vis
λ (nm)

(ε (M−1 cm−1))

CD
λ (nm) (∆ε (M−1 cm−1)

rNGF(14-1)

5 640 (64) 280 (−0.30); 316 (+0.20); 670 (−0.27)
6 625 (144) 280 (−0.40); 323 (+0.33); 671 (−0.44)

7.4 609 (178) 280 (−0.30); 314 (−0.22); 352 (+0.07); 508 (+0.31); 625
(−0.60)

9 532 (194) 280 (−1.30); 484 (+0.46); 589 (−0.79)
10 522 (232) 280 (−1.80); 483 (+0.54); 577 (−1.00)

sNGF(1-14)

5 670 (40) 289 (−0.20); 328 (+0.12); 647 (−0.04)
6 617 (94) 287 (−1.34); 328 (+0.68); 617 (−0.59)

7.4 603 (102) 288 (−1.38); 329 (+0.82); 603 (−0.72)
9-10 522 (141) 306 (+1.47); 544 (−1.13)

dNGF(1-15)

5 635 (50) 280 (−0.34); 321 (+0.19); 669 (−0.24)
6 612 (70) 280 (−0.40); 323 (+0.33); 671 (−0.44)

7.4 569 (94) 280 (−1.80); 324 (+0.92); 504 (+0.08); 611 (−0.30)
8 561 (104) 280 (−2.04); 323 (+0.98); 496 (+0.11); 586 (−0.34)
9 554 (119) 280 (−2.15); 324 (+0.98); 496 (+0.08); 587 (−0.38)

10 530 (138) 280 (−2.14); 324 (+0.71); 563 (−0.46)
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Figure 2. Species distribution of copper(II) complexes with rNGF(14-1), sNGF(1-14), NGF(1-14) and
dNGF(1-15). [L] = 1 × 10−3 M; metal to ligand molar ratio of 1:1.

Spectroscopic parameters measured at pH = 5, confirm the 2NIm,COO− coordina-
tion mode for copper ion and the higher stability of metal complex formed by reverse
(λmax = 640 nm, ε = 64 M−1 cm−1) compared to scrambled peptide (λmax = 670 nm,
ε = 40 M−1 cm−1) (Table 3). However, it must be underlined that the parameters are
partly influenced by the presence of other species other than free copper.

Increasing the pH, [CuL] complex species is formed. This species is a minor one but
the obtained logβ value suggest the involvement of a further donor atom as N-terminal
group for both peptides. The reverse peptide also shows for this species a higher value
than scrambled one and very similar to that reported for NGF(1-14).

The contemporary presence of an isomer in which a deprotonated amide is bound to
metal instead of an amino group, that remains still protonated, cannot be ruled out.

In particular the Cu-rNGF(14-1) system shows a CD signal centered around 320 nm,
that is diagnostic of a charge transfer from a deprotonated amide nitrogen to copper ion [55]
(Figure 3).
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The next species formed, [CuLH-1], is the predominant complex in the pH range
6.5–8.0. The stepwise constant values logK(11-1) (logK(11-1) = logβ(110) − logβ(11-1)) are 6.43
for rNGF(14-1) and 5.57 for sNGF(1-14). Both values indicate the deprotonation of an amide
nitrogen atom but this step is more favored for sNGF(1-14). The UV–vis parameters are
similar suggesting an analogous coordination environment of metal ion with three nitrogen
atoms involved in the binding. CD spectra show the diagnostic signal of deprotonated
amide nitrogen bound to copper ion even though the conformational features of two
peptides are different due to distinctive primary sequence (Figure 3).

As the pH increases, the second deprotonation occurs but it is less favored than
the third nitrogen amide deprotonation step. Indeed, the [CuLH-2] complex species is
a minor one for both peptides, suggesting that the coordination of successive amide
nitrogen deprotonation reactions are accompanied by the rearrangement of the peptide
metal binding sites [56]. Namely, the histidine imidazole moiety and the subsequent amide
are the primary binding sites below pH 8.5, but they are partly replaced by the amino
group and preceding amide functions at higher pH values. This effect is supported by
significant blue shift of the absorption spectra as well as of the CD band characteristic of
peptide amino-bonded copper(II) complexes [57].

The first species formed by dimeric peptide dNGF(1-15) is [CuLH5] that reaches its
maximum percentage at pH 4.5 (Figure 2).

The stability constant (logK(115) = logβ(115) -logβ(015) = 41.18 − 35.12 = 6.06) is in-
dicative of a 2Nim, COO− coordination mode analogous to monomeric peptides and Aβ
as above reported. This is further confirmed by UV–vis parameters similar to that of
rNGF(14-1) copper complex. It is to note that in the [CuLH5] species there are only three
deprotonated centers and therefore the involvement of 2Nim requires that one carboxylate
group is still protonated. The unusual high pK value of one carboxylate moiety (pK = 5.28)
and the pH range of species existence, between 4.0–5.5, makes this hypothesis plausible.

[CuLH3] is the next species formed with a maximum percentage of formation around
pH 5.5 (Figure 2). It is not possible to calculate the stepwise stability constant value as
performed for other species because the protonation constant of the [LH3] species was not
experimentally obtained. However, the difference with the stability constant of [CuLH5]
(logK(112) = logβ(115) − logβ(113) = 9.62) suggests the deprotonation of the carboxylate not
coordinated to copper ion and the binding of another nitrogen atom (imidazole or amino)
to the metal ion.

[CuLH2] is the predominant species at physiological pH; the stability constant value
logK (logK(112) = logβ(112) − logβ(012) = 10.56) is high and can be related with the relevant
blue shift in the UV–vis maximum absorption (λmax = 569 nm, ε = 94 M−1 cm−1). All these
data are indicative of a strong ligand field around copper ion, determined by four nitrogen
atoms coordination mode in a planar arrangement. It can be assumed that the (NH2, N−) five-
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membered chelate is assisted by the macrochelation with the NIm donor of the His-4 residue of
the same chain and the other histidine belonging to the other chain of dimeric peptide.

The CD spectra show an increase in the wide band centered at 324 nm, that include
charge transfer signals of both imidazole and deprotonated amide to metal ion, and a d–d
transition band with a relatively low intensity compared to the analogous species formed
by monomeric peptides. These CD features are in agreement with the involvement of more
imidazole side chain in the metal binding (Figure 3).

The next species [CuLH] and [CuL] show similar spectroscopic parameters to those
of [CuLH2], suggesting the deprotonation of amino/imidazole not bound to metal ion
and afterwards, at strongly basic pH, the deprotonation of an amide nitrogen atom that
substitutes one imidazole in the coordination to metal ion.

3. Discussion

The peptide NGF(1-14) encompasses the first fourteen residues of the N-terminal do-
main of NGF protein. In a previous paper, we have demonstrated that NGF(1-14) and its
dimeric derivative dNGF(1-15) form strong and significant interactions with TrkA, the specific
NGF receptor, but not its reverse rNGF(14-1) nor the scrambled s-NGF(1-14) sequence [14].
However, in the presence of copper ions, both peptides NGF(1-14) and dNGF(1-15), induced
signaling pathways independently by the receptor activation [14,21]. Conversely, the addition
of copper has no effect on neuron cell models treated with rNGF(14-1) or sNGF(1-14) [14].
In a receptor-independent signaling processes, a different copper coordination environment
may explain the absence of activity of scrambled and reverse sequence peptides compared to
NGF(1-14) and dNGF(1-15).

Therefore, the peptides rNGF(14-1) and sNGF(1-14), designed to highlight the specificity
of the primary sequence in the receptor recognition, can also unveil the critical role of the
histidine residues with respect to the N-terminal amino group in the metal complex formation.

The protonation constants of two peptides rNGF(14-1) and sNGF(1-14) are similar
to each other and to the values reported for the NGF(1-14). This indicates the absence of
electrostatic bonds between the side chain groups.

In a peptide, the pK range of protonation centers of the same type, for instance
imidazole, widens as their number increases. A peptide encompassing three or more
histidine residues shows a pK range of imidazole nitrogen atoms between 5.0–7.5 [58–61].
In the case of the dimeric peptide dNGF(1-15), the pK values determined for the amino and
imidazole groups are very similar to those reported for the monomer peptides, indicating
the absence of specific interactions between groups belonging to different peptidic chains.
A different effect is observed only for the carboxylic groups: the monomer NGF(1-14) and
the dimer dNGF(1-15) display a similar pK value for one carboxylate whereas a higher pK
value is observed for the second carboxylate group of the dimer dNGF(1-15), indicating a
marked reduction of acidity. This suggests a strong electrostatic interaction between the
carboxylic anion of the first carboxylic group and the still protonated of the second one.

At acidic pH, there is a certain similarity in the copper complex formation between
the investigated peptides whereas at physiological pH, the metal displays a different coor-
dination environment when bound to wild type NGF(1-14) and dNGF(1-15) in comparison
with the reverse and scrambled sequences.

In the complex species [CuLH] the copper ion displays a 2NIm,COO− coordination
mode for both rNGF(14-1) and sNGF(1-14). The reverse sequence peptide shows a higher
copper complex stability constant of the macrochelate than sNGF(1-14); an effect due to the
closer proximity of the two histidine residues and to the presence of a proline in between,
that favors peptide bending and then the macrochelate formation (HFIPH vs. HVSISSH,
for rNGF(14-1) and sNGF(1-14) respectively, see Figure 1).

Taking into account the higher number of protonation sites, [CuLH5] is the species
formed by dNGF(1-15) analogous to [CuLH] detected for monomeric peptides. [CuLH5]
is the first species formed by dNGF(1-15) and starts at a slightly lower pH compared to
monomeric peptides, due to differences in protonation constant values. The spectroscopic
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parameters are similar to those reported for rNGF(14-1) and the stability constant is in
agreement with a 2NIm,COO- coordination mode but it is not possible to define if histidine
residues involved in metal binding belong to the same chain or not.

At physiological pH, the [CuLH-1] is the predominant species for both rNGF(14-1) and
sNGF(1-14). The deprotonation step involve an amide nitrogen for both peptides but with
a higher value for rNGF(14-1) compared to sNGF(1-14), 6.43 and 5.57, respectively. This
difference suggests that the deprotonation does not occur at the amino terminus as in this
case a similar value would be expected for the two peptides. Therefore, the deprotonation
involves an amide of a histidine residue and the difference between rNGF(14-19 and
sNGF(1-14) may be ascribed to proline amid the two histidine for reverse fragment (HFIPH).
Indeed, the proline residue acts as a ‘break-point’ in copper ion coordination [62]. This
results in a greater distortion of metal coordination plane for rNGF(14-1) as indicated by
the high molar absorption coefficient value of UV–vis maximum absorption. Therefore, at
physiological pH, copper bound to both scramble and reverse shows a different speciation
and coordination environment compared to NGF(1-14) where the N-terminal amino group
is involved in the metal binding [20]. In the wild type sequence, histidine is the fourth
residue (His-4), then closer to the terminal amino group. Therefore, the sequence SSSH (see
Figure 1) favors the simultaneous involvement of the amino and imidazole nitrogen atoms,
prompting a greater stability of the copper complexes.

At physiological pH, [CuLH2] is the predominant species formed by dNGF(1-15). In
this species the copper coordination is different from that observed for scrambled and
reverse peptides. The stability constant value is higher and indicative of a strong ligand
field around copper ion, confirmed by the difference in the UV–vis maximum absorption
(λmax = 569 nm) clearly more shifted towards blue compared to the species formed by
rNGF(14-1) and sNGF(1-14). The difference observed is due to the involvement of the
amino group in metal coordination so to determine a four nitrogen atoms (NH2, N−,
2Nim) coordination mode in a planar arrangement. The amide deprotonation is more
favored at Ser-2 due to five-membered chelate ring formation than at His-4 where the
deprotonation process could form a six-membered chelate ring [63]. The stability con-
stant of copper complex species formed by dNGF(1-15) is higher than that reported for
monomer NGF(1-4). The presence of more histidine residues allows to involve the imida-
zole unit that determines a stronger coordination without inducing relevant distortions in
peptide conformation.

This type of coordination is also confirmed by the ease with which successive species
are formed, increasing pH. Indeed, the next deprotonation steps involve the side chains
not directly involved in the metal binding, and, at a more basic pH, the amide nitrogen of
Ser-3; this is further confirmed by the CD spectra that display the same conformational
features even at increasing pH values.

It is to note that dimeric peptide does not form species with two copper atoms,
confirming that amide deprotonation occurs in one of the two peptidic chains while the
other one contributes with the coordination of one or two side chain imidazole groups to
the overall stability of the copper complexes.

The determination of the copper complexes stability constants formed by peptides of
biological interest is a parameter that provides the affinity of a metal ion for a ligand on a
quantitative basis. This can give insights for understanding the activity of such systems,
while bearing in mind that the biological matrix is more complex and not an easy task [64].

However, the direct comparison between the stability constant values cannot provide
the indication on which peptide binds metal ions more strongly since, as discussed above,
they can form complex species with different deprotonation state [65]. For this reason, the
apparent dissociation constant, Kapp

D , is often used to describe, in the biological field, the
affinity of a metal to a protein or a peptide. The Kapp

D is associated with equilibrium

ML ↔ M + L (1)
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and it is given by

Kapp
D =

[M] [L]
[ML]

(2)

Therefore, the Kapp
D provides an overall data on the affinity obtained from the mean

of the dissociation constants of all the species present in solution regardless of their stoi-
chiometries and structures, at a specific pH value [43,66].

At pH 7.4, the Kapp
D for copper complexes formed by dNGF(1-15) and NGF(1-14) are

higher than those calculated for complexes of rNGF(14-1) and sNGF(1-14), confirming that
the presence of a His closest to N-terminal group allows the formation of a more stable
copper complex (Table 4).

Table 4. Apparent dissociation constant values for copper(II) complexes.

Peptide pH Kapp
D

NGF(1-14) 7.4 2.5 × 10−11

dNGF(1-15) 7.4 4.2 × 10−11

rNGF(14-1) 7.4 6.5 × 10−10

sNGF(1-14) 7.4 2.7 × 10−10

Aβ1-16-PEG a 7.4 1.1 × 10−10

hCtr1-14
b 7.4 1.0 × 10−13

NGF(1-14) 5.5 4.0 × 10−6

dNGF(1-15) 5.5 1.9 × 10−7

rNGF(14-1) 5.5 1.4 × 10−5

sNGF(1-14) 5.5 3.8 × 10−5

Aβ1-16-PEG 5.5 2.5 × 10−7

hCtr1-14 5.5 7.4 × 10−8

a Reference [54]; b Reference [40].

The affinity values for copper ions of a peptide encompassing the sequence 1-16 of
Aβ, functionalized with a polyethylene glycol moiety (Aβ1-16-PEG) to increase peptide
solubility, were calculated from reported stability constant values [54]. Analogously, the
Kapp

D values for copper complexes formed by the N-terminal fragment of hCtr-1 were
calculated from potentiometric data reported in literature [40].

The comparison with the Kapp
D of copper complex formed by Aβ1-16, shows that both

NGF(1-14) and dNGF(1-15) bind a single copper ion with higher affinity than Aβ fragment
but lesser than hCtr1-14.

It has been hypothesized that Aβ can chelate copper ions in the synaptic cleft and act
as an extracellular metal chaperone for its delivery to hCtr1 protein. The release of copper
from Aβ should be driven by the higher affinity of hCtr1 [40,41]. In competition with Aβ,
NGF could perform a similar activity transporting copper to hCtr1. On the other hand, NGF
having a high affinity for copper binding may capture copper ions in the synaptic cleft for
different aims as cellular metal uptake through different pathways or neurons protection
from metal excess. It is worth noting that copper addition increases activity of NGF as well
as those of its N-terminal mimicking peptides. The pivotal role of copper is evidenced also
by a general inhibitory effect on NGF and related peptides signaling cascade, determined
by the addition of the bathocuproine disulfonic acid, a copper chelating agent [14,21].

Differently, at acidic pH the Aβ1-16-PEG peptide shows a higher affinity compared
to the investigated NGF peptides even though the difference with dNGF(1-15) constant
value is minimal. The peptide hCtr1-14 displays higher affinity for copper ions also at pH
5.5, so Aβmay act as metal chaperon for copper uptake in this environmental condition.
However, it worth noting that a slight acidic pH promotes Aβ fibrils aggregation, limiting
the chelation of copper by polypeptide. The combinations of these factors may determine
toxicity and insult to neurons [67,68].
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4. Conclusions

Potentiometric experiments carried out on N-terminal NGF peptides show that they bind
metal with high affinity. NGF peptides are able to bind only one copper ion, even though they
have more copper anchoring sites, differently from Aβ polypeptide that form multinuclear
complex species. Therefore, the molar peptide-to-metal molar ratio can determine a different
speciation between components present simultaneously at the synapses.

The determination of affinity constant values for copper ion indicates that at physio-
logical pH and equimolar concentration, NGF peptides can compete with Aβ fragment
for copper binding. Therefore, NGF could play a role in controlling copper homeostasis in
the synaptic space as suggested for Aβ. This finding may partially explain the activity of
copper complexes formed by N-terminal NGF peptides, which are able to promote CREB
phosphorylation, a process pivotal to memory formation [14].

A slightly more acidic pH would make Aβ polypeptide, the most suitable ligand for
copper release to hCtr1 compared with NGF peptides. In this environmental condition,
NGF activity related also to the presence of copper ions could be limited with potential
consequences on neuron physiology.

5. Materials and Methods
5.1. Chemicals

The peptides VFSEGRHFIPHSSS-NH2, rNGF(14-1) and GFRESPHVSISSH-NH2 sNGF
(1-14) the scrambled sNGF(1-14) were synthesized) with the amidated C-terminal and
purified as previously reported [14]. The dimer dNGF(1-15) was purchased from CASLO
(Kongens Lyngby, Denmark).

All other chemicals, of the highest available grade, were purchased from Sigma-
Aldrich (Munich, Germany) and used without further purification.

5.2. Potentiometric Titrations

Potentiometric titrations were performed on automatic instrument Titrando 905. A
combined glass-Ag/AgCl electrode (Metrohm, Herisau, Switzerland) was used. All mea-
surements were carried out on 2.0 mL of samples aqueous solutions of samples kept under
an argon atmosphere and at a temperature of 298 K by means of a thermostat. Other
details on the electrode calibration have been previously reported [69]. The ionic strength
was fixed at 0.1 M by adding KNO3. KOH 0.1 M was used to titrate solutions containing
either the free peptide or the peptide with Cu2+. The peptide concentrations used were
1 × 10−3 M. At least four independent titrations were performed. At the beginning of
each measurement, the pH value was adjusted to 2.4 by addition of HNO3 0.2 M and
measurements were carried out up to pH 11. Metal ion to ligand molar ratios between 0.9:1
and 2.2:1 were used. The experimental data were analyzed by using HYPERQUAD 2003
program [70] and species distribution as a function of pH was obtained by means of Hyss
program [71].

5.3. UV–Vis and CD Measurements

UV–vis spectra were recorded at 298.0 ± 0.2 K, by using an Agilent 8453 spectropho-
tometer. All the solutions were freshly prepared using double distilled water. UV–vis
spectra were acquired by using 1.0 × 10−3 M peptide concentration at 1:1 metal to ligand
molar ratio. The results are reported as ε (molar adsorption coefficient).

CD spectra were obtained at 25 ◦C under a constant N2 flow on a Jasco model 810
spectropolarimeter at a scan rate of 25 nm min−1, resolution of 0.1 nm, path length 1cm.
Calibration of the instrument was performed with a 0.06% aqueous solution of ammonium
camphorsulfonate. Spectra were recorded as an average of five scans. The CD spectra of
the copper(II) complexes on varying the solution pH were obtained in the 280–750 nm
wavelength region. CD spectra were acquired by using 1 × 10−3 peptide concentration at
1:1 metal to ligand molar ratio. The results are reported as ∆ε (molar circular dichroism),
calculated as ∆ε = [θ]/3298.2 [72].
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