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Abstract

Non-alcoholic fatty liver disease is one of the most important causes of liver-related morbid-
ity in children. In non-alcoholic fatty liver disease, the activation of liver resident macrophage
pool is a central event in the progression of liver injury. The aims of the present study were
to evaluate the polarization of liver macrophages and the possible role of Wnt3a production
by macrophages in hepatic progenitor cell response in the progression of pediatric non-
alcoholic fatty liver disease. 32 children with biopsy-proven non-alcoholic fatty liver disease
were included. 20 out of 32 patients were treated with docosahexaenoic acid for 18 months
and biopsies at the baseline and after 18 months were included. Hepatic progenitor cell acti-
vation, macrophage subsets and Wnt/B3-catenin pathway were evaluated by immunohis-
tochemistry and immunofluorescence. Our results indicated that in pediatric non-alcoholic
fatty liver disease, pro-inflammatory macrophages were the predominant subset. Macro-
phage polarization was correlated with Non-alcoholic fatty liver disease Activity Score,
ductular reaction, and portal fibrosis; docosahexaenoic acid treatment determined a macro-
phage polarization towards an anti-inflammatory phenotype in correlation with the reduction
of serum inflammatory cytokines, with increased macrophage apoptosis, and with the up-
regulation of macrophage Wnt3a expression; macrophage Wnt3a expression was corre-
lated with B-catenin phosphorylation in hepatic progenitor cells and signs of commitment
towards hepatocyte fate. In conclusion, macrophage polarization seems to have a key role
in the progression of pediatric non-alcoholic fatty liver disease; the modulation of macro-
phage polarization could drive hepatic progenitor cell response by Wnt3a production.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is one of the most important causes of liver-related
morbidity in children [1]. The development of definite steatohepatitis (NASH) is determined
by intricate interactions between resident and recruited cells [2]. In adult NAFLD, the activa-
tion of liver resident macrophage pool is a central event in the initiation and progression of
liver injury [3, 4]. Macrophages have the ability to change their activation states in response to
growth factor and external stimuli [5]. Functional subdivisions have been proposed in accor-
dance with a spectrum of activation states [6, 7]. Activated macrophages can produce pro-
inflammatory cytokines and have pivotal role in inflammatory response; besides, macrophages
with an anti-inflammatory phenotype are involved in tissue repair and efficient phagocytosis
of cellular debris [6].

Liver macrophages are a key component of hepatic progenitor cell (HPC) niche, regulating
their activation and fate choice [8]. The HPC activation takes part in regeneration after liver
injury [9, 10] and is involved in the progression of pediatric NAFLD (pNAFLD) [11].

Recently, N-3 long-chain polyunsaturated fatty acids (LC-PUFA) supplementation has
been suggested as a potential treatment for liver steatosis [12, 13]. The effects of docosahexae-
noic acid (DHA), the major dietary LC-PUFA, have been reported in pNAFLD [14, 15]. Inter-
estingly, DHA exerts a potent anti-inflammatory activity on macrophages [16].

The aims of the present study are to evaluate i) the activation states of liver macrophages in
PNAFLD and the correlation with the progression towards NASH and with HPC response; ii)
if the DHA administration in pediatric patients induces modifications on macrophage activa-
tion; and iii) the role of Wnt3a macrophage production on HPC response in pNAFLD.

Patients and Methods
Patients

This study included 32 children and adolescents (boys, 22; girls, 10; median age, 10.8 years;
range 7-16 years) with biopsy-proven NAFLD, who were referred to Bambino Gesti Children’s
Hospital during January 2010-January 2013.

20 out of 32 patients have been enrolled from the randomized controlled clinical trial regis-
tered on http://www.clinicaltrials.gov (Trial identifier: NCT00885313) conducted at the Liver
Unit of the Bambino Gesu Pediatric Hospital (Rome, Italy) and received algae DHA (250 mg/
day) for 18 months [14, 15]. Twelve patients were not included in the clinical trial, did not
receive DHA supplementation and were treated by standard lifestyle intervention program.

All patients included in the present study met the following criteria: persistently elevated
serum alanine transaminase (ALT >40 U/1), diffusely hyperechogenic liver at ultrasonography
and liver biopsy consistent with NAFLD, as previously reported [17]. Patients with secondary
causes of steatosis were excluded from the trial and this entire study. The children included in
our analyses showed clinical and pathological features resembling those seen in our general
pediatric population with NAFLD [18]. Patients were diagnosed with NAFLD through liver
biopsy recommended because of over 6 months elevation of ALT levels and the presence of an
echogenic texture of the liver on ultrasonography. Patients received no dietary or other thera-
peutic treatment regimens before diagnosis. Clinical data were acquired at diagnosis and after
18 months of treatment. Liver biopsy was taken at the diagnosis and after 18 months in patients
treated with DHA. For ethical reasons, liver biopsy was taken at the diagnosis but not after 18
months in control patients who underwent lifestyle intervention program [19].

Liver specimens from 6 lean, non-diabetic children (boys, 4; girls, 2; median age: 13 years,
range, 12-16 years) without liver disease were used as controls, as previously [11]. These
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fragments were obtained from patients who underwent laparotomy or laparoscopic procedures
(for cholecystectomy), from liver donors (orthotopic liver transplantation) or incidental “nor-
mal” liver biopsies (children exhibiting persistent/intermittent elevations of liver enzymes for
>6 months). Informed consent in writing was obtained from next of kin, caretakers, or guard-
ians on behalf of the children enrolled in this study. The study protocol conformed to the
ethical guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by the
Bambino Gesu Pediatric Hospital ethics committee. No donor organs were obtained from any
vulnerable populations, aside from being children. Anthropometric (Weight, height, and body
mass index) and laboratory data were measured as previously reported [18].

Anthropometrics and laboratory data

Weight, height, and body mass index (BMI) were measured. Alanine and aspartate amino-
transferase, gamma-glutamyl-transpeptidase, total triglycerides and total cholesterol were eval-
uated using standard laboratory methods. Insulin was measured using a radio-immunoassay
(Myria Technogenetics, Milan, Italy). Glucose and insulin were measured at 0, 30, 60, 90 and
120 minutes of an oral glucose tolerance test performed with 1.75 grams of glucose per kilo-
gram of body weight (up to 75g). The degree of insulin resistance and sensitivity were deter-
mined by the homeostatic model assessment insulin resistance (HOMA-IR) and the insulin
sensitivity index (ISI) derived from an oral glucose tolerance test (OGGT), respectively [20,
21].

Liver Biopsy and Histo-pathological Analysis

Liver biopsy was performed after an overnight fast by using an automatic core biopsy 18-gauge
needle under general anesthesia and ultrasound guidance. Specimens were fixed in formalin
and embedded in paraffin, as previously reported [17]. Standard histological stains were per-
formed. Histopahtological evaluation has been performed on the basis of the NAFLD Clinical
Research Network (CRN) criteria [22]. The NAFLD activity score (NAS) has been calculated
combining features of steatosis, lobular inflammation, and hepatocyte ballooning. As recom-
mended [23], a microscopic diagnosis based on overall injury pattern as well as the presence of
additional lesions have been assigned to each case [24]. Biopsies were classified into not steato-
hepatitis (NAFL), definite steatohepatitis (NASH), borderline zone 1 pattern or borderline
zone 3 pattern subcategories [23].

Histological analysis was performed by a single pathologist blinded to clinical and labora-
tory data.

Immunohistochemistry and Immunofluorescence

For immunohistochemistry and immunofluorescence, sections were incubated overnight at 4°C
with primary antibodies against cytokeratin (CK)7 (mouse monoclonal, code: M7018, dilution:
1:100, Dako, Glostrup, Denmark), EpCAM (Dako, mouse monoclonal, code: M3525, dilution:
1:100), CD68 (Dako, mouse monoclonal, code: M0876, dilution: 1:100), CD206 (monoclonal
mouse, code: MAB25341; dilution: 1:25, R&D Systems, Minneapolis, USA), Arginase-1 (poly-
clonal mouse, code: ab118884; dilution: 1:150, Abcam, Cambridge, United Kingdom), Caspase-
3 (polyclonal rabbit, code: #9662; dilution: 1:200, Cell Signaling Technology, Danvers, USA),
CD163 (monoclonal mouse, code: ncl-cd163; dilution: 1:200, Novocastra, Milan, Italy), SI00A9
(polyclonal rabbit, code: ab92507; dilution: 1:200, Abcam, Cambridge, United Kingdom),
Wnt3a (polyclonal rabbit, code: #09-162; dilution: 1:200, Merck Millipore, Darmstadt, Ger-
many), SOX9 (polyclonal rabbit, code: AB5809; dilution: 1:200, Millipore, Darmstadt, Ger-
many), and phosphorylated (p) B-catenin (Cell Signaling Technology, rabbit polyclonal, code:
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#4176, dilution 1:100). For immunohistochemistry, samples were than incubated for 20 minutes
at room temperature with secondary biotinylated antibody and, successively, with streptavidin-
Horse radish peroxidase (LSAB+, Dako, code K0690). Diaminobenzidine (Dako, code K3468)
was used as the substrate and the sections were counterstained with hematoxylin or Sirius Red
[25].

For immunofluorescence, non-specific protein binding was blocked with 5% normal goat
serum. Sections were incubated with primary antibodies, and subsequently incubated with
labeled isotype-specific secondary antibodies (anti-mouse AlexaFluor-488 and anti-rabbit
Alexafluor-594, Invitrogen Ltd, Paisley, UK) for 1 hour; nuclei were visualized with 4,6-diami-
dino-2-phenylindole (DAPI) [17].

To perform double immunostaining with two mouse or rabbit primary antibodies (CD68/
CD206), we followed a 3-step protocol [11, 26]: sections were incubated with anti-CD68 (or
anti-SOX9), an anti-mouse (or anti-rabbit) secondary fluorescent antibody (alexafluor-488)
was applied, and the second primary antibody was pre-labeled with a fluorophore using
APEX-594 labeling Kit (Invitrogen) and applied to the section. All antibodies were diluted
(1:50) and incubated for 1 hour. Slides were counterstained with 4’,6-diamidino-2-phenylin-
dole (DAPI). For all immunoreactions, adequate negative controls were also preformed.

Sections were examined with a Leica Microsystems DM 4500 B Microscopy (Weltzlar, Ger-
many) equipped with a Jenoptik Prog Res C10 Plus Videocam (Jena, Germany) and with an
Olympus Fluoview FV1000 confocal microscope equipped with FV10-ASW version 4.1 soft-
ware. Only biopsies containing at least 5 portal spaces were considered [27].

The extension of ductular reaction (DR) was evaluated by CK7 immunoreactivity. CK7
stained slides were scanned by a digital scanner (Aperio Scanscope CS System, Aperio Digital
Patology, Leika Biosystems, Milan, Italy) and processed by ImageScope [11, 17]. The area occu-
pied by CK7+ cells was quantified by an image analysis algorithm. The extension of DR was
expressed as the percentage of the parenchymal area occupied by reactive ductules [28]. Cho-
langiocytes lining the interlobular bile ducts were excluded from the counts.

To assess the commitment of progenitor cells toward a hepatocyte fate, the presence of
EpCAM+ hepatocytes has been investigated by immunohistochemistry. EpCAM+ hepatocytes
have been shown to represent the progeny of stem/progenitor cells within bile ductules [29,
30]. The presence of EpCAM+ hepatocytes was scored as: 0 = no positive cells, 1 (level 1) = sin-
gle occasional, and 2 (level 2) = clusters of EpCAM+ hepatocyte [29, 31].

The extension of portal fibrosis was evaluated on Sirius Red stains and the area occupied by
Sirius Red-positive fibers in the entire section was quantified as previously [32].

The number of macrophages with an anti-inflammatory phenotype was calculated as the
number of CD206+ cells per High Powered Field (HPF) [4, 33]. In DHA treated patients, Argi-
nasel and CD163 have been further used as markers of anti-inflammatory macrophages. The
presence of macrophages with an inflammatory phenotype was calculated as the number of
S100A9+ cells per High Powered Field (HPF) [4, 33, 34].

Wnt3a expression by CD68+ macrophages was evaluated in serial sections and by double
immunofluorescence as the number of positive macrophages per HPF. pf-catenin expression
by CK7+ HPCs was evaluated in serial sections and by double immunofluorescence; the aver-
age number of positive cells was divided by the average number of HPCs and data were
expressed as a percentage of positive cells [11]. Given the differences in term of DR extension
among examined biopsies, pp-Catenin-positivity was further calculated as the ratio between
the extension of positive DR (by ImageScope, Aperio) and the total DR extension.

For confocal microscopy imaging, fluorochrome unmixing was performed by acquisition of
automated-sequential collection of multi-channel images, in order to reduce spectral crosstalk
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between channels. The average number of cells that displayed a colocalization of Caspase-3/
CD68 or Arginasel/CD163 was assessed by counting 5 fields acquired using 20x.

Cytokine Assay

Cytokine-specific ELISA assays were used to determine serum levels of pro-inflammatory cyto-
kines, as previoulsy reported [17]. Concentrations were evaluated by manufacturing protocols
from RayBiotech Inc (Norcross GA, USA) for Interleukin (IL)-1p and IL-6 and from Immun-
diagnostik (AG, Bensheim, Germany) for tumour necrosis factor (TNF)-o.

Statistical methods

Data are indicated as median [25" percentile, 75™ percentile]. The nonparametric Mann—
Whitney U test was used to compare two groups. To evaluate the modification of variables
after DHA treatment, the Wilcoxon matched-pairs signed rank test was applied. The Spear-
man nonparametric correlation was used. A p-value of <0.05 was considered statistically sig-
nificant. Statistical analyses were performed using SPSS statistical software (SPSS Inc. Chicago
IL, USA).

Results
Anthropometrics laboratory data and Histo-pathology evaluation

We included 32 patients in this study. Twelve patients underwent lifestyle intervention pro-
gram (Table 1).

Besides, 20 patients were enrolled in the aforementioned trial and treated with DHA for 18
months (Table 2).

Table 1. Anthropometrics and laboratory data of twelve patients affected by NAFLD and who under-
went lifestyle intervention program and did not receive DHA administration.

TO(N=12) T1(N=12) P
Age (years) 12[9.95, 13.9] 12.7 [10.44, 14] 0.90
BMI (kg/mq) 26.07 [24.36, 28.99] 25.04 [23.3, 28] 0.38
WC (cm) 62 [58.15, 76.2] 58.2 [562.35, 71.3] 0.39
z-BMI 1.99 [1.59, 2.78] 1.82[1.36, 2.21] 0.29
AST (UIL) 54 [41.25, 64.75] 43 [37.7, 46.25] 0.001
ALT (UIIL) 79 [67, 90] 50 [42.5, 56.75] 0.001
GGT (UIL) 23.9 [20.75, 27.25] 25.4 [21.5, 27] 0.74
Total Cholesterol (mg/dl) 160.5 [142.5, 171.5] 154 [135.5, 166.7] 0.86
LDL Cholesterol (mg/dl) 106 [89.35, 114.75] 93.6 [74.4, 101] 0.25
HDL Cholesretol (mg/dl) 36 [28.75, 44] 41 [32.5, 46] 0.49
Triglycerides (mg/dl) 94 [78.5, 112] 94 [86.75, 102] 0.91
Fasting plasma glucose (mg/dl) 87 [81.75, 90] 82.35 [4.21] 0.07
Fasting plasma gluc-120’ 102 [96, 110] 95[82.7, 98] 0.08
Insulin (mU/L) 11.15[9, 15] 9.8[7.52, 13.2] 0.10
Insulin -120° 98 [66.5, 121.4] 95 [88, 101] 0.10
HOMA-IR 2.40[1.96, 3.35] 2.01[1.58, 2.74] 0.10
ISI 3.65[3.12, 5] 3.1[2.57,4.7] 0.05

Data are indicated as Median [25™ percentile, 75" percentile]. p values < 0.05 are in bold. TO = baseline;
T1 = at the end of treatment.

doi:10.1371/journal.pone.0157246.1001
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Table 2. Anthropometrics, laboratory and histological data of NAFLD patients who received DHA sup-

plementation for 18 months.

Age (years)

BMI (kg/mq)

WC (cm)

z-BMI

AST (UIL)

ALT (UIIL)

GGT (UIL)

Total Cholesterol (mg/dl)
LDL Cholesterol (mg/dl)
HDL Cholesretol (mg/dl)
Triglycerides (mg/dl)
Fasting plasma glucose (mg/dl)
Fasting plasma gluc-120°
Insulin (mU/L)

Insulin -120°

HOMA-IR

ISI

Steatosis

Ballooning

Portal Inflammation
Lobular Inflammation
Fibrosis

NAS

TO (N = 20)
10.9 [9.49, 12]
25.5[22.9, 27.1]
65 [60, 68.7]
2.23[1.98, 2.79]
57 [35.7, 67]
65 [47.7, 75]
2114, 27.2]
162 [134.7, 166]
77.5[69, 101]
52.5 [40.5, 64.7]
89.5[77.7, 102]
84.5[78.7, 90]
112.8 [100, 122.6]
14[7.27,19.4]
121 [101, 134.5]
2.19[1.56, 3.6]
3.63[3.1,5.3]
2[1,2]
1[1,1]
2[1,2]
101,2]
2[1,2]
4[3,4]

T1 (N = 20)
12[10.5, 13.7]
25[21.9, 26.2]
62.4 [58.3, 65.5]
2.04 [1.94, 2.63]
34 [31, 40]
35 [31, 40]
21.5[17.7, 24]
160 [132, 165]
63 [49.7, 80.6]
41[35.7, 51.2]
78 [62.2, 90.2]
79[74.7, 81.5]
101 [94.7, 113.2]
9.6 5.7, 11.3]
61.2[46.7, 107.9]
1.61[1, 1.96]
5.32[4.8, 6.8]
0[0,1]
0[0,1]
1[0.75,1]
1[0,1]
2[1,2]
2[1,2]

p
0.10
0.10
0.11
0.42

<0.001

<0.001
0.21
0.72
0.005
0.44
0.04
0.32
0.39
0.04

<0.001
0.05
0.04

<0.001
0.02
0.05
0.05
0.54
0.01

Data are indicated as Median [25" percentile, 75" percentile]. p values < 0.05 are in bold. TO = baseline;

T1 = at the end of treatment.

doi:10.1371/journal.pone.0157246.t002

With regard to anthropometric and laboratory data (Table 3), ALT, AST, HDL cholesterol,
Triglycerides, fasting plasma glucose- 120’, and ISI were significantly improved after DHA
treatment in comparison with patients who did not receive DHA.

Liver biopsies were classified into: NAFL (simple steatosis; N = 8), NASH (definite steatohe-
patitis, N = 19), borderline zonel pattern (N = 1), and borderline zone3 pattern (N = 4). The
NAS scores ranged from 1 to 7. Fibrosis of some degree was seen in all biopsy samples: stage 1c
in 13 samples, stage 2 in 18, and stage 3 in 1. Normal liver samples had normal histological

features.

HPCs in pNAFLD biopsies

The degree of HPC activation was evaluated by the extension of DR and the presence of IHs
was considered as a sign of HPC commitment towards hepatocyte fate [11]. Overall, pNAFLD
samples showed an evident DR and the area occupied by DR accounted for 4.20 [3.32, 5.35]
percent of liver parenchyma; in normal livers, DR was not present and the area occupied by

bile ductules was lower in comparison with DR extension in pNAFLD (1.90 [1.35, 2.05];

p<0.01). When histological classification was taken in consideration (Fig 1A), NASH biopsies
presented a higher DR expansion (median = 5.00 [3.60, 6.00]) compared with NAFL samples
(median = 4.05 [3.28, 4.50], p<0.05); values in the latter, however, were higher than those in
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Table 3. Comparison of anthropometrics and laboratory data between NAFLD patients who did not
receive DHA supplementation (T1—NAFLD) and NAFLD patients who received DHA supplementation

(T1—DHA).

T1 -NAFLD (N = 12) T1 -DHA (N = 20) P
Age (years) 12.7 [10.44, 14] 12[10.5, 13.7] 0.54
BMI (kg/mq) 25.04 [23.3, 28] 25[21.9, 26.2] 0.22
WC (cm) 58.2 [52.35, 71.3] 62.4 [58.3, 65.5] 0.68
z-BMI 1.82[1.36, 2.21] 2.04 [1.94, 2.63] 0.11
AST (UI/L) 43[37.7, 46.25] 34 [31, 40] 0.02
ALT (UIIL) 50 [42.5, 56.75] 35 [31, 40] 0.001
GGT (UIL) 25.4[21.5, 27] 21.5[17.7, 24] 0.10
Total Cholesterol (mg/dl) 154 [135.5, 166.7] 160 [132, 165] 0.09
LDL Cholesterol (mg/dl) 93.6 [74.4, 101] 63 [49.7, 80.6] 0.001
HDL Cholesretol (mg/dl) 41 [32.5, 46] 41 [35.7, 51.2] 0.03
Triglycerides (mg/dl) 94 [86.75, 102] 78 [62.2,90.2] 0.002
Fasting plasma glucose (mg/dl) 82.35 [4.21] 79 [74.7, 81.5] 0.92
Fasting plasma gluc-120 95 [82.7, 98] 101 [94.7, 113.2] 0.04
Insulin (mU/L) 9.8 [7.52,13.2] 9.6 [5.7, 11.3] 0.27
Insulin -120° 95 [88, 101] 61.2 [46.7, 107.9] 0.81
HOMA-IR 2.01[1.58, 2.74] 1.61 [1, 1.96] 0.05
ISl 3.1[2.57, 4.7] 5.32[4.8, 6.8] 0.01

Data are indicated as Median [25™ percentile, 75" percentile]. p values < 0.05 are in bold. T1 = at the end
of treatment.

doi:10.1371/journal.pone.0157246.t003

normal livers (p< 0.05). EpCAM+ hepatocytes were not found in NAFL biopsies (0/8); con-
trarily, single occasional or clusters of EpCAM+ hepatocytes were present in 14/19 (73%)
NASH biopsies. The presence of EpCAM+ hepatocytes was correlated with DR (r = 0.611,
p<0.001). Both DR extension and the presence of EpCAM+ hepatocytes were significantly cor-
related with NAS score (r = 0.498 and r = 0.442, respectively; p<0.01). Finally, DR extension
was strongly correlated with portal fibrosis extension (r = 0.719, p<0.01; Fig 1B and 1C).

Macrophage activation in pNAFLD biopsies

Overall, in pNAFLD biopsies, the number of total (CD68+) macrophages was increased
(median: 24.4 [17.35, 31.43]) in comparison with normals (median: 15.80 [13.70, 17.95],
p<0.05, Table 4).

When histological classification was taken in consideration (Fig 2A, Table 4), the number of
total macrophages was higher in NASH (median: 28.80 [21.80, 36.50]) in comparison with
NAFL biopsies (median: 17.30 [14.25, 23.60], p<0.02).

Then, portal and lobular CD68+ macrophages were separately counted; overall, the number
of portal but not lobular macrophages was significantly increased in NAFLD in comparison
with normal biopsies (Table 4). When histological classification was taken in consideration,
biopsies with NASH showed an increased number of portal and lobular CD68+ macrophages
in comparison with NAFL biopsies and normal samples (Fig 2A and 2B and Table 4). More-
over, biopsies with NAFL showed a higher number of portal but not lobular macrophages in
comparison with normal specimens (Table 4). In NASH, CD68+ macrophages were found in
close association with reactive ductules (Fig 2C).
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DR extension (%)

NAFL

p=0.0283

NASH

p= 0.0009
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[ NAFL
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NASH

Fig 1. Ductular Reaction (DR) and portal fibrosis in pediatric NAFLD. A) Immunohistochemistry for cytokeratin (CK)7 in pediatric
NAFLD biopsies. DR extension is increased in definite steatohepatitis (NASH) in comparison with not-SH (NAFL). Original Magnification
(OM) = 10x. B-C) Immunohistochemistry for CK7 is counterstained with Sirius Red. DR extension is associated with portal fibrosis.

OM = 10x (B) and 20x (C). (D) Box-and-Whisker Plots (median, quartile ranges, minimum—maximum) regarding DR and EpCAM

+ hepatocytes.

doi:10.1371/journal.pone.0157246.9001

Then, the number of macrophages expressing a marker of pro-inflammatory macrophages
(S100A9) was evaluated (Fig 2D). Overall, in pNAFLD biopsies, the number of total SI00A9+
macrophages was increased (median: 13.00 [7.25, 15.00]) in comparison with normal samples
(median: 5.00 [4.00, 6.00], p<0.05, Table 4). When histological classification was taken in

Table 4. Macrophage number and phenotype in liver biopsies obtained from normal subjects and in pediatric patients affected by NAFLD.

Normal (N = 6)

CD68+ M¢ 15.8 [13.7, 17.95]
S100A9+ M¢ 5.00 [4.00, 6.00]
CD206+ M¢ 15.10[12.50, 16.70]
Lo CD68+ M¢ 11.20 [8.85, 11.65]
Lo S100A9+ M¢ 4.00 [3.50, 5.00]
Lo CD206+ M¢ 10.60 [8.80, 13.85]
Po CD68+ M¢ 3.95[3.12, 5.72]
PoS100A9+ M¢ 1.00 [0, 1.00]
Po CD206+ M¢ 3.50 [2.60, 4.45]

Data are indicated as Median [25" percentile, 75" percentile].
* = p<0.05 versus Normal;
# = p<0.05 versus NAFL and Normal.

NAFLD (N = 32)

24.4[17.35, 31.43]*

13.00 [7.25, 15.0]*
9.90 [7.67, 11.25]*
11.15 [9.47, 15.95]
8.50 [6.00, 11.00]*
6.00 [3.92, 7.56]*
11.00 [7.62, 14.75]*
5.50 [5.00, 9.00]*
4.00 [3.00, 5.00]

NAFL (N = 8)
17.30 [14.25, 23.60]
7.00 [7.00, 10.50]*

11.00 [9.91, 14.25]
9.30 [9.00, 11.10]
6.00 [5.00, 6.00]*
6.50 [4.50, 9.91]*
8.0 [5.25, 10.00]*
5.00 [4.00, 5.50]*
4.50 [4.00, 5.00]

NASH (N = 19)
28.80 [21.80, 36.50]#
15.00 [13.00, 15.00] #

9.15[7.32, 10.13]#
14.00 [10.30, 19.50]#
11.00 [9.00, 12.00]#

5.30 [3.52, 7.00]*
14.00 [10.00, 15.70]*

6.00 [5.00, 10.00]

4.00 [2.75, 4.00]

M¢ = macrophages; lo = lobular; po = portal. NAFLD biopsies were further classified in accordance with overall diagnosis in Non-alcoholic Fatty Liver
(NAFL or simple steatosis) and in Non-alcoholic Steato-hepatitis (NASH).

doi:10.1371/journal.pone.0157246.t004
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Fig 2. Macrophage subsets in pediatric NAFLD. A) Immunohistochemistry for CD68 in pediatric NAFLD biopsies. The number of
CD68+ macrophages is increased (yellow arrows) in definite steatohepatitis (NASH) in comparison with not steatohepatitis (simple
steatosis: NAFL). Original Magnification (OM) = 10x. B) Immunohistochemistry for CD68 in pediatric NAFLD biopsies. The number of
portal CD68+ macrophages is increased (yellow arrows) in NASH in comparison with NAFL. OM = 10x. C) Immunohistochemistry for
CD68 and Cytokeratin (CK) 7 in serial section shows that portal macrophages (arrows) are spatially associated with reactive ductules
(dotted red line and arrowheads). These data were confirmed by immunofluorescence for Pan-CK and CD68. OM = 20x. D)
Immunohistochemistry for S100A9 in pediatric NAFLD biopsies. The number of S100A9+ macrophages is increased (yellow arrows) in
NASH in comparison with NAFL. Original Magnification (OM) = 10x. E) Immunohistochemistry for CD206 in pediatric NAFLD biopsies.
The number of CD206+ macrophages is reduced (yellow arrows) in definite NASH in comparison with NAFL. Original Magnification (OM)
=10x.

doi:10.1371/journal.pone.0157246.9002

consideration (Fig 2D, Table 4), the number of total SI00A9+ macrophages was higher in
NASH (median: 15.00 [13.00, 15.00]) in comparison with NAFL biopsies (median: 7.00 [7.00,
10.50], p<0.02).

Then, portal and lobular SI00A9+ macrophages were separately counted; overall, the num-
ber of portal and lobular macrophages was significantly increased in NAFLD in comparison
with normal biopsies (Table 4). When histological classification was taken in consideration,
biopsies with NASH showed an increased number of lobular SI00A9+ macrophages in com-
parison with NAFL biopsies and normal samples (Fig 2D and Table 4) and a higher number of
portal SI00A9+ macrophages in comparison with normal samples. Moreover, biopsies with
NAFL showed a higher number of S100A9+ portal and lobular macrophages in comparison
with normal specimens (Table 4).

Finally, the number of macrophages expressing a marker of anti-inflammatory macrophages
(CD206) was evaluated. Overall, in pNAFLD biopsies, the number of CD206+ macrophages
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was lower (median: 9.90 [7.67, 11.25]) in comparison with normal samples (median: 15.10
[12.50, 16.70], p<0.01).

When histological classification was taken in consideration (Fig 2E), the number of M2
macrophages was lower in NASH (median: 9.15 [7.32, 10.13]) in comparison with NAFL biop-
sies (median: 11.00 [9.91, 14.25], p<0.05).

Then, portal and lobular CD206+ macrophages were separately counted; overall, the num-
ber of lobular but not portal CD206+ macrophages was significantly reduced in NAFLD when
compared with normal biopsies (Table 4). When histological classification was taken in consid-
eration, biopsies with NASH showed a lower number of lobular CD206+ macrophages in com-
parison with NAFL biopsies and normal samples (4). Moreover, biopsies with NAFL showed a
lower number of lobular but not portal CD206+ macrophages in comparison with normal
specimens (Table 4).

The phenotypes of liver macrophages were correlated with the histo-pathological features of
patients’ livers (Table 5). In particular, the number of CD68+, S100A9+, and CD206+ macro-
phages was correlated with NAS score (Table 5); moreover, the number of SI00A9+ and
CD206+ macrophages was correlated with steatosis and hepatocyte ballooning. When the
number of portal macrophages was separately evaluated, it strongly correlated with the exten-
sion of portal fibrosis (r = 0.815, p<0.001).

Effects of DHA treatment on HPC compartment and macrophage
subsets

Twenty patients were treated with DHA for 18 months. Biopsies after the 18-month DHA
treatment (T1) have been collected and compared with those at the baseline (T0). Variations in
anthropometric and laboratory data were included in Table 2 and previous reports [14, 17]. As
regard histo-pathological features, DHA treatment determined a significant reduction of liver
steatosis, ballooning, and NAS (Table 2); furthermore, DR (median = 2.30 [2.30, 3.65]) was
reduced at T1 in comparison with biopsies at the baseline (median = 5.00 [3.80, 6.15]; p<0.01).
Modification of DR was strictly correlated with NAS score (r = 0.65; p<0.05) but not with
other histo-pathological parameters (fibrosis, steatosis, ballooning, and lobular inflammation).

The number of total CD68+ macrophages (Fig 3A, Table 6) was not modified after DHA
treatment (Before Treatment: Median = 22.00 [17.88, 32.35]; After Treatment: Median = 19.85
[15.88, 22.86]). Similarly, the number of lobular CD68+ macrophages was not modified
after DHA treatment (Before Treatment: Median = 10.50 [9.75, 18.00]; After Treatment:
Median = 11.25 [10.63, 15.60]); besides, the number of portal CD68+ macrophages was
reduced after DHA treatment (Before Treatment: Median = 10.70 [7.87, 13.50]; After Treat-
ment: Median = 6.60 [4.80, 7.70]; p<< 0.02).

The number of total S100A9+ macrophages (Fig 3B, Table 6) was reduced after DHA treat-
ment (Before Treatment: Median = 14.00 [11.50, 23.20]; After Treatment: Median = 6.15 [3.30,
8.62]; p = 0.010). Moreover, the number of lobular S100A9+ macrophages was reduced after

Table 5. Correlations between total macrophage number and histo-pathological parameters in all pediatric NAFLD biopsies at baseline (N = 32).

NAS
CD68+ M¢ r=0.59, p = 0.044
S100A9+ M¢ r=0.79, p< 0.001
CD206+ M¢ r=-0.89, p =0.00

M¢ = macrophages; NAS = NAFLD Activity Sc

doi:10.1371/journal.pone.0157246.t005

Steatosis Ballooning Lobular inflammation
r=0.51. p=0.09 r=0.46,p=0.13 r=0.48,p=0.16
r=0.71, p = 0.002 r=0.64, p = 0.002 r=0.31, p=0.91

3 r=-0,79, p=0.012 r=-0,81, p=0.030 r=-0.09, p=0.58

ore. p values < 0.05 are in bold.
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Fig 3. Docosahexaenoic acid (DHA) treatment modifies macrophage subsets in pediatric NAFLD. A) Immunohistochemistry for
CD68 in pediatric NAFLD biopsies. The number of portal (red arrowheads) CD68+ macrophages (M®s) is reduced after DHA treatment
(T1) in comparison with baseline (TO) biopsies. No modifications in lobular CD68+ M® number (yellow arrows) are observed at T1.
Original Magnification (OM) = 10x. B) Immunohistochemistry for S100A9 in pediatric NAFLD biopsies. The number of S100A9

+ macrophages is reduced after DHA treatment (T1) in comparison with baseline (TO) biopsies. C) Double immunofluorescence for
CD206 and CD68 in pediatric NAFLD biopsies. CD206+ macrophages are increased (yellow arrows) after DHA treatment (T1) in
comparison with baseline (TO) biopsies. Original Magnification (OM) = 10x.

doi:10.1371/journal.pone.0157246.9003

DHA treatment (Before Treatment: Median = 8.20 [6.00, 16.00]; After Treatment: Median = 4.65
[2.85,7.50], p = 0.024); similarly, the number of portal SI00A9+ macrophages was reduced after
DHA treatment (Before Treatment: Median = 5.50 [4.50, 8.50]; After Treatment: Median = 1.00
[0.45,1.75]; p = 0.0038).

On the other hand, the number of lobular (but not total or portal) CD206+ macrophages
(Fig 3C, Table 6) was increased after DHA treatment (Before Treatment: Median = 4.00 [3.75,
6.15]; After Treatment: median = 9.50 [7.00, 12.25]; p<0.05; Fig 3A and 3B). The increase of
lobular anti-inflammatory macrophages spectrum was further confirmed counting the number
of double positive CD163 and Arginase-1 macrophages (Before Treatment: median = 8.00
[5.17,10.50]; After Treatment: median = 13.00 [9.66, 13.33]; p<0.05) (Fig 4A). Accordingly,
the number of lobular CD206+ macrophages was correlated with the number of CD163+/Argi-
nasel+ macrophages (r = 0.720; p = 0.023).
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Table 6. Macrophage number and phenotype in liver biopsies obtained from pediatric patients
affected by NAFLD at the baseline (T0) and at the end of DHA administration (T1).

TO (20) T1 (20) p
CD68+ Mo 22.00 [17.88, 32.35] 19.85 [15.88, 22.86] 0.22
S100A9+ M¢ 14.00 [11.50, 23.20] 6.15[3.30, 8.62] 0.01
CD206+ Mo 9.60 [5.25, 11.00] 15.00 [12.20, 18.66] 0.06
Lo CD68+ M¢ 10.50 [9.75, 18.00] 11.25 [10.63, 15.60] 0.84
Lo S100A9+ M¢ 8.20 [6.00, 16.00] 4.65[2.85, 7.50] 0.02
Lo CD206+ M¢ 4.00[3.75, 6.15] 9.50 [7.00, 12.25] 0.04
Po CD68+ M¢ 10.70 [7.87, 13.50] 6.60 [4.80, 7.70] 0.01
PoS100A9+ M¢ 5.50 [4.50, 8.50] 1.00[0.45, 1.75] 0.00
Po CD206+ M¢ 3.80 [1.50, 5.75] 4.50[3.50, 7.11] 0.31

Data are indicated as Median [25" percentile, 75" percentile]. Mo = macrophages; lo = lobular; po = portal.
TO = baseline; T1 = at the end of treatment. p values < 0.05 are in bold.

doi:10.1371/journal.pone.0157246.t006

DHA treatment caused the increased number of apoptotic macrophages (Before Treatment:
median = 9.67 [7.17, 10.33]; After Treatment: median = 11.67 [10, 13.33]; p< 0.05; Fig 4B).
The number of apoptotic macrophages is correlated with the number of CD206+ (r = 0.650;
p< 0.05) and CD163+/Arginasel+ macrophages (r = 0.729; p = 0.021, Table 6).

As regard histo-morphological parameters, the number of SI00A9+ macrophages was
directly correlated with NAS and DR extension and the number of CD206+ macrophages was
inversely correlated with NAS, hepatocyte steatosis and lobular inflammation (Table 7).
Finally, as regard clinical parameters, SI00A9+ macrophages and DR extensions are correlated
with serum levels of pro-inflammatory cytokines such as TNFa, IL-6, and IL-1B (Table 8).

DHA treatment induced Wnt pathway activation in pNAFLD

Before DHA treatment (Fig 4), the expression of Wnt3a by macrophages in pNAFLD was low
with rare positive macrophages within liver parenchyma (Median = 1.00 [1.00, 1.50]). After
DHA treatment, the number of Wnt3a+ macrophages was significantly increased
(Median = 3.50 [2.15, 4.50]) in comparison with biopsies before the treatment (p<0.02).

Interestingly, the increasing of Wnt3a+ macrophages after DHA treatment was directly cor-
related with the number of CD206+ macrophages (r = 0.88, p<0.01, Table 7) and inversely
correlated with the number of SI00A9+ macrophages (r = -0.73, p<0.05, Table 7), NAS score
(r=-0.778, p<0.01), steatosis (r = -0.691, p<0.05), DR extension (r = -0.68, p<0.05), and
serum levels of pro-inflammatory cytokines (TNF-alpha: r = 0.641, p<0.05; IL-1B: r = 0.735,
p<0.02).

In pNAFLD biopsies at the baseline, the percentage of pp-Catenin+ HPCs (Fig 5) was higher
in NASH (Median = 11.90 [6.42, 13.65]) in comparison with NAFL biopsies (Median = 5.20
[1.50, 10.85]); moreover, when biopsies were sub-divided according to the presence of EpCAM
+ hepatocytes, biopsies with EpCAM+ hepatocytes contained more pp-Catenin+ HPCs
(Median = 12.30 [12.00, 14.78]) in comparison with those without (Median = 6.20 [3.25, 11.53]).
After DHA treatment, the percentage of pp-Catenin+ HPCs was significantly increased
(Median = 50 [20, 55]) in comparison with biopsies before the treatment (p<0.01). Given the
differences in term of DR extension among examined biopsies, p-Catenin positivity was further
calculated as the ratio between the extension of positive DR and the total DR extension. Accord-
ingly, DHA treatment determined a marked increase of pp-Catenin+ cells within DR (Median =
2.70 [1.04, 3.93]) in comparison with biopsies at the baseline (Median = 0.78 [0.28, 1.27];
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Fig 4. Phenotype, apoptosis and wnt3a expression in macrophages are modified by docosahexaenoic acid (DHA) treatment in
pediatric NAFLD. A) Immunofluorescence for Arginase-1 and CD163 confirms the increase of macrophages (M®s) with an anti-
inflammatory phenotype after DHA treatment (T1) in comparison with baseline biopsies (T0). Original Magnification (OM) = 20x. B)
Immunofluorescence for Caspase-3 and CD68 shows the increased macrophage apoptosis at T1. OM = 20x. C) Immunohistochemistry
for Wnt3a in pediatric NAFLD biopsies. The number of macrophages expressing Wnt3a is increased after DHA treatment (arrows) in
comparison with baseline biopsies. OM = 10x. D) Immunofluorescence for Wnt3a and CD68 in biopsies after DHA confirms the Wnt3a
expression in M®s (arrows). OM = 10x.

doi:10.1371/journal.pone.0157246.9004

P<0.02). pp-Catenin+ cells within reactive ductules were positive for the progenitor cell marker
SOXO9 (Fig 5C). The increasing of pp-Catenin+ HPCs was directly correlated with the number
of Wnt3a+ macrophages (r = 0.869, p<0.001) and the presence of EpCAM+ hepatocytes
(r=0.620, p<0.05) and inversely correlated with NAS score (r = -0.669, p<0.05) and DR exten-
sion (r = -0.637, p<0.05).

Table 7. Correlations between modifications of macrophage phenotype, histo-pathological features, ductular reaction and serum inflammatory
cytokine levels after DHA treatment.

CD68+ M¢
S100A9+ M¢
CD206+ M¢

NAS Steatosis Ballooning LI Wnt3a+ M¢ Apoptotic M¢
r=0.11,p = 0.74 r=0.18,p = 0.60 r=0.12,p=0.71 r=0.20, p = 0.57 r=-0.12,p=0.73 r=-0.03, p=0.94
r=0.71, p = 0.03 r=0.61,p=0.06 r=0.10,p = 0.77 r=0.43,p=0.22 r=-0.73,p=0.02 r=-0.44,p=0.20
r=-0.90, p< 0.01 r=-0,73, p=0.02 r=-0,18,p =0.62 r=-0.68, p=0.03 r=0.88, p< 0.01 r=0.65, p = 0.04

M¢ = macrophages; NAS = NAFLD Activity Score; LI = lobular inflammation; p values < 0.05 are in bold.

doi:10.1371/journal.pone.0157246.t007
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Table 8. Correlations between modifications of macrophage phenotype, histo-pathological features, ductular reaction and serum inflammatory
cytokine levels after DHA treatment.

NAS WNT3a S100A9 TNFa IL-6 IL-1B
DR r=0.65, p =0.04 r=-0.68, p=0.04 r=0.71,p =0.03 r=0.65, p =0.04 r=0.83, p = 0.005 r=0.782, p = 0.01
S100A9+ M¢ r=0.71, p=0.03 r=-0.73, p = 0.02 r=1.00,p=. r=0.83, p< 0.01 r=0.74, p = 0.02 r=0.81, p< 0.01

M¢ = macrophages; NAS = NAFLD Activity Score; DR = Ductular Reaction; TNF = Tumor Necrosis Factor; IL = interleukin. p values < 0.05 are in bold.

doi:10.1371/journal.pone.0157246.t008

Discussion

The main findings of the present study indicate that in pNAFLD: i) the progression towards
NASH is characterized by the modification of the resident macrophage pool; ii) in pNAFLD,
the macrophage activation is correlated with NAS, DR, and degree of portal fibrosis; iii) the
administration of DHA in pediatric patients is able to modulate macrophage activation by
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Fig 5. Modification of phosphorylated (p) B-catenin expression in ductular reaction and associated hepatic progenitor cells
(HPCs) in pediatric NAFLD after docosahexaenoic acid (DHA) treatment. A) Immunofluorescence for phosphorylated (p) B-catenin
and Cytokeratin(CK)7 in pediatric NAFLD biopsies. After DHA treatment, the number of pB-catenin positive cells within reactive ductules
is increased (yellow arrows); green arrows indicate CK7+ ductular cells not expressing pB-catenin. Original Magnification (OM) = 20x. B)
Immunohistochemistry for pB-catenin in pediatric NAFLD biopsies after DHA treatment confirms the expression of pp-catenin by ductular
reaction (arrows). OM = 10x. C) Immunofluorescence for phosphorylated (p) B-catenin and SOX9 in pediatric NAFLD biopsies. pf-
Catenin+ cells within reactive ductules were positive for the progenitor cell marker SOX9 (arrows). OM = 40x.

doi:10.1371/journal.pone.0157246.9005
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reducing total liver macrophages and by modifying the number of macrophages with a pro-
inflammatory and anti-inflammatory phenotypes; iv) the modulation of macrophage activa-
tion by DHA treatment is correlated with the reduction of serum level of inflammatory cyto-
kines, with increased macrophage apoptosis, and with the up-regulation of macrophage Wnt3a
expression; and v) the Wnt3a expression by macrophages is correlated with B-catenin phos-
phorylation in ductular reaction.

In adult NAFLD, as a consequence of hepatocyte death, liver macrophages can accumulate
large amounts of lipids, transform into foam cells and drive progression towards steatohepatitis
[4]. Our results indicated that pNAFLD biopsies were characterized by the modification of
macrophage pool. In accordance with recent guidelines on macrophage nomenclature, we used
different markers (CD206, SI00A9, Arginase-1, CD163) to define activation states on the anti-
inflammatory or pro-inflammatory spectrum range [5, 34]. In our setting, simple steatosis
(NAFL) is characterized by an initial increase of portal (but not lobular or total) macrophage
number and a modification of lobular macrophage phenotype (pro-inflammatory rather than
anti-inflammatory); then, the progression to NASH is characterized by a further increase of
overall macrophage population and the predominance of macrophages with a pro-inflamma-
tory rather than an anti-inflammatory phenotype.

The release of macrophage-derived mediators could contribute to inflammation and fibro-
genesis [4, 35]; in adult NAFLD, portal macrophage infiltration is strongly correlated with
HPC activation and portal fibrosis [36]. In pNAFLD, HPC activation takes place as a conse-
quence of hepatocyte cell cycle arrest and apoptosis [11, 37]. Proliferating HPCs are able to
determine the local activation of fibrogenic cells, thus inducing collagen-I deposition and
establishing a pro-fibrogenic loop [38, 39]. In parallel, our data showed that, in pNAFLD, pro-
gressive portal macrophage accumulation is correlated with portal fibrosis; portal macrophages
were spatially close to DR, which was, in turn, correlated with portal fibrosis. These observa-
tions seem to suggest the cross-talk between macrophages and HPCs as a main driver of portal
fibrosis in pNAFLD.

To test the hypothesis that macrophage activation is associated with the progression
towards NASH and HPC activation, liver biopsies from patients treated with DHA for
18-months were examined. In this clinical setting, the treatment with algae DHA improved
liver histo-pathology (steatosis, NAS) and was able to reduce the serum ALT levels and triglyc-
erides [14, 15]. Short-term DHA treatment seems to be not sufficient to achieve clinical amelio-
ration, thus suggesting that not less than 12 months of therapy are needed to obtain both the
anti-steatotic and anti-infllammatory effects [40]. In an experimental model, dietary DHA sup-
pressed hepatic markers of oxidative stress, inflammation and fibrosis [41]. DHA modulates G
protein-coupled receptor 120 (GPR120), acting as a negative feedback signal on NF-xB phos-
phorylation induced by Toll Like Receptors and TNF-o. cascade on macrophages [16, 42].
GPR120 could further decrease pro-inflammatory and increase anti-inflammatory gene
expression in macrophages [4].

Notably, after DHA treatment, the number of CD68+ macrophages was unchanged; how-
ever, we observed a reduction of pro-inflammatory (S100A+) macrophages and an increase of
lobular macrophages with an anti-inflammatory phenotype (CD206+, CD163+, Arginase-1+);
these modifications correlated with the improvement of histo-pathological parameters such as
NAS, hepatocyte staetosis and lobular inflammation. Furthermore, DHA determined the
increasing of apoptotic macrophages; interestingly, the number of apoptotic macrophages
directly correlated with the number of CD206+ macrophages, thus suggesting that the apopto-
sis of pro-inflammatory macrophage could have a role in the determination of macrophage
activation state induced by DHA treatment.
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As regards clinical parameters, the modification of macrophage activation state induced by
DHA supplementation correlated with the reduction of serum levels of pro-inflammatory cyto-
kines. Given the emerging role of the liver as a source of inflammatory mediators in the course
of metabolic syndrome and in the progression of atherosclerosis [43, 44], this association needs
further attention and should be evaluated as a clinical outcome in larger studies.

Previous experimental studies in rodents clearly indicated that the efficient phagocytosis of
hepatocyte debris determines the induction of Wnt3a expression in macrophages and the up-
regulation of Wnt signaling in nearby HPCs, promoting their specification to hepatocytes [8].
In the present manuscript, Wnt3a-positive macrophages significantly increased after DHA
treatment in correlation with phenotype changes; the presence of Wnt3a-positive macrophages
was correlated with B-catenin phosphorylation in SOX9+ HPCs within DR; moreover, pp-cate-
nin expression in HPC correlated with the presence of scattered EpCAM+ hepatocytes. In
human pathologies, EpCAM+ hepatocytes have been shown to represent the progeny of stem/
progenitor cells within bile ductules [29, 30] participating, in part, in the repopulation of liver
parenchyma by the bud sequence [29, 45].

Although the present study is not mechanistic, our results are in keeping with previous
experimental evidence on the relationship between macrophage activation and progenitor cell
response [8] and suggest the possibility that this cross-talk can have a role in the course of
pNAFLD.

In conclusion, macrophage infiltration and activation seem to have a key role in the progres-
sion toward NASH in pNAFLD; the induction of the pro-inflammatory macrophage activation
could trigger HPC proliferation and the activation of pro-fibrogenetic loop; the administration
of dietary DHA influences macrophage activation and could have a role in the modulation of
HPC response by Wnt3a production.
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