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I. 

The electric resistance of a suspension of homogeneous spheres is 
given by  the relation 

r # r -  1 r ~ / r 2 -  11 
- -  = p -  (1) 
rl/r + 2 rdr~ + 2 

in which r, rl, and r~ are the resistances 2 of the suspension, the sus- 
pending, and suspended phases respectively, and p is the volume 
concentration of the suspended phase. 

Since emulsions, suspensions of living cells, and colloidal particles 
have an interfacial surface layer which is markedly different from 
both the interior and exterior phases, the suspended phase can only be 
considered homogeneous under a few special conditions. As has been 
shown by  Maxwell (9), §313, a sphere of radius a~ and resistance 
r, surrounded by  a concentric spherical shell of internal radius a~, 

* National Research Council Fellow. 
1 This equation has been variously derived in the early theory of several physical 

problems but it often disagrees with the data (Lowry (8)) for atomic and molecular 
phenomena--probably because the assumptions underlying it are not valid in 
these cases. It has, however, been found by Fricke and Morse (3) to apply 
accurately to the resistance of cream up to 62 per cent volume concentration of 
butter fat, and its use is probably justified for the resistance of suspensions of 
spheres which are of much larger than atomic dimensions. A simple derivation is 
given by Maxwell (9), §314. 

2 Unless otherwise stated, all resistances, reactances, and impedances are 
specific, i.e., for a centimeter cube. 
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external  radius as, and resistance rs, Fig. 1, can be replaced by  a 
homogeneous sphere of radius as and equivalent  resistance F, where 

(2t~ + rs) ~ + (r, - r3) a: 
f2 ~ fa 

3 2(r~ r3) 3- (2r, + r3) % -- -- ~ 

FIG. 1. 

When a2 = as - ~ = a - ~, where ~ is a small quan t i ty  such~that 
higher powers than the first can be neglected, 

( 2 ~ r~ 
I - - - -  1- -  

If  further,  r#rs is small compared with unity,  

f3 
~2 = r2 ÷ - - .  (2 )  

a 

Assuming tha t  the current  flow in the surface layer  is radial, then ~rs, 
which is a resistance per unit  area, m a y  be replaced by  z3, a complex 
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impedance per unit area given in alternating current vector notation 
(1, 7, 11) by 

z ,  = r ,  + j z ,  (3) 

where the resistance per unit area ra is in series with a reactance per 
unit area x3 and j is the imaginary operator. Substituting z3 of Eq. 
(3) for a rs in Eq. (2) and replacing ,% by h the equivalent complex 
impedance of the sphere, we have 

~ : r, + zda : r2 + ta/a + jx,/a.  (4) 

Solving Eq. (1) for r,  

(I - p) n + ( 2 + p )  rz 
• : n (1 + 2 p )  rt + 2 ( 1  --  p) r," 

Substituting ~s for r= and replacing r by z, the complex impedance of 
the suspension, 

( l  - -  p) r i  "3 t" (2 *[" p) (f ,  "J~ f*/a)  "4- (2 + p) j x , /a  (s) 
z 1" r l  (1 + 2p ) rx + 2(1 -- O) (rl + rs/a) + 2(I  - -  p) j x l /a  

On the assumption that r, and rt are constant, when z~ --~ ~,  z is a 
pure resistance 

2 + p  (6) r e "  n 2 ( l _ p ) ,  

and when z, --, O, z is again a pure resistance 

(1 --  p) r l  + (2 + P) r l  
• ® ffi l ' t  (1 + 2p) r t  + 2(1 --  p) r2" (7) 

These are two cases in which the spheres may be considered homo- 
geneous. 

Solving Eq. (5) for z3 

fo - -  Z 

where 

E (1 + 2°) ,~] (9) 
~ , = r ~ a  t + 2 ( i _  p------~" " 
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When r2 
brackets varies from 0.3 to 0.5. Thus  ~, is of the same 
magnitude as r~a and more or less constant  for m a n y  cases. 

Separating z into its resistance and reactance components,  

z = r + j x ,  

the absolute value or magni tude  of [z~[ is given by  

1~+1 ~ ( r - - , ~ ) ' + x '  
(r0 - ,)' + ~* 

ELECTRIC IMPEDANCE OF SUSPENSIONS 

= 3r~, and p varies from 0.2 to 0.4, the second term in the  
order of 

In the special case where r3 is constant  or zero, it can be shown tha t  

( , -  ,~) 0'o - , )  = ='. 

(10) 

T h e n  

X 3  s F - -  ~ ' ~  
. . . .  (11) 
,~tl re - -  • I 

a n d  also 

• +_' = I l' - , o '  (12) 

I I .  

When r2 is finite and z3 varies with the frequency n of the measuring 
current  so tha t  when n --~ 0, z~ ---> ~ ,  and when n --~ co, z~--~ 0, then 
[z I from Eq. (5) as a function of n is shown in Fig. 2. 

I f  r~ varies such tha t  

r3 = m x3 (13)  

then it  can be shown tha t  as x~ varies from 0 to ~ the locus of the end 
of the impedance vector  when p lo t ted  on the complex plane is an arc of 
a circle as shown in Fig. 3. Also the ratio of the chords a and b is 

a ]z+} 
= - - .  (14) 

"r 

At the points r= and r0, the slopes of the tangents  are respectively 
1/m and - 1/m. 
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Izl 

i i =  

0 n 

FIG. 2. 

I ~ o o  % 
I m i 
! i 

! 

FIG. 3. 
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The case where m = 0, which gives a circle with its center on the 
resistance axis, has been treated in the first part  of a paper by Carter 
(2). I t  will be noted also that  his Eq. (10), for the case of a single 
reactance in a resistance network, is, as it should be, the exact counter- 
part  of Eq. (5), above, when r3 is constant. 

III. 

Zobel (13) has shown that certain types of two terminal networks--  
of which the circuits of Fig. 4 are special cases--can be made equivalent 
both in impedance and in phase angle for all frequencies. As a result 

I 

A 

? 

.c 

B 

F~G. 4. 

of this, such circuits containing any number of resistances and a 
capacity, can be made equivalent to either one of the two simple 
circuits. Thus it is evident that the number, location, and magnitude 
of the elements of such a circuit cannot be determined solely by 
electrical measurements made at the terminals, and that the number of 
circuits which can be made to fit a given set of data is probably 
limited only by the patience and ingenuity of the computer. 

Fricke and Morse (6) found that their measurements of the resist- 
ance and capacity of suspensions of red blood cells at various frequen- 
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cies could be accurately fitted to a circuit of type A, where they 
thought of ARx as due to the suspending medium, AR2 to the interiors 
of the corpuscles, and AC to the capacities at their surfaces. The  
values of these three quantities can be found for a suspension of 

1 
spheres from Eq. (5) when r3 = 0 and x~ -- - - - ,  ~ being 2~ times 

68c0 

the frequency in cycles per second. In this case aR1 depends on rl, 

and p, AR~ on rl, as well as on r~ and p, while 

1 
aC = ~ (2 + ,d ,o )  ( l  - , z l , J  a~a. 

For small volume concentrations this becomes approximately 

3 
aC ~ (1 - rl/,0) acs, (lS) 

which is the expression derived by Fricke (4) for spheres by a quite 
different analysis. Circuits of type B have been computed which fit 
the data, but they have no particular interest since Eq. (15) was 
derived on the basis of type A. 

In his work on the impedance of tissues Philippson (10) assumed a 
circuit of type B where BR2 and BC represented the resistances and 
capacities of the physiological cell membranes, and 8R1 the resistances 
of the protoplasm of the cells in a centimeter cube of tissue. The 
data have been used equally well to compute circuits of type A, in 
which aRx might be thought to be due to the intercellular electrolytes, 
~C to the membrane capacities, while aR2 involves the resistances of 
the protoplasm. Thus the interpretation of these data should not be 
made intuitively. 

Whereas Fricke (5) found the red blood cell membrane to have a 
static capacity (i.e. independent of frequency), Philippson (10) 
found a capacity which for animal tissues varied about as the inverse 
square root of the frequency, and for vegetable tissues as the inverse 
fourth root. Although unable to measure the magnitude of these 
capacities for a single membrane, Philippson classed them as polari- 
zation capacities similar to those found at the surface of contact 
between metal electrodes and electrolytes. Such physical systems 
have a polarization resistance such that the phase angle, ~b3, of the 
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combination is more or less independent of frequency and often in the 
neighborhood of 45 ° (see Wolff (12)). Then in Eq. (13), ~3 = ctn -I  m. 
On the assumption that this angle was 45 °, Philippson calculated 
the series polarization resistance although he took no account of it in 
the computations of the capacities from the data. In Eq. (5), the 
polarization resistance would be represented by r3 as a series resistance 
per unit area. Since r3 would be a function of frequency, more or less 
proportional to x3, it would be difficult if not impossible to compute it 
from impedance data alone without making assumptions which are at 
present unwarranted. If, however, measurements are made of both 
the resistance and reactance of a suspension--with a capacity bridge, 
for instance--it  becomes possible to determine both ra and x3 from 
Eq. (5). 

SUMMARY. 

A general expression has been derived for the electric impedance of 
a suspension of spheres each having a homogeneous non-reactive 
interior and a thin surface layer with both resistance and reactance. 
The applications and limitations of impedance measurements on such 
suspensions are discussed. 

The author very much appreciates the interest and assistance of Mr. 
K. S. Johnson of the Bell Telephone Laboratories, Inc., and of Pro- 
fessor E. L. Chaffee and Professor W. J. Crozier. 
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