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Consensus is widely observed in nature as well as in society. Up to now, many works have focused on what
kind of (and how) isolated single structures lead to consensus, while the dynamics of consensus in
interdependent populations remains unclear, although interactive structures are everywhere. For such
consensus in interdependent populations, we refer that the fraction of population adopting a specified
strategy is the same across different interactive structures. A two-strategy game as a conflict is adopted to
explore how natural selection affects the consensus in such interdependent populations. It is shown that
when selection is absent, all the consensus states are stable, but none are evolutionarily stable. In other
words, the final consensus state can go back and forth from one to another. When selection is present, there
is only a small number of stable consensus state which are evolutionarily stable. Our study highlights the
importance of evolution on stabilizing consensus in interdependent populations.

C
onsensus is ubiquitous in both animal and human societies1,2. For example, flocks of birds move collec-
tively towards the same direction3,4, individuals vote to achieve an agreement whenever different opinions
emerge in democratic societies5,6. Furthermore, advancements in understanding consensus have been seen

in many fields, such as computer science, automatic control and distributed computing7–12. All such underlying
systems that are able to reach consensus share some similarities: interactions between evolutionary individuals in
structured populations. For instance, each fish only has the ability to access the local information though they
move collectively as a whole. In this case, taking a fish as a node and connecting those nodes where information
exchange occurs, a network is thus formed.

So far, the main attention on consensus has remained in isolated and single structures13–16, although real-world
networks are composed of many interactive structures17–27, such as networks of networks, or interdependent
populations. A key property of interdependent populations is the interaction dynamics between populations
which cannot be described in the single structure framework. In particular, it is unclear how such dynamics
between interdependent populations affect the consensus28–31. Here, we are interested in the consensus at the
population level, where the fraction of population adopting a specified strategy (such as an opinion, a behavior,
etc.) is the same across different interactive groups32,33. One example for such population-level consensus is the
2012 US presidential election in Nevada, New Hampshire and Pennsylvania: the supporters of Barack Obama are
all of 52% in each state. In addition to the population structure, evolution is the driving force of the system where
consensus is observed, such as the voting in human societies is evolutionary in the sense that successful opinions
are likely to be adopted34–39. Evolution is so important in such systems that it is even believed that nothing makes
sense except in the light of the evolution40, which inspires us to ask how selection, one of the main forces of
evolution, affects the consensus?

To address this issue, we make use of a 2 3 2 game to depict the interaction of individuals between two
interactive groups, and investigate under what condition the asymptotically stable consensus can be reached,
where the original consensus cannot be deviated given small population perturbations. Based on a fast partner-
ship rewiring process, we arrive at a differential equation governing the frequency of the strategy in each group.
Besides, we analytically show that for such 2 3 2 games (including the dominant/coexisting/bistable-type games),
selection paves the avenue for the population evolving to an asymptotic stable consensus, whereas it is impossible
without selection. In particular, for the coexisting type game where it is best to play the strategy opposite to one’s
opponent, not only the formation of an asymptotic consensus but also the speed to reach consensus is promoted
by selection. These findings are in good agreement with the numerical simulations.
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Model
Micro-update rules in interdependent populations. Individuals are
located at nodes in interdependent populations, consisting of two
interactive groups referred as Group-1 and Group-2 (See Figure 1).
Note that this set-up is akin to the structure of interdependent
networks, in the sense that the success of one node in a given
group not only depends on the nodes in the same group, but also
replies on the state of other nodes in other groups. Group-i is of size
Ni (i 5 1, 2), leading to the size of entire population N 5 N1 1 N2.
Initially, the average degree of Group-i is denoted as Li 5 2Hi/Ni,
where Hi is the total number of links in Group-i. Denote the number
of links connecting two nodes in Group-i as Hii(i 5 1, 2), while the
number of links connecting two nodes between two groups as H12 (or
H21). Then, the total number of links is H 5 H12 1 H11 1 H22.

Each player is either of strategy A or B, denoted by (1, 0)T and
(0, 1)T, respectively. Here, a strategy represents an opinion/a beha-
vior adopted by players. When two A (player with strategy A) meet,
each player gets payoff a; when two B (player with strategy B) meet,
each player gets payoff d. When A meets B, A gets payoff b while B
gets payoff c, which leads to a payoff matrix M describing the local
pairwise interaction as follows:

A B

A

B

a b

c d

 !
:

ð1Þ

Without loss of generality, we assume that all payoff entries are
positive. The payoff of each player is obtained by playing with all
its immediate neighbors.

We consider the co-evolution of strategy and interdependent
populations41–45. In fact, not only strategy but also social interactions
between individuals are under the pressure of evolution, which leads
to the entangled dynamics of strategy and structures, and such co-
evolution is an important source of dynamical complexity46.

At each time step, with certain probability v, strategy evolution
happens; otherwise, the evolution of structures occurs. Here, prob-
ability v governs the dynamical time-scale of these two updating

rules. When v 5 1, the strategy evolves while population structure
never changes, which has been extensively addressed20–24. When
v 5 0, no strategy evolution occurs while the topology evolves all
the time. In this case, the frequency of a specified strategy in any
group will never change, thus the population-level consensus in two
interactive-groups cannot takes place, unless it is in the consensus
state initially. The rules of strategy updating and structure switching
are listed as follows:

Strategy evolution. We adopt the Fermi update dynamics47,48 to
describe the strategy evolution, where individuals update their strat-
egies by imitating the strategy of more successful individuals. At each
time step (during the strategy evolution), a player is selected ran-
domly from the whole population, namely h with payoff Ph, then a
neighbor of h is selected randomly, namely g with payoff Pg. Here,

Ph~
X2

i~1
Pi,h is the payoff of player h (Pi,h is the payoff of player h

obtained from Group-i). Then, the strategy of player h replaces that

of player g with probability p~ 1ze{b Ph{Pgð Þ
h i{1

, where b $ 0 is

the intensity of imitation, measuring how strong the payoff differ-
ence influences individuals’ decision making.

Structure evolution. Each link is assigned a number, l[ 1,2, � � � ,Hf g,
as its name. To characterize the dynamics of population structure
with various kinds of relationships, where players leave or break
interactions when they dissatisfy with the current situation, we intro-
duce kXY as the probability with which a XY-type link breaks. We
describe the structure evolution in detail as below:

Step 1. At each time t (during the structure evolution), a link lt of type
XiYj is selected from the interdependent populations at random (X, Y
g {A, B}, i, j g {1, 2}).

Step 2. With probability 1 2 kXY, the selected link lt remains
unchanged, denoted as lt 1 1 5 lt. With probability kXY, the selected
link breaks.

Step 3. If the link is broken, one node is selected randomly from the
two ends, then the selected player tries to find another player to newly

Figure 1 | The co-evolution of strategy updating and structure switching. Each node denotes one of two types of players, A and B, arranged in two

interactive groups referred as Group-1 and Group-2, respectively. At each time step, the strategy updating happens with probability v; the evolution of

structures happens with probability 1 2 v. For rewiring partnerships during the structure evolution process, we choose neighbours in its own group with

probability a, and choose neighbours in the other group with probability 1 2 a.
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connect with. With probability a, the neighbor is only selected within
the same group as its friend-making candidate; otherwise, the poten-
tial neighbor is chosen from the other group. Denote this new link as
lt 1 1.

Here, a is the intra-group attaching bias between two interactive
groups, reflecting the propensity to rewire neighbors within the same
group; and kXY is time-invariant, reflecting the structure effect of
linking dynamics. Note that the inverse of kXY can be regarded as
the average duration time between strategies X and Y, namely kXY is a
measurement of the duration of XY link. Furthermore, the total
number of links H is fixed in the co-evolution process41,43,49,50, which
implies a limited resource environment. The implementation of the
co-evolution of strategy and structure scheme is depicted as shown in
Figure 1.

Macro-dynamics in interdependent populations. Consider the fast
partnership rewiring process, i.e., v=1, which corresponds to the
case that players are much more reluctant to change strategies than to
adjust their interactions49–52. In this case, the structure evolution of
the interdependent populations obeys a stationary distribution when
the strategy evolution occurs (See Section 2 in SI). Moreover, the
average fitness of players is determined by the stationary
distribution of the structure evolution. Therefore, the average
fitness of strategies A and B in Group-i are

fi,A~ S
Ni

ae1M0xiz 1{að Þe1M0xj
� �

fi,B~ S
Ni

ae2M0xiz 1{að Þe2M0xj
� �

(
ð2Þ

where S~H:h xi,xj
� �

, e1 5 (1, 0), e2 5 (0, 1), xi 5 (xi,A, xi,B)T (xi,A

represents the fraction of strategy A in Group-i), and

M0~
a

kAA

b
kAB

c
kAB

d
kBB

 !
: ð3Þ

It is worth noting that matrix M9 is a time-scaling modification of Eq.
(1): every payoff entry is rescaled by the corresponding interaction
time, i.e., the inverse of the breaking probability, based on what
strategies the focal two players possess50. This transformation
shows the complex dynamics incorporating both strategy and
independent populations can be treated as a new game in a well-
mixed population53. Besides, the first term in the bracket of Eq. (2)
represents the payoff obtained via intra-group interactions, while the
second term represents the payoff obtained via inter-group
interactions. They are balanced by propensity a. This simple
equation analytically captures the basic idea of the model: each
player’s payoff is determined on not only the structure
configuration it belongs to but also that of the other group.

For large populations, the stochastic process can be well depicted
by a set of stochastic differential equations referred as Langevin
dynamics54. According to Eq. (2), we obtain a differential equation
governing the frequency of strategy A in each group (See Section 3 in
SI):

_xi,A~
N2

i
:xi,Axi,B

N1zN2ð Þ2
tanh b

fi,A{fi,B

2

� �
z

NiNj
:xi,Bxj,A

N1zN2ð Þ2

1

1ze{b fj,A{fi,B
� �{

NiNj
:xi,Axj,B

N1zN2ð Þ2
1

1ze{b fj,B{fi,Að Þ

ð4Þ

Here i, j g {1, 2}, and i ? j.

Results
Selection plays an important role in evolutionary process, which
determines the direction of evolution. The absence of selective dif-
ference is called neutral selection (b 5 0). When selection acts, the
transition probability becomes payoff dependent, which can be fur-
ther classified into constant and frequency dependent selections.

Generally, the probability of one strategy replaces another is fairly
complicated under frequency dependent selection55. Fortunately,
many results have been obtained with the assumption of weak selec-
tion, where perturbation analysis analytically facilitates the deriva-
tion56,57. For non-weak selection, the approach of perturbation
analysis does not work, and the result under weak selection can be
violated58.

Neutral selection: b 5 0. When b 5 0, the selection dynamics are
neutral, in which the evolutionary direction is random and
independent of the players’ payoffs. In this case, Eq. (4) is
simplified as

_xi,A~
1
2

NiNj

NizNj
� �2 xj,A{xi,A

� �
ð5Þ

Note that the points in line x2,A 5 x1,A are the equilibria of Eq. (5).
The corresponding eigenvalues of the Jacobian matrix at x2,A 5 x1,A

are l1 5 0 and l2 5 22. Thus, the line x2,A 5 x1,A is always a stable
manifold, and system (5) always reaches consensus. Furthermore, all
the consensus states are stable, but none are evolutionarily stable, i.e.,
final consensus can go back and forth from one state to another (See
Fig. 2).

Weak selection: b= 1. When b= 1, the effects of payoff differences
are small, such that the evolutionary dynamics mainly results from
random fluctuations. This case of weak selection means one
phenotype is slightly advantageous over another59. In evolutionary
biology and population genetics, it is widely accepted that most
mutations confer small selective difference60,61.

For simplicity, we assume N1 5 N2. We verify the general case of
N1 ? N2 in numerical simulations (See Figs. 3–7). When N1 5 N2,
Eq. (4) becomes

_xi,A~2kixi,A 1{xi,Að Þ c1xi,Azc2xj,Azc5
� �

z
1
8

xj,A{xi,A

� �
zkixj,A 1{xi,Að Þ c3xi,Azc4xj,Azc5

� �
zkixi,A 1{xj,A

� �
c4xi,Azc3xj,Azc5
� �

ð6Þ

where k~k1~k2~
bS

16N1
is constant, c1~a

a
kAA

{
bzc
kAB

z
d

kBB

� �
,

c2~ 1{að Þ a
kAA

{
bzc
kAB

z
d

kBB

� �
, c3~

1{að Þa
kAA

{
1{að Þb

kAB
{

ac
kAB

z

ad
kBB

, c4~
aa

kAA
{

ab
kAB

{
1{að Þc

kAB
z

1{að Þd
kBB

), and c5~
b

kAB
{

d
kBB

.

Note that k only influences the time-scale with none effect on the
long run evolutionary outcome.

From Eq. (6), we get three possible equilibria, i.e., E1 5 (0, 0), E2 5

(1, 1), E3~ E�3 ,E�3
� �

. E1 and E2 are at the corners, which denote that
system (6) is composed of all-B and all-A, respectively. E3 is an
interior equilibrium, which means that system (6) consists of A
and B players (See Section 4 in SI for details about the stability of
each equilibrium). With different parameters ci (1 # i # 5), we
further discuss the consensus for system (6) under weak selection.

Case 1: Consensus of the dominant-type game.

When
a

kAA
w

c
kAB

and
b

kAB
w

d
kBB

ze e~
1

8k

� �
, strategy A dom-

inates strategy B in the interdependent populations, if kAA , kAB ,

kBB. This result indicates that all players are more likely to interact
with strategy A. In this case, E1 is an unstable equilibrium, and E2 is a
stable equilibrium, which implies that the set of all-A (E2) is the
unique evolutionary stable state of this game. Let us take the prison-
er’s dilemma (PD) game as an example, in which strategies A and B
denote defection and cooperation, respectively. The frequency of

www.nature.com/scientificreports
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strategy A in each group converges to the state of all-A, and system
(6) reaches an asymptotically stable consensus state (See Fig. 3(a)).

When
a

kAA
zev

c
kAB

and
b

kAB
v

d
kBB

, strategy B dominates strat-

egy A in the interdependent populations, if kAA . kAB . kBB.
Therefore, all players are more likely to interact with strategy B. In
this case, E1 is a stable equilibrium, and E2 is an unstable equilibrium.
This situation is similar to that of the above discussion, which leads to
the dynamics ending in the state of all-B (E1), and system (6) reaches
an asymptotically stable consensus state, as shown in Fig. 3(b).

Therefore, when the interactions between players under the payoff
matrix M9 are of the dominant-type game, two interactive groups
reach a homogeneous consensus, i.e., the stable consensus state con-
sists of all-A, or all-B.

Case 2: Consensus of the coexisting-type game.

When
a

kAA
zev

c
kAB

,
b

kAB
w

d
kBB

ze, and

ava� a�~
1
2
{

c1

16kc5 c1zac5ð Þ

� �
, both E1 and E2 are unstable,

and E3 is a saddle point, if kAA . kAB and kBB . kAB. This implies
that all players are inclined to interact with the opponents of opposed
strategies as themselves’. In this case, the velocity field is out of order,
and system (6) cannot reach a consensus state (See Fig. 4(a)).
However, when the intra-group attaching bias a exceeds the critical
value a*, E3 becomes stable, and strategies A and B coexist in this
interior stable equilibrium. The final state of the system converges to

the asymptotically stable consensus state E3 (See Fig. 4(b)). The
corresponding representative model is the snowdrift game.
Therefore, when interactions between players with the payoff matrix
M9 are of the coexisting-type game and the intra-group attaching bias
exceeds the critical value a*, two interactive groups converge to a
non-homogeneous consensus, i.e., the stable consensus state coexists
with A and B.

For populations with two static topology structures, the final state

converges to the interior equilibrium ({
b{d

a{b{czd
,

{
b{d

a{b{czd
)33. For dynamic interdependent populations, the

final dynamics ends at an interior equilibrium E3 which results from
the co-evolution of strategy and structure. In addition, although the
intra-group attaching bias a does not affect the interior equilibrium
E3, it determines the stability of interior equilibrium. Only when
a . a*, the interior equilibrium is stable, i.e., a too strong rewiring
propensity between two interactive groups (small a) does not benefit
the formation of an asymptotically stable consensus. To illustrate the
effects of the intra-group attaching bias between two groups on
consensus, we present the frequency of strategy A in both groups
as shown in Fig. 5. We observe that for a , a*, system (6) cannot
reach a consensus state (See Fig. 5(a) and Fig. 5(b)). When increasing
the value of a until a . a*, system (6) reaches an asymptotically
stable consensus at interior equilibrium E3. Interestingly, the increas-
ing of a not only facilitates the formation of a consensus state in an

Figure 2 | System (5) reaches consensus under neutral selection (b 5 0), with N1 5 150, N2 5 100, L1 5 6, L2 5 9. (a) Phase portrait of Eq. (5) where the

direction of the velocity field is indicated by the arrows. The ultimate values of the frequency of strategy A in Group-1 and Group-2 converge to the

line x2,A 5 x1,A. (b) Simultaneous time-evolution of frequency of strategy A in Group-1 and Group-2. One of the consensus states is shown, where the

initial frequency of strategy A in Group-1 and Group-2 is selected randomly.

Figure 3 | Phase portrait of Eq. (6) under weak selection (b 5 0.01). The direction of the velocity field is indicated by arrows. We set N1 5 150, N2 5 100,

L1 5 6, L2 5 9, v 5 0.01. (a) When
a

kAA
w

c
kAB

and
b

kAB
w

d
kBB

ze (a 5 2, b 5 1, c 5 1.5, d 5 0, kAA 5 0.4, kAB 5 0.6 and kBB 5 0.8), system (6) reaches an

asymptotically stable consensus state of all-A. (b) When
a

kAA
zev

c
kAB

and
b

kAB
v

d
kBB

(a 5 1.5, b 5 0, c 5 2, d 5 1, kAA 5 0.6, kAB 5 0.4 and

kBB 5 0.8), system (6) reaches an asymptotically stable consensus state of all-B.
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interior equilibrium, but also enhances the speed of reaching con-
sensus (See Fig. 5(c) and (d)). Note that the eigenvalues of the

Jacobian matrix at E3 are l1~{4kc5 1z
ac5

c1

� �
and

l2~{2kc5 1z
ac5

c1

� �
2a{1ð Þ{ 1

4
, respectively. Thus, increasing

a means decreasing the eigenvalues of l2, which indicates that system
(6) reaches the asymptotically stable consensus state at a higher
speed.

Case 3: Consensus of the bistable-type game.

When
a

kAA
w

c
kAB

,
b

kAB
v

d
kBB

, and a . a*, both E1 and E2 are

stable, and E3 is unstable. Since the final state converges to E1 or
E2, system (6) in the whole population is all-A or all-B, if kAA ,

kAB and kBB , kAB. This result indicates that all players are inclined
to interact with the opponents of same strategies as themselves’.

Besides, when a , a*, E3 becomes a saddle-point, so the intra-
group attaching bias a does not affect global stability of system (6). A
representative model is the coordination game. In this case, strategies
A and B are bistable in the interdependent populations, and system
(6) reaches an asymptotically stable consensus state at E1 or E2 (See
Fig. 6). Note that the equilibrium, to which the system converges,
depends on the initial fraction of A and the interior unstable equi-
librium (x�1,A, x�2,A), where x�1,A~x�2,A~E�3 . If the initial condition
xi,A 0ð Þwx�i,A, system (6) converges to all-A; otherwise, to all-B. The
effects of initialization on the frequency of strategy A in both groups
are shown in Fig. 7. Therefore, when the interactions between players
under the payoff matrix M9 are of the bistable-type game, two inter-

Figure 4 | Phase portraits of Eq. (6) under weak selection (b 5 0.01). The direction of the velocity field is indicated by arrows. We set N1 5 150, N2 5 100,

L1 5 6, L2 5 9, v 5 0.01. When
a

kAA
zev

c
kAB

and
b

kAB
w

d
kBB

ze (a 5 1.5, b 5 1, c 5 3, d 5 0, kAA 5 0.6, kAB 5 0.4 and kBB 5 0.8), we show two cases of

phase portraits when the intra-group bias a changes. (a) For a , a* 5 0.65 (a 5 0.3), the velocity field diverges to the corners near (0,1) and (1,0),

which indicates that system (6) cannot reach an asymptotically stable consensus state. (b) For a . a* 5 0.65 (a 5 0.7), the velocity field converges to the

interior equilibrium, which means that system (6) reaches an asymptotically stable consensus at the interior equilibrium.

Figure 5 | Simultaneous time-evolution of the frequency of strategy A in Group-1 and Group-2 under weak selection (b 5 0.01). Initially, strategy A is

randomly distributed in Group-1 and Group-2. We set N1 5 150, N2 5 100, L1 5 6, L2 5 9, v 5 0.01, a 5 1.5, b 5 1, c 5 3, d 5 0, kAA 5 0.6,

kAB 5 0.4 and kBB 5 0.8.

www.nature.com/scientificreports
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active groups converge to a homogeneous consensus state of all-A, or
all-B, which relies on the initialization.

Non-weak selection. For non-weak selection intensity, the
perturbation analysis does not work. Besides, the results derived
under weak selection fail to extend to strong selection
intensity58,62,63. Therefore, we numerically simulate to illustrate the
consensus state in interdependent populations. It is shown that:
when the consensus state refers to the homogeneous population
with only one strategy, the intensity of selection does not change
the final convergence state (See Fig. 8(a), (b) and (d)); when the
consensus state refers to the non-homogeneous population with
coexistent strategy, it will loses its stability under non-weak
selection, which drives the two populations to non-consensus
states (See Fig. 8(c)). Intuitively, the homogeneous consensus is
robust for perturbations, so that very strong selection can not force
the consensus being extinct. While the non-homogeneous consensus
states is relatively unstable, and sufficiently strong selection can force
the consensus deviating from the previous consensus state.
Therefore, the homogeneous consensus states in interdependent
populations are robust in arbitrary selection intensity.

Discussion
To sum up, we have found that natural selection leads to stablized
consensus, where the population structure is not only interdepend-

ent but also dynamical. For neutral selection, we find that consensus
can always be reached, yet none of these consensus states are stable.
In fact, neutral selection will drive the population from one con-
sensus state to another from time to time. When selection is present
yet weak, the two interactive groups cannot always reach a consensus
state. Interestingly, once the consensus is reached, it must be asymp-
totically stable. Therefore, natural selection here acts as a double-
edged sword: it may drive the two populations to non-consensus
states, which never occurs when selection is absent; however, once
consensus is established by selection, it is evolutionarily stable.

Importantly, the interdependent structure allows us to address
how the intra-group attaching bias affects the stabilization of con-
sensus. This intra-group bias is similar to the in-group bias where the
structure is taken as a community. In particular, if all the individuals
are only enabled to attach to individuals in the same group when
adjusting their neighbourhood, i.e., under strong ingroup bias, the
two interactive groups become isolated sooner or later. And each
group degenerates to a non-interdependent population, which has
been intensively discussed before15,16,34–37. On the other hand, allow-
ing individuals to attach the other group yields two initially isolated
groups connected. In this case, we find the intra-group attaching bias
plays a major role in the convergent speed that the whole population
reaches consensus.

It turns out that the consensus state strongly depends on i) what
kind of conflicts they are engaging in, and ii) how players adjust their
partnership. In fact, the neighbourhood adjusting rules transform the
local competition to other types49,50. Interestingly, this transforma-
tion can be captured by the modified matrix Eq. (3). Specially, for the
modified payoff matrix with all the entries equal to each other, the
evolutionary process is independent of players’ payoff. This scenario
can emerge even when the local competition is frequency dependent,
provided the neighberhood adjusting rule is appropriate. In this case,
the interaction is similar to neutral selection, there is neither good
nor bad strategies, and the conflicts among players degenerate to the
voter model64,65. For the entry of the modified matrix Eq. (3) satisfy

a
kAA

w

c
kAB

and
b

kAB
w

d
kBB

ze, i.e., all players are apt to interact with

strategy A regardless of their own strategies, and the conflict in the
interdependent populations become a dominant-type game. It is best
to stick to dominant strategy no matter what other co-players per-
form, and the system always reaches a consensus of homogeneous
state with the dominant strategy. Similarly, for the bistable-type
game, the system reaches a consensus of a homogeneous state.
And it is up to the initial fraction of strategy A in each interactive-
group that which homogenous state it ends up with. In the case of the
coexisting-type game, the system can reach a consensus of coexistent

Figure 6 | Phase portrait of Eq. (6) under weak selection (b 5 0.01). The

direction of the velocity field is indicated by arrows. We set N1 5 150, N2 5

100, L1 5 6, L2 5 9, v 5 0.01. When
a

kAA
w

c
kAB

,
b

kAB
v

d
kBB

and a . a* 5

0.65 (a 5 2, b 5 0, c 5 1.5, d 5 1, kAA 5 0.4, kAB 5 0.6, kBB 5 0.8 and a 5

0.7), the velocity field converges to the corner equilibrium E1 or E2, which

means system (6) reaches an asymptotically stable consensus relying on the

initialization.

Figure 7 | Simultaneous time-evolution of the frequency of strategy A in Group-1 and Group-2 under weak selection (b 5 0.01). We set N1 5 150, N2 5

100, L1 5 6, L2 5 9, v 5 0.01, a 5 2, b 5 0, c 5 1.5, d 5 1, kAA 5 0.4, kAB 5 0.6, kBB 5 0.8. (a) When x1,A 0ð Þ~0:36wx�1,A~0:33 and

x2,A 0ð Þ~0:46wx�2,A~0:33, system (6) reaches an asymptotically stable consensus state of all-A. (b) When x1,A 0ð Þ~0:39wx�1,A~0:33 but

x2,A 0ð Þ~0:22vx�2,A~0:33, system (6) reaches an asymptotically stable consensus state of all-B.
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state at an interior equilibrium, and strong intra-group attaching bias
not only benefits the formation of an asymptotically stable con-
sensus, but also enhances the speed of reaching consensus.
Intuitively, consensus seems to be more likely to come into being,
if two groups are more likely to interact with each other. In biology,
this refers to frequent gene-flow between two niches. And it is
believed that convergent evolution is more likely to occur, since
the environments of the two niches are similar66,67. Yet, our results
highlight the importance of both the interaction between two groups
and the conflict therein.

As the first stage, we simply restrict our model to two interactive
groups, which is the minimum interdependent populations. For gen-
eral interdependent populations with more interactive groups, the
microscopic rule and analyses still work, though it can be technically
tedious. What’s more, based on the microscopic rule, the proposed
macro-dynamics governing the frequency of the strategy in each
group stands within the fast partnership rewiring process49–52, which
opens an avenue via the down-to-up way to address how such co-
evolutionary dynamics affects the collective behaviors in inter-
dependent populations.
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