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Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical
step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing
the brain’s anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning
and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of
complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used
for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations.
To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image
segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal
of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain
MRI segmentation.

1. Introduction

Over the last few decades, the rapid development of nonin-
vasive brain imaging technologies has opened new horizons
in analysing and studying the brain anatomy and function.
Enormous progress in accessing brain injury and exploring
brain anatomy has been made using magnetic resonance
imaging (MRI). The advances in brain MR imaging have
also provided large amount of data with an increasingly high
level of quality. The analysis of these large and complex MRI
datasets has become a tedious and complex task for clini-
cians, who have to manually extract important information.
This manual analysis is often time-consuming and prone
to errors due to various inter- or intraoperator variability
studies.These difficulties in brain MRI data analysis required
inventions in computerized methods to improve disease
diagnosis and testing. Nowadays, computerized methods
for MR image segmentation, registration, and visualization
have been extensively used to assist doctors in qualitative
diagnosis.

Brain MRI segmentation is an essential task in many
clinical applications because it influences the outcome of
the entire analysis. This is because different processing steps
rely on accurate segmentation of anatomical regions. For
example,MRI segmentation is commonly used formeasuring
and visualizing different brain structures, for delineating
lesions, for analysing brain development, and for image-
guided interventions and surgical planning. This diversity
of image processing applications has led to development of
various segmentation techniques of different accuracy and
degree of complexity.

In this paper we review the most popular methods
commonly used for brain MRI segmentation. We highlight
differences between them and discuss their capabilities,
advantages, and limitations. To introduce the reader to
the complexity of the brain MRI segmentation problem
and address its challenges, we first introduce the basic
concepts of image segmentation. This includes defining 2D
and 3D images, describing an image segmentation prob-
lem and image features, and introducing MRI intensity
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Figure 1: Illustration of image elements in the MRI of the brain. An image pixel (𝑖, 𝑗) is represented with the square in the 2D MRI slice and
an image voxel (𝑥, 𝑦, 𝑧) is represented as the cube in 3D space.
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Figure 2: Illustration of image elements in 2D and 3D space. (a) In 2D space image elements (pixels) are represented with lattice nodes
depicted as a square. (b) In 3D space image elements (voxels) are represented with lattice nodes depicted as a cube.

distributions of the brain tissue. Then, we explain dif-
ferent MRI preprocessing steps including image registra-
tion, bias field correction, and removal of nonbrain tissue.
Finally, after reviewing different brain MRI segmentation
methods, we discuss the validation problem in brain MRI
segmentation.

2. Basic Concepts

2.1. 2𝐷 and 3D Images. An image can be defined as a function
𝐼(𝑖, 𝑗) in 2D space or 𝐼(𝑖, 𝑗, 𝑘) in 3D space, where 𝑖 =

0, . . . ,𝑀 − 1, 𝑗 = 1, . . . , 𝑁 − 1, and 𝑘 = 0, . . . , 𝐷 − 1

denote spatial coordinates. The values (or amplitudes) of
the functions 𝐼(𝑖, 𝑗) and 𝐼(𝑖, 𝑗, 𝑘) are intensity values and are
typically represented by a gray value {0, . . . , 255} inMRI of the

brain; see Figure 1. Every image consists of a finite set of image
elements called pixels in 2D space or voxels in 3D space. Each
image element is uniquely specified by its intensity value and
its coordinates (𝑖, 𝑗) for pixels and (𝑖, 𝑗, 𝑘) for voxels, where 𝑖
is the image row number, 𝑗 is the image column number, and
𝑘 is the slice number in a volumetric stack; see Figure 2.

To each image element is assigned a single value based
on the average magnetic resonance characteristics present
in the tissue corresponding to that element. The size of the
element determines the spatial resolution, or the fineness of
detail that can be distinguished in an image. Voxel/pixel sizes
vary depending on imaging parameters, magnet strength, the
time allowed for acquisition, and other factors, but often in
standard MRI studies voxel sizes are on the order of 1-2mm.
Greater spatial resolution can be obtained with a longer
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Figure 3: An example of the brain MRI segmentation with an original MR image (a) and segmented image with three labels: WM, GM, and
CSF (b).

scanning time, but this must be weighed against patient
discomfort. In adult brain MRI studies image acquisition
time is around 20min, while in pediatric MRI studies image
acquisition time is limited to between 5 and 15min.

2.2. Image Segmentation. The goal of image segmentation
is to divide an image into a set of semantically meaning-
ful, homogeneous, and nonoverlapping regions of similar
attributes such as intensity, depth, color, or texture. The
segmentation result is either an image of labels identifying
each homogeneous region or a set of contours which describe
the region boundaries.

Fundamental components of structural brain MRI anal-
ysis include the classification of MRI data into specific
tissue types and the identification and description of specific
anatomical structures. Classification means to assign to each
element in the image a tissue class, where the classes are
defined in advance. The problems of segmentation and
classification are interlinked because segmentation implies a
classification, while a classifier implicitly segments an image.
In the case of brain MRI, image elements are typically clas-
sified into three main tissue types: white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF); see Figure 3.The
segmentation results are further used in different applications
such as for analyzing anatomical structures, for studying
pathological regions, for surgical planning, and for visualiza-
tion.

Image segmentation can be performed on 2D images,
sequences of 2D images, or 3D volumetric imagery. Most
of the image segmentation research has focused on 2D
images. If the data is defined in 3D space (e.g., obtained
from a series of MRI images), then typically each image
“slice” is segmented individually in a “slice-by-slice” manner.
This type of segmenting 3D image volumes often requires a
postprocessing step to connect segmented 2D slices into a 3D
volume or a continuous surface. Furthermore, the resulting
segmentation can contain inconsistencies and nonsmooth

surface due to omitting important anatomical information
in 3D space. Therefore, the development of 3D segmentation
algorithms is desired for more accurate segmentation of
volumetric imagery. The main difference between 2D and
3D image segmentation is in the processing elements, pix-
els/voxels, respectively, and their 2D or 3D neighborhoods
(see Section 2.3) overwhich image features are calculated (see
Section 2.4). In practice, 2D image segmentation methods
can be extended to 3D space, but often with the cost of an
increased complexity of the method and slower computa-
tional time.

2.3. Modeling the Spatial Context. The use of spatial con-
text or neighborhood information is of great importance
in brain MRI segmentation. Unless the image is simply
random noise, the intensity of an image pixel/voxel is highly
statistically dependent on the gray intensities of its neighbors
(surrounding pixels/voxels). Markov random field (MRF)
theory provides a basis for modeling local properties of an
image, where the global image properties follow the local
interactions. MRF models have been successfully integrated
in various brain MRI segmentation methods to decrease
misclassification errors due to image noise [1–3].

First, let us introduce some notations. As has been
described in Section 2.1, every pixel (or voxel) in an image
can be represented with one node in the lattice P. Let 𝑥

𝑖

represent an intensity value of a single pixel (or voxel) with
a position 𝑖 in an image �⃗� = (𝑥

1
, . . . , 𝑥

𝑚
) defined over a finite

lattice P, where 𝑚 is the total number of image elements
(𝑚 = 𝑀𝑁 for a 2D image and 𝑚 = 𝑀𝑁𝐷 for a 3D image).
Let N = {N

𝑖
| ∀𝑖 ∈ P} denote a neighboring system for a

lattice P, where N
𝑖
represent a small neighborhood around

𝑖, not including 𝑥
𝑖
.

The nodes (pixels/voxels) in a latticeP are related to one
another via neighborhood systemN that can be defined as

N = {N
𝑖
| ∀𝑖 ∈ P} . (1)
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Figure 4: (a) 2D and (b) 3D neighborhood configuration for the first, second, and third order, respectively.

The neighboring relationship has the following properties:

(i) a node 𝑖 does not belong to its own neighborhood: 𝑖 ∉
N
𝑖
;

(ii) the neighboring relationship is mutual:

𝑖 ∈ N
𝑖
 ⇐⇒ 𝑖


∈ N
𝑖
. (2)

The set of neighbors of 𝑖 can be defined as the set of
surrounding nodes within a radius of√𝑟 from the center 𝑖 :

N
𝑖
= {𝑖

∈ P | [dist(pixel

𝑖
, pixel

𝑖
)]
2
≤ 𝑟, 𝑖

̸= 𝑖} , (3)

where dist(𝑎, 𝑏) is the Euclidean distance between neighbor-
ing pixels 𝑎 and 𝑏 and 𝑟 ∈ Z : 𝑟 ≥ 0 is an integer number.

The first and the second order neighborhoods are the
most commonly used neighborhoods in image segmentation.
The first order neighborhood consists of 4 nearest nodes in a
2D image and 6 nearest nodes in a 3D image, while the second
order neighborhood consists of 8 nearest nodes in a 2D image
and 18 nearest nodes in a 3D image; see Figure 4.

Markov random field model can be represented with a
graph G ≜ (P,N), where P represents the nodes and
N determines the links (also called edges) that connect
the nodes according to the neighborhood relationship. Such
graph structure corresponds to an image, where nodes
correspond to pixels (or voxels) and the links connecting the
nodes represent the contextual dependency between pixels
(or voxels). More reading about MRF can be found in [4].

2.4. Image Features. Image features represent distinctive
characteristics of an object or an image structure to be seg-
mented. Features rely on numerical measurements, including
quantitative visual appearance and shape descriptors, that can
help to discriminate between the structures of interest and
their background.Theoutcomeof image segmentation highly
depends on appropriate feature selection (choosing the most
relevant features) and accurate feature extraction.

Typically, statistical approach is used for feature extrac-
tion and classification in MRI, where pattern/texture is
defined by a set of statistically extracted features represented
as a vector in multidimensional feature space. The statistical
features are based on first and second order statistics of gray
level intensities in an image. First order features are derived
from the image grey value histogram and include the inten-
sity,mean,median, and standard deviation of the pixel values.

Since these features do not incorporate any information on
the spatial distribution of the pixel values, they are often used
in combination with second order features. Second order
descriptors are used to describe image texture and are typi-
cally computed using gray level cooccurrencematrix [5]. First
and second order features are often called appearance features
in the literature. This is because the visual appearance of an
object of interest is typically associated with its pixel or voxel
intensities (gray values in brain MRI) and spatial interaction
between intensities (intensity cooccurrence) in an image.

Image segmentation based on individual pixel/voxel
intensities (first order features) is feasible only when inten-
sities of an object of interest and its background differ to
a large extent. Then, the complete object or the majority
of its pixels/voxels can be separated from the background
by simply comparing the intensity values to the threshold
(the intensity value that clearly separates the object from
the background). The threshold is derived from the overall
intensity distribution of the image. In the presence of image
noise and other imaging artifacts, first order features are not
sufficient for accurate brain MRI segmentation. In this case
more powerful second order discriminative features have to
be used that include spatial interaction between intensities.
For instance, the appearance of tumour lesion in brain MRI
can be associated with spatial patterns of local pixel/voxel
intensity variations or empirical probability distributions of
intensity cooccurrences. In the spatial interaction models
each intensity depends on a subset of the neighboring
intensities; see Figures 5 and 4.Themost popular models that
can capture local spatial interactions between pixels/voxels
intensities are MRF models [4].

Additionally, image segmentation performance can be
also improved by incorporating probabilistic prior shape
models, which have been extensively used in medical image
segmentation [6–10]. The probabilistic prior shape models
specify an average shape and variation of an object of interest
and are typically estimated from a population of coaligned
images of the object (training data sets) [11].

One of the most popular features for image segmentation
is edges. Edges refer to boundaries of an object surface where
the intensities change sharply [12]. Such changes are typically
detected by thresholding the first and second order spatial
derivatives of the intensities (the intensity gradient and
Laplacian). However, edges detected in this way are sensitive
to image noise [13] and often require image smoothing as a
preprocessing step [14, 15].
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Figure 5: Illustration of 2D (a) and 3D (b) spatial interactions between neighboring pixel/voxel intensities.

Another more robust method for edge detected is the
phase congruency method [16, 17], which is a frequency-
based method for feature detection. This feature detection
method, using local phase and energy, is based on a plau-
sible model of how mammalians detect edges suggested
by Morrone and Owens [18] and successfully explains the
psychophysical effect of human feature perception. Instead of
searching the pixels/voxels in the image with sharp intensity
changes, features such as step edges, lines, and corners are
detected at points where the Fourier components of the image
are maximally in phase.

2.5. Intensity Distribution in Brain MRI. The intensity of
brain tissue is one of the most important features for
brain MRI segmentation. However, when intensity values
are corrupted by MRI artifacts such as image noise, partial
volume effect (PVE), and bias field effect, intensity-based
segmentation algorithms will lead to wrong results. Thus,
to obtain relevant and accurate segmentation results, very
often several preprocessing steps are necessary to prepare
MRI data. For instance, it is necessary to remove background
voxels, extract brain tissue, perform image registration for
multimodal segmentation, and remove the bias field effect;
see Figure 6.

In the case when the bias field, nonbrain structures
(e.g., the skull and the scalp) and background voxels are
removed, the histogram of the adult brain MRI has three
main peaks corresponding to the threemain tissue classes; see
Figure 8(a). In the healthy adult brain, the intensity variation
within tissue is small and the intensities inside the brain can
be considered to be a piecewise constant intensity function,
corrupted by noise and PVE. The PVE describes the loss of
small tissue regions due to the limited resolution of the MRI
scanner. It means that one pixel/voxel lies in the interface
between two (ormore) classes and is amix of different tissues.
This problem is even more critical in imaging of the small

neonatal brain. The correction of PVE will be addressed in
Section 4.6.

It has been shown that the noise in the magnitude images
is governed by a Rician distribution, based on the assumption
that the noise on the real and imaginary channels is Gaussian
[19].Theprobability density function for a Rician distribution
is defined as

𝑓Rice (𝑥) =
𝑥

𝜎2
exp(−

(𝑥2 + ]2)
2𝜎2

)𝐼
0
(
𝑥]
𝜎2
) , (4)

where 𝑥 is the measured pixel/voxel intensity, ] is the image
pixel/voxel intensity in the absence of noise, 𝜎 is the standard
deviation of the Gaussian noise in the real and the imaginary
images, and 𝐼

0
is the zero-order modified Bessel function of

the first kind. The Rician probability density function (PDF)
is plotted in Figure 7(a) for several values of the signal-to-
noise ratio (SNR), where the SNR is defined as ]/𝜎 (the power
ratio between the signal and the background noise).

A special case of the Rician distribution is in image
regions where only noise is present and SNR = ]/𝜎 = 0 (e.g.,
in the dark background areas of anMRIwhere noNMRsignal
is present). This special case of the Rician distribution where
] = 0 and 𝐼

0
= 1 is also known as the Rayleigh distribution:

𝑓Rayleigh (𝑥) =
𝑥

𝜎2
exp− 𝑥2

2𝜎2
. (5)

In the image regions where the NMR signal is present
and SNR ≥ 3, the noise distribution approximates a Gaussian
distribution; see Figure 7. Thus, the problem of Rician noise
in the brain MRI is often simplified in practice by assuming
the Gaussian distribution for the noise:

𝑓Gauss (𝑥) =
1

𝜎√2𝜋
exp(−

(𝑥 − 𝜇)
2

2𝜎2
) , (6)



6 Computational and Mathematical Methods in Medicine

T1-W

(a)

Brain tissue

(b)

Bias field

(c)

Bias field removed

(d)

Figure 6: Preprocessing steps: (a) the original T
1
-W MR image of the adult brain; (b) the brain tissue image after removing nonbrain

structures; (c) the bias field; (d) the brain tissue image after bias field correction.

Rician distribution

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0 1 2 3 4 5 6 7 8 9 10

x

f
(x
)

𝜎 = 1.00 SNR = �/𝜎

� = 0.0

� = 1.0

� = 2.0

� = 4.0

(a)

x

f
(x
)

1.0

0.8

0.6

0.4

0.2

0.0
0 1 2 3 4 5 6 7 8 9 10

Gaussian distribution

𝜇 = 6, 𝜎2 = 0.2

𝜇 = 2, 𝜎2 = 1.0

𝜇 = 4, 𝜎2 = 5.0

𝜇 = 4, 𝜎2 = 0.4

(b)

Figure 7: (a) The PDF for the Rician distribution. (b) The PDF for the Gaussian distribution.
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Figure 8: (a) Histogram of a bias-corrected T
1
-WMRI of an adult brain. Histograms of the tissue classes are based on manual segmentation

and distributions slightly differ from the Gaussian distribution due to partial volume effect. (b) Histogram of a 1.5 T T
1
-WMRI of a neonatal

brain. The difference between the neonatal and the adult brain histogram is the existence of the myelinated and nonmyelinated WM in
neonates, which are separated with GM intensities. Since nonmyelinated WM is more dominant than myelinated WM, T

1
-W MRI shows

inverted WM/GM intensities in neonates in comparison to adults.

where 𝑥, 𝜎, and 𝜇 are the intensity, the standard deviation,
and the mean value, respectively. Due to this approximation,
the histogram of a bias-corrected brain MRI in the presence
of noise can be described with a Gaussian mixture model
(GMM), where each tissue class (WM, GM, and CSF) is
modeled by aGaussian distribution.However, in the presence
of partial volume effects the tissue intensity distributions
slightly diverge from a Gaussian distribution, as can be seen
from the histogram in Figure 8(a) where histograms of the
tissue classes are based on manual segmentation. Recently,
the 𝛼-stable distribution mixture model is also suggested as
an alternative to the Gaussian mixture model to model the
histogram of MRI data for more complex MRI segmentation
[20]. Note that the 𝛼-stable distribution is a generalization of
the Gaussian distribution.

The MRI intensity distribution of the neonatal brain is
more complex because the intensity variability within tissue
cannot be neglected due to the process of myelination. The
histogram of 1.5 T T

1
-W MRI of the neonatal brain is shown

in Figure 8(b). The difference between the neonatal and the
adult brain histogram is the existence of the myelinated and
nonmyelinated WM in neonates, which are separated with

GM intensities. Since nonmyelinated WM is more dominant
than myelinated WM, T

1
-W MRI shows inverted WM/GM

intensities in neonates in comparison to adults.

2.5.1. 𝑇
1
-W and 𝑇

2
-W Intensity Distribution. It can be noted

from the 1D histogram of the bias-corrected T
1
-W MRI of

an adult brain in Figure 8(a) that there is an overlap between
different tissue classes. Also, it can be seen that an overlap
between WM and GM tissue is higher than between GM
and CSF. This overlap between the class distributions can
cause ambiguities in the decision boundaries when intensity-
based segmentation methods are used [21]. However, many
researchers showed that adding additional MRI sequences
with different contrast properties (e.g., T

2
-W MRI, Proton

DensityMRI) can improve intensity-based segmentation and
help separate the class distributions [22–24]; see Figure 13.

3. MRI Preprocessing

After MRI acquisition several preprocessing steps are neces-
sary to prepare MR images for segmentation; see Figure 6.
The most important steps include MRI bias field correction,
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image registration (in the case ofmultimodal image analysis),
and removal of nonbrain tissue (also called a brain extrac-
tion).

3.1. Bias Field Correction. The bias field, also called the inten-
sity inhomogeneity, is a low-frequency spatially varying MRI
artifact causing a smooth signal intensity variation within
tissue of the same physical properties; see Figure 6. The bias
field arises from spatial inhomogeneity of the magnetic field,
variations in the sensitivity of the reception coil, and the
interaction between the magnetic field and the human body
[25, 26]. The bias field is dependent on the strength of the
magnetic field.WhenMR images are scanned at 0.5 T, the bias
field is almost invisible and can be neglected. However, when
MR images are acquiredwithmodern high-fieldMR scanners
with a magnetic field strength of 1.5 T, 3 T, or higher, the bias
field is strong enough to cause problems and considerably
affect MRI analysis. In practice, trained medical experts
can make visual MRI analysis to certain levels of intensity
inhomogeneity (10%–30%) [26]. In contrast, the performance
of automatic MRI analysis and intensity-based segmentation
methods decreases greatly in the presence of the bias field; see
Figure 9.This is becausemost of the segmentation algorithms
assume intensity homogeneity within each class. Therefore,
the correction of the bias field is an important step for the
efficient segmentation and registration of brain MRI.

The bias field is typically modeled as low-frequency
multiplicative field [26, 27]. Suppose that we place all image
elements 𝐼(𝑖, 𝑗, 𝑘), 𝑖 = 0, . . . ,𝑀 − 1, 𝑗 = 0, . . . , 𝑁 − 1, and 𝑘 =
0, . . . , 𝐷 − 1, into an m × 1 column vector �⃗� = (𝑥

1
, . . . , 𝑥

𝑚
),

where 𝑥
𝑖
, 𝑖 = 1, . . . , 𝑚, represents the observed intensity of

the 𝑖th voxel and 𝑚 = 𝑀𝑁𝐷 is the total number of image
elements. The degradation effect of each image voxel 𝑥

𝑖
can

be expressed as

𝑥
𝑖
= 𝑥


𝑖
𝑏
𝑖
, 𝑖 = 1, . . . ,𝑀𝑁𝐷, (7)

where 𝑥
𝑖
is an ideal intensity of the 𝑖th voxel and 𝑏

𝑖
is

an unknown smoothly varying bias field. The problem of
eliminating the bias field is the task of estimating 𝑏

𝑖
.

If the intensities of MRI are logarithmically transformed,
the multiplicative bias field becomes an additive bias field as
follows:

log (𝑥
𝑖
) = log (𝑥

𝑖
) + log (𝑏

𝑖
) . (8)

This simplifiedmultiplicativemodel is used inmost state-
of-the-art bias correction methods to represent the bias field
[26–28]. However, in reality there are certain limitations to
the correctness of this model. Even though the model is
consistent with the variations arising from the sensitivity
of the receiver coil, the relationship between the measured
and true intensities in MRI is more complicated. This is
due to nonuniformity of the induced currents and spatial
inhomogeneity of the excitation field, which depends on the
geometry and electromagnetic properties of the subject as
well as the coil polarization and pulse sequence [26]. In
spite of these difficulties, the multiplicative low-frequency
model is successfully used in practice to model the intensity
inhomogeneity in brain MRI.

In the literature, various methods have been proposed to
correct the bias field in MRI. One of the earliest methods
proposed to correct the bias field is based on the manual
labeling of the brain tissue voxels, which are then used to
reconstruct the bias field in form of a parametric surface.
The main disadvantage of this surface fitting method is
the need for manual interaction. The bias field can be also
estimated and corrected by using low-pass filtering [29], but
this approach can introduce additional artifacts in the image
because it also removes the low-frequency component of the
true image data. Both the surface fitting method and the low-
pass method can be improved and made fully automatic if
they are coupled with automatic segmentation of the brain
[30, 31]. Other approaches for the bias field correction include
minimizing the image entropy [32], fitting the histogram of
the local neighbourhood to global histogram of the image
[28], maximizing the high-frequency content of the image
[26], and using a registered template image [27].

The template is an image/volume which encodes the
average probability of finding different kinds of tissues at
each spatial location. The anatomical template is obtained by
normalizing, aligning, and averaging of anatomical images
from several different subjects. All the images are normal-
ized in a standard stereotaxic space such as the Montreal
Neurological Institute (MNI space) [33]. MNI is widely used
to provide a common reference for the 3D localization of
functional activation foci and anatomical structures, enabling
the comparison of results obtained across different studies.
The standard probabilistic atlas of the human brain consists
of a template and three tissue probability maps forWM, GM,
and CSF [33]. The tissue probability maps are obtained by
normalizing and averaging a number of segmented subjects.
The probabilistic atlas then describes the anatomical variabil-
ity of the brain.

Image registration is a necessary step for the inclusion
of probabilistic atlases as a prior knowledge of the brain
anatomy into the segmentation method. A probabilistic atlas
is often used to initialize and constrain the segmentation pro-
cess. The prior knowledge of the brain anatomical structures
can increase the robustness and accuracy of a segmentation
method; see Section 4.3.

3.2. Image Registration. Image registration is the process of
overlaying (spatially aligning) two or more images of the
same content taken at different times, from different view-
points, and/or by different sensors. Registration is required in
medical image analysis for obtainingmore complete informa-
tion about the patient’s healthwhen usingmultimodal images
(e.g., MRI, CT, PET, and SPECT) and for treatment verifi-
cation by comparison of pre- and postintervention images.
In medical image registration the term coregistration is
used for intrasubject registration (the alignment multimodal
images of the same subject), realignment is used for motion
correctionwithin the same subject, and normalization is used
for intersubject registration when several population groups
are studied.

Image registration involves finding the transformation
between images so that corresponding image features are
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Figure 9: Influence of the bias field on brain MRI segmentation. (a) An example of the sagittal brain MRI slice with bias field is shown in the
top of the figure. The image histogram is shown in the middle and the three-label segmentation in the bottom. (b) The bias-corrected MRI
slice is shown in the top, the corresponding histogram in the middle, and three-label segmentation in the bottom.

spatially aligned.The spatial alignment is typically initialized
using rigid or affine transformation [34]. A rigid transforma-
tion is a 6-parameter transformation composed of translation
and rotation. If scaling and skewing are allowed, we obtain
a 12-parameter affine transformation. A rigid registration
is sufficient for intrasubject registration if the object of
interest does not deform. This is a reasonable assumption
for images of the brain if these are acquired at the same
stage of brain development. However, if the task is to match

images belonging to either different subjects (intersubject
registration) or the same subject at different stages of brain
development (e.g., growth in children, changes related to
ageing, or atrophy due to disease), a nonrigid registration
of the images is required to obtain satisfactory results. The
nonrigid registration algorithms are typically based on either
physical models for transformation such as elastic [35] or
fluid deformation models [36] or a linear combination of
smooth basis functions [37] or free-form deformations [38].
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(a) (b) (c)

Figure 10: Result of brain extraction on a T
1
MR image in an axial plane. (a) shows the original T

1
-W MRI. (b) depicts the estimated brain

mask. (c) presents an overlap of the brain mask and original MR image.

However, the problems in intersubject brainMRI registration
will arise when brains include lesions or diseases, because
it is not possible to match the same structures between
healthy and diseased brains. A general review of registration
techniques can be found in [39–41].

3.3. Removal of Nonbrain Tissue. Nonbrain tissues such as fat,
skull, or neck have intensities overlapping with intensities of
brain tissues. Therefore, the brain has to be extracted before
brain segmentation methods can be used. This step classifies
voxels as brain or nonbrain. The result can be either a new
image with just brain voxels or a binary mask, which has a
value of 1 for brain voxels and 0 for the rest of tissues. In
general, the brain voxels comprise GM, WM, and CSF of
the cerebral cortex and subcortical structures, including the
brain stem and cerebellum. The scalp, dura matter, fat, skin,
muscles, eyes, and bones are always classified as nonbrain
voxels.

The common method for brain extraction is to use prior
information of the brain anatomy. A deformable template
can be registered with an image and nonbrain tissue is then
removed by transferring the brain mask from the template
[42]. However, brain extraction using a probabilistic atlas
is usually not very accurate and can cause misclassification
around the brain boundary. An alternative method for
extracting the brain is the brain extraction tool (BET) [43,
44], which is part of the publicly available software package
FSL. This method finds the center of gravity of the brain and
then inflates a sphere until the brain boundary is found. It
has been proven to work in practice on good quality T

1
-W

and T
2
-W images of the adult brain. An example of the brain

extraction is shown in Figure 10.

4. MRI Segmentation Methods

In general, MRI segmentation is not a trivial task, because
acquired MR images are imperfect and are often corrupted
by noise and other image artifacts. The diversity of image

processing applications has led to development of various
techniques for image segmentation [45–54]. This is because
there is no single method that can be suitable for all images,
nor are all methods equally good for a particular type of
image. For example, some of the methods use only the
gray level histogram, while some integrate spatial image
information to be robust for noisy environments. Some
methods use probabilistic or fuzzy set theoretic approaches,
while some additionally integrate prior knowledge (specific
image formation model, e.g., MRI brain atlas) to further
improve segmentation performance.

However, most of the segmentation methods developed
for one class of images can be easily applied/extended to
another class of images. For example, the theory of graph
cuts, although firstly developed for binary images [55], can be
modified and used for MRI segmentation of the brain tissue.
Also, unsupervised fuzzy clustering [45, 56, 57] has been
successfully applied in different areas such as remote sensing,
geology, and medical, biological, and molecular imaging.

The segmentation methods, with application to brain
MRI, may be grouped as follows:

(i) manual segmentation;
(ii) intensity-based methods (including thresholding,

region growing, classification, and clustering);
(iii) atlas-based methods;
(iv) surface-based methods (including active contours

and surfaces, and multiphase active contours);
(v) hybrid segmentation methods.

4.1. Manual Segmentation. Manual segmentation refers to
the process where a human operator (e.g., expert physician)
segments and labels an image by hand. This segmentation is
typically done in a “slice-by-slice” manner for 3D volumetric
imagery. The manual method is believed to be the most
accurate because of the difficulty to accurately and reliably
delineate structures in medical images. The segmentation
difficulties are related to image quality and artifacts.
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Figure 11: (a) Gray level histogram that can be partitioned by a single threshold. (b) Gray level histogram that can be partitioned by multiple
thresholds.

Given the improvements achieved over the past years by
imaging tools (e.g.,MR scanners resolve images atmillimetric
resolution), the manual segmentation has become an inten-
sive and time-consuming task. A trained operator typically
has to go through around eighty 512 × 512 images, slice by
slice, to extract the contours of the target structures. This
manual segmentation is not only tedious but also particularly
prone to errors, as assessed by various intra- or interoperator
variability studies [58, 59]. Also, manual segmentation results
are often difficult and even impossible to reproduce, because
even experienced operators show significant variability with
respect to their own previous delineation.

However, manual segmentation is still intensively used
for defining a surrogate for true delineation (called “ground
truth”) and quantitative evaluation of automated segmenta-
tion methods. Also, manual segmentation of different brain
structures is a fundamental step in brain atlas formation and
is used in atlas-based segmentation approaches [50, 51, 60].

For manual delineation, editing tools such as ITK-SNAP
[61, 62] usually display 3D data in the form of 3 synchronized
2D orthogonal views (sagittal, coronal, and axial) onto which
the operator draws the contour of the target structure. The
output data therefore consists of a series of 2D contours from
which a continuous 3D surface has to be extracted. This is
a nontrivial postprocessing task and is prone to errors. For
instance, due to interslice inconsistencies in segmentation,
bumps in the reconstructed 3D surface are inevitable. More
robust segmentation methods can usually be derived from
true 3D structure models in that they can ensure globally
smoother and more coherent surfaces across slices.

4.2. Intensity-Based Methods. Intensity-based segmentation
methods classify individual pixels/voxels based on their
intensity. In the case of the brain MRI, three main tissue
classes, WM, GM, and CSF, can be distinguished based
on intensity; see Figure 3. A more detailed classification is
not possible because the intensity profiles of more detailed
brain structures overlap. Even separation of the three main
tissue classes based on intensity itself requires incorporating
tools for dealing with artifacts in MRI, such as intensity

inhomogeneity, noise, and partial volume, as well as overlap
in intensities of brain and nonbrain tissue (e.g., the scalp has
the same intensities as brain tissues).

Several intensity-based techniques are available for tissue
classification. The most common method is the use of
intensity histogram of all of the voxels and fitting Gaussian
functions to the distribution. The probability of a given
intensity corresponding to a given type of tissue can thus
be inferred and voxels are assigned to tissue types accord-
ingly. Additionally incorporating neighbourhood informa-
tion helps to give preference to spatially homogeneous
regions in the resulting segmentation. This can significantly
decrease misclassification due to random noise in the image
[1]. Additionally, probabilistic atlases can be included in the
classification to inform whether a given location in the brain
is likely to contain WM, GM, or CSF voxels [50].

4.2.1. Thresholding. Thresholding is the simplest image seg-
mentation method. A thresholding procedure uses the inten-
sity histogram and attempts to determine intensity values,
called thresholds 𝜏, which separates the desired classes. The
segmentation is then achieved by grouping all pixels between
thresholds into one class; see Figure 11. The thresholding
methods have many variations: global (single threshold) or
local threshold (depending on the position in the image),
multithresholding, adaptive thresholding, and so forth. In the
case of a single global threshold, segmentation of an image
𝐼(𝑖, 𝑗) is defined as

𝐼

(𝑖, 𝑗) = {

1, if 𝐼 (𝑖, 𝑗) > 𝜏,
0, if 𝐼 (𝑖, 𝑗) ≤ 𝜏,

(9)

where 𝐼(𝑖, 𝑗) is a segmented (thresholded) image, where
pixels labeled with 1 correspond to object and pixels labeled
with 0 correspond to background; see Figure 11(a).

Thresholding is fast and computationally efficientmethod
but does not take into account the spatial characteristics of
an image (neighborhood information). Thus thresholding
is sensitive to noise and intensity inhomogeneities. In low-
contrast images it tends to produce scattered groups of pixels
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Figure 12: An example of region growing segmentation of a brain lesion. (a) In the initialization step, a seed point is manually selected in the
lesion area. (b) The final segmentation result is a connected region and represents the lesion.

rather than connected regions and requires connectivity
algorithms as a postprocessing step.

In general, threshold-based segmentation methods are
not suitable for textured images. This is because the percep-
tual qualities of textured images are based on higher order
interactions between image elements or objects in the scene.
However, in brain MRI segmentation, thresholding can be
used to separate background voxels from the brain tissue or to
initialize the tissue classes in iterative segmentation methods
such as fuzzy C-means clustering. A survey on thresholding
techniques is provided in [63].

4.2.2. Region Growing. Region growing (also called region
merging) is a technique for extracting a connected region
of the image which consists of groups of pixels/voxels with
similar intensities [64]. In its simplest form, region growing
starts with a seed point (pixel/voxel) that belongs to the
object of interest. The seed point can be manually selected by
an operator or automatically initialised with a seed finding
algorithm. Then, region growing examines all neighboring
pixels/voxels and if their intensities are similar enough (satis-
fying a predefined uniformity or homogeneity criterion), they
are added to the growing region. This procedure is repeated
until no more pixels/voxels can be added to the region.

Region growing is suitable for segmentation of volumetric
imageswhich are composed of large connected homogeneous
regions.Thus, it is successfully used inmedical image analysis
to segment different tissues, organs, or lesions from MR
images. For example, it is used in brain MRI analysis for seg-
mentation of brain vessels [65], brain tumour segmentation
[66], or extraction of brain surface [67]. See an example of
region growing segmentation in Figure 12.

The main disadvantage of the region growing method is
its sensitivity to the initialization of seed point. By select-
ing a different seed point, the segmentation result can be
completely different. If seed point and homogeneity criterion
are not properly defined, the growing region can leak out

and merge with the regions that do not belong to the object
of interest. Also, region growing is sensitive to noise and
segmented regions in the presence of noise can become
disconnected or have holes. On the other hand, separate
regions can become connected in the presence of partial
volume effects.

4.2.3. ClassificationMethods. Classificationmethods use data
with known labels to partition image feature space. Image
features are typically intensity values but can be also related to
texture or other image properties. Classificationmethods can
be both supervised and unsupervised. Supervised classifica-
tion requires training images, which are manually segmented
and then used as references for automatic segmentation of
new images. Next to the manual interaction that is laborious
and time-consuming, another disadvantage of supervised
classification methods is that they generally do not take into
account the neighborhood information and thus they are
sensitive to noise. Also, the use of the same training set for
a large number of images can lead to biased results, which do
not take into account anatomical and physiological variability
between different subjects.

One of the simplest classifiers is the nearest-neighbor
classifier [68], where each pixel/voxel is classified in the
same class as the training datum with the closest intensity.
A generalization of this approach is the 𝑘-nearest-neighbor
(kNN) classifier, where the pixel/voxel is classified according
to the majority vote of the closest training data. The kNN
classifier is considered a nonparametric classifier because
it makes no underlying assumption about the statistical
structure of the data. It is especially suitable if a large number
of training data are available.

The kNN classification method was applied to brain MRI
segmentation by Warfield et al. [69]. In addition to image
intensities, Warfield used spatial localization of brain struc-
tures (classes) in form of a nonrigidly registered template as
an additional feature to enhance the classification process.
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The segmentation is then calculated in an iterative process by
interleaving the segmentation refinement with updating the
nonrigid alignment to the template. This procedure requires
manual selection of a large number of training samples for
each tissue class to train the kNNclassifier. Due to themanual
interaction in the training phase, the method is not fully
automatic and the results depend on particular choice of
the training set. Cocosco et al. [70] developed a method for
the robust selection of training samples to make the kNN
classification process fully automatic.Thismethod is reported
to dealwell with anatomieswhich differ from the probabilistic
atlas. However, it does not deal with the problem of natural
intensity variation within each tissue class. Both methods
require correction of the bias field as a preprocessing step.

One of the most commonly used parametric classifiers is
the Bayesian classifier [30].The Bayesian classifiermodels the
probabilistic relationships between the attribute set and the
class variables, which are then used for estimating the class
probability of the unknown variable. This model involves
Bayesian inference such as maximum a posteriori (MAP)
estimation, where the goal is to estimate the label output
image x̂ given the observed image y by minimizing the
posterior distribution 𝑃(x | y) of the possible labels x:

x̂ = argmax
x
𝑃 (x | y) . (10)

The Bayesian framework consists of three probability distri-
butions: the prior distribution𝑃(�⃗�), the posterior distribution
𝑃(x | y), and the conditional distribution 𝑃(y | x) (also
called the likelihood). The prior distribution embodies the
knowledge of likely configurations before an actual image
is observed. The posterior distribution is derived after an
observation has been made and the likelihood is defined as
the probability of obtaining a particular observation given a
set of model parameters.

The Bayes rule describes the relation between the pos-
terior probability 𝑃(x | y), prior probability 𝑃(x), and like-
lihood 𝑃(y | x) as follows:

𝑃 (x | y) =
𝑃 (y | x) 𝑃 (x)

𝑃 (y)
. (11)

Using definition (11), the MAP estimate can be written as

x̂ = argmax
x

(
𝑃 (y | x) 𝑃 (x)

𝑃 (y)
)

= argmax
x

(𝑃 (y | x) 𝑃 (x)) ,
(12)

where 𝑃(y) can be omitted because it is a constant in the
case when y is known. Since in many cases the probability
distributions have exponential functions, this computation
can be simplified by using a logarithmic transform:

x̂ = argmax
x

(log𝑃 (y | x) + log𝑃 (x)) . (13)

In the case of the brain MRI segmentation, often it is
assumed that the pixel intensities are independent samples
from a mixture of Gaussian probability distributions. Train-
ing data is collected by obtaining representative samples

from each component of the Gaussian mixture accordingly.
Classification of new data is obtained by assigning each pixel
to the class with the highest posterior probability.

Bayesian classifiers are used in the expectation-max-
imization (EM) segmentation methods which have been
successfully implemented in several software packages used
in the medical imaging community: SPM [2], FAST [3],
FreeSurfer [21], and 3DSlicer [71]. All these methods imple-
ment segmentation and bias correction in the EM framework.
They also include various additional improvements, such as
nonrigid alignment of atlas [2], including neighbourhood
information in the form of Markov random fields [3, 4] or
using the𝛼-stable distributionmixturemodel as a generaliza-
tion of the GMM [20]. More details about the Bayes’ theory
can be found in [72].

4.2.4. Clustering Methods. Clustering methods are unsu-
pervised segmentation methods that partition an image
into clusters of pixels/voxels with similar intensities without
using training images. In fact, clustering methods use the
available image data to train themselves. The segmentation
and training are done in parallel by iterating between two
steps: data clustering and estimating the properties of each
tissue class. The most commonly used clustering methods
are the k-means clustering [73], the fuzzy C-means clustering
[74, 75], and the expectation-maximisation (EM)method [1].

The k-means clustering method partitions the input data
into 𝑘 classes by iteratively computing a mean intensity for
each class (also called centroid) and segmenting the image
by classifying each pixel/voxel in the class with the closest
centroid. The 𝑘-means clustering is also known as a hard
classification method because it forces each pixel/voxel to
belong exclusively to one class in each iteration.The fuzzy C-
means clustering is soft classification method based on fuzzy
set theory [76]. It is a generalization of the k-means clustering
because it allows each pixel/voxel to belong tomultiple classes
according to a certain membership value.

TheFCMclustering algorithm is based onminimizing the
following objective function:

𝐽
𝑚
=

𝐶

∑
𝑖=1

𝑁

∑
𝑗=1

𝑢
𝑚

𝑖𝑗
𝐷
𝑖𝑗
, (14)

where 𝑁 is the number of image elements that need to be
partitioned into 𝐶 clusters, 𝑢

𝑖𝑗
is the membership function

of the element x
𝑗
(a feature vector at position 𝑗) belonging

to the 𝑖th cluster, 𝑚 is the weighting exponent that controls
the fuzziness of the resulting partition (most often is set to
𝑚 = 2, if 𝑚 = 1 we have the k-means clustering), and 𝐷

𝑖𝑗
is

the similaritymeasure between x
𝑗
and the 𝑖th cluster center v

𝑖
.

The most commonly used similarity measure is the squared
Euclidean distance𝐷

𝑖𝑗
=

x
𝑗
− v
𝑖



2

.
The objective function 𝐽

𝑚
(see (14)) is minimized under

the following constraints: 𝑢
𝑖𝑗
∈ [0, 1], ∑𝐶

𝑖=1
𝑢
𝑖𝑗
= 1 ∀𝑗, and

0 < ∑
𝑁

𝑗=1
𝑢
𝑖𝑗
< 𝑁 ∀𝑖. Considering these constraints and

calculating the first derivatives of 𝐽
𝑚
with respect to 𝑢

𝑖𝑗
and v
𝑖
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and setting them to zero result in the following two conditions
for minimizing 𝐽

𝑚
:

𝑢
𝑖𝑗
= [

𝐶

∑
𝑘=1

(
𝐷
𝑖𝑗

𝐷
𝑘𝑗

)

1/(𝑚−1)

]

−1

,

k
𝑖
=
∑
𝑁

𝑗=1
𝑢𝑚
𝑖𝑗
x
𝑗

∑
𝑁

𝑗=1
𝑢𝑚
𝑖𝑗

.

(15)

The FCM algorithm iteratively optimizes 𝐽
𝑚
, by eval-

uating (15), until the following stop criterion is satisfied:
max
𝑖∈[1,𝐶]


v(𝑙)
𝑖
− v(𝑙+1)
𝑖

∞
< 𝜖, where 𝑙 is the iteration index

and ‖⋅‖∞ is the 𝐿
∞

norm. Once a membership value 𝑢
𝑖𝑗
for

each class 𝑖 is assigned to each pixel 𝑗, defuzzification of the
fuzzy clusters {𝐹

𝑘
}
𝐶

𝑘=1
into its crisp version {𝐻

𝑘
}
𝐶

𝑘=1
is done by

assigning the pixel to the class with the highest membership
value as follows:

max
𝑖∈[1,𝐶]

(𝑢
𝑖𝑗
) = 𝑢
𝑘𝑗
⇒ x
𝑗
∈ 𝐻
𝑘
. (16)

The EM method is an iterative method for finding
maximum likelihood orMAP estimates of a statistical model.
It has the same soft classification principle as FCM method
but typically assumes that MRI intensities of different brain
tissues can be represented with a Gaussian mixture model.
Even though clustering methods do not require training
images, they do require some initial parameters and the EM
method has shown the highest sensitivity to initialization in
comparison to fuzzy 𝐶-means and k-means methods [1].

In general, the EM segmentation framework can be
described as follows.

EM Approach for Brain MRI Segmentation. Firstly, initialize
the EM algorithm. In the case of brainMRI segmentation, the
GMM is used to initially estimate model parameters. Then,
iterate between expectation step (E-step) and maximization
step (M-step) until convergence.

E-Step. Estimate the brain tissue segmentation given the
current estimate of model parameters. This step can include
the use of neighbourhood information (e.g., in the form of
MRF modeling).

M-Step. Estimate the model parameters.This step can consist
of a combination of the following steps.

(1) Estimate the intensity distribution parameters for
each tissue class.

(2) Estimate the bias correction parameters.
(3) Estimate the registration parameters for alignment of

probabilistic atlas with the image.

As it is the case with classification methods, clustering
methods initially do not incorporate spatial neighborhood
information and thus they are sensitive to noise and intensity
inhomogeneities. To improve the clustering performance for
images corrupted by noise, many extensions of the clustering
algorithms have been proposed [49, 57, 77–84]. The most

common approach is to include feature information (e.g.,
intensity values) of the neighboring pixels into the modified
FCM objective function [77, 79] or into a similarity measure
between cluster centers and image elements [80]. Ahmed et
al. [77] modified the objective function of the standard FCM
algorithm to allow the immediate neighbours of the pixel to
influence its labeling. Chen and Zhang [79] proposed two
improvements of the Ahmed et al. algorithm to reduce the
computational time. On the other hand, to keep the conti-
nuity from the FCM algorithm, Shen et al. [80] introduced
a new similarity measure that depends on spatial neighbour-
hood information, where the degree of the neighbourhood
attraction is optimized by a neural network. The clustering
performance can also be enhanced by combining pixel-wise
fuzzy classification with preprocessing (noise cleaning in the
original image) [49, 78] and postprocessing (noise cleaning
on the classified data) [78].

An example of the multimodal T
1
-W and T

2
-W MRI

clustering of the adult brain is shown in Figure 13(a). In
general, the shape of joints T

1
-W and T

2
-W MRI intensity

distributions of different tissue classes depends on the image
quality (the presence of noise, PVE, etc.). The shape of the
classified data depends on the applied segmentation method.
In the example in Figure 13(a), there is a small overlap among
classes due to the good quality MRI. Thus, the standard k-
means clustering method is used to segment the brain tissue
probability maps (see Section 4.2.4) and the final clusters are
indicated with different colors in the scatter plot of T

1
-W and

T
2
-W MRI in Figure 13(b). In general, when MRI artifacts

are present and there is a significant overlap among tissue
classes, the spatial information of the brain tissue is required
to disambiguate the classification problem.

4.3. Atlas-Based Methods. If an atlas or template of the
human brain for a specific population of interest is available,
then atlas-based methods can be a powerful tool for brain
MRI segmentation. The atlas contains information about the
brain anatomy (e.g., it contains the information about the
location of different brain structures) and it is used as a
reference (a prior knowledge) for segmenting new images.
The main advantage of these methods is the possibility to
segment any brain structure available in the atlas without
any additional cost. Conceptually, atlas-based approaches are
similar to classifier methods, except that they are imple-
mented in the spatial domain rather than in the feature space.

Before a probabilistic atlas can be used as a prior knowl-
edge, it has to be aligned with the image to be segmented.
Since the segmentation labels and the “ground truth” are
known for the atlas, all atlas information is transferred to the
target image after registration.Therefore, the performance of
atlas-based methods is directly dependent on quality of the
registration method used.

The traditional way of aligning the probabilistic atlas
with the image is to use affine registration. Unfortunately, an
affine alignment may not be sufficient if the brain anatomy of
interest differs significantly from the average atlas anatomy.
Pohl et al. therefore suggest aligning the atlas using nonrigid
registration [85]. However, in their later work Pohl reports
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Figure 13: (a) Joint 2D intensity histogram of T
1
-W and T

2
-W MRI of the adult brain. The associated 1D histograms of each MRI modality

are plotted on the left and top. Both individual histograms consist of three overlapped Gaussian distributions that approximate the expected
tissue distribution of GM, WM, and CSF. (b) The scatter plot of the tissue intensities after applying tissue segmentation. The horizontal axis
represents T

1
-W intensities and the vertical axis represents T

2
-W intensities. The red cloud corresponds to GM, the green to WM, and the

blue to CSF.

difficulties in registering anatomical template with the image
to be segmented using standard registration methods [86].
D’Agostino et al. developed a special similarity measure for
registering probabilistic maps directly to the new image
[87]. Recently, several methods have been developed which
aim to overcome this problem by iteratively refining the
segmentation and nonrigid registration of the probabilistic
atlas at the same time. Ashburner and Friston developed a
method for simultaneous segmentation, bias correction, and
nonrigid registration of a probabilistic atlas [2].

However, even with nonrigid registrationmethods, accu-
rate segmentation of complex structures is difficult due to
anatomical variability. Also, atlas-guided segmentation in
patients with brain deformations can be difficult and prone to
errors, because the probabilistic atlas is based on a population
of healthy subjects. For instance, in patients with brain
lesions or a brain anatomy that significantly differs from the
atlas template, the atlas alignment and the corresponding
segmentation of the brain will fail or give inaccurate results.
In these cases an atlas-based approach is not a suitable
method for image segmentation.

An aligned probabilistic atlas can be also used as a
good initial estimate of the segmentation, which is especially
important for EM-based methods, as EM algorithm is guar-
anteed to converge to local, not global, maxima. In addition,
most EM-based methods [2, 71] use the probabilistic atlas to
constrain the segmentation process where again the correct

alignment of the probabilistic atlas is crucial for successful
and accurate segmentation.

It is important to note that atlas-basedMRI segmentation
of the neonatal brain has become a research focus in recent
years [42, 51, 53, 88]. MRI segmentation of the neonatal
brain tissue is more complex than in adults due to fast
growth process, complex anatomy of the developing brain,
and often poor MRI quality. Therefore a probabilistic atlas
of the newborn brain that contains the spatial variability of
the tissue structure is used to segment different brain tissues
such as brain cortex, myelinated and nonmyelinated white
matter. However, a good atlas of the newborn brain is even
more difficult to obtain than in adults, mainly due to the
greater anatomical variations between subjects. Therefore, it
was necessary to develop a dynamic, probabilistic atlas for any
chosen stage of neonatal brain development (for ages of 29 to
44 weeks) [89].

4.4. Surface-Based Methods. In addition to intensity-based
and atlas-based methods, there are a number of alterna-
tive brain MRI segmentation approaches. These approaches
include surface-based methods, such as deformable models
including active contours and surfaces [46, 52, 54, 61, 90–93].

4.4.1. Active Contours and Surfaces. Deformable models are
also called active contours or snakes in 2D and active surfaces
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(a) (b) (c)

Figure 14: Segmentation of the brain surface using deformable models. (a) A closed curve is initialised inside the brain. (b)The segmentation
result of the brain surface in 2D. (c) 3D surface of the brain.

or active balloons in 3D. Deformablemodels were introduced
by Kass et al. [92] in 2D space and were further developed
and generalized in 3D space by Terzopoulos et al. [93,
94]. Deformable models use closed parametric curves or
surfaces for delineating region boundaries. The parametric
curves and surfaces deform under the influence of external
(or image) forces (controlled by the image attributes) and
the internal forces, which control the surface regularity. In
general, deformablemodels represent the fusion of geometry,
physics, and approximation theory. Geometry is used to
represent the shape of the object, physics defines constraints
on how the shape may vary over time and space, and
approximation theory provides mechanisms for fitting the
models to measured data. A visual example of segmentation
using deformable models is given in Figure 14.

To delineate a boundary of an object, first a closed curve
or surfaceS is placed near the desired boundary in an image.
Then, internal and external forces are deforming the curve
or surface in an iterative relaxation process where the energy
functional is defined as

𝐹 (S) = 𝐹int + 𝐹ext. (17)

The internal forces 𝐹int are computed from within the curve
or surface to keep it smooth throughout the deformation.
The external forces 𝐹ext are usually derived from the image
to deform the curve or surface towards the desired feature of
interest.

In traditional deformable models, image forces come
primarily from the local edge-based information (e.g., based
on the gradients of sharp image intensities) [95–97]. How-
ever, such reliance on edge information makes deformable
models sensitive to noise (e.g., deformable model can leak
through noisy edges) and highly dependent on the initial
estimate. There have been significant efforts to integrate
more global region information into deformable models.
The Mumford-Shah model [98] was one of the first region-
based methods where the image is approximated using a
smooth function inside the regions and not only at their

boundaries. Many variants of this model have been proposed
later [46, 90]. For instance, Chan and Vese [46] presented
a level set method which approximates an image with a
constant function inside the regions. Li et al. proposed a
region-based level setmethod for segmentation ofMRI in the
presence of intensity inhomogeneity. Furthermore, several
hybrid deformable models had been later proposed to make
use of both local (edge-based) and global (region-based)
information [99–102]. Sometimes the image data are not
sufficient to delineate the region of interest and thus prior
knowledge has to be introduced [103].

4.4.2. Multiphase Active Contours. The most popular Chan-
Vese level set method [46] has been successfully used in
segmenting images with two distinctive regions (images with
binary segmentation energies). In [104], Vese and Chan
extended their binary segmentation energies to a multiphase
level set formulation. In this way, multiple nonoverlapping
regions with spatial consistency and varying characteristics
(such as themean intensities of regions) could be represented
with multiple level set functions. This multiphase level set
approach was attractive for segmentation of brainMR images
which typically havemultiple regions of interest with different
characteristics. Starting from the Vese and Chan method
[104], different extension to multiphase active contours had
been developed [54, 105–108]. The advantage of multiphase
active contours to other approaches is their robustness to
image variations, adaptive energy functionals, topological
flexibility, and accurate boundaries.

Traditionally, active contours methods have nonconvex
energy minimization due to a gradient descent formulation.
In this way, energy minimization converges to undesirable
local minima and results in erroneous segmentations. Also,
the traditional level set implementation has slower conver-
gence due to discretization errors and the well-known reini-
tialization requirement. One of the first convex approaches
to the two-phase active contours segmentation was pro-
posed by Chan et al. [109]. Later on, several extensions to
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the more challenging multiphase problem have been pro-
posed [110, 111]. A lot of recent work has been dedicated to
developing new multiphase active contours not only with a
convex formulation, but also with a reduced computational
complexity [54, 105, 107]. Note that globally convex methods
are initialization independent.

4.5. Hybrid Segmentation Methods. New application-specific
brain MRI segmentation problems are emerging and new
methods are continuously explored and introduced. Since
a selection of the most appropriate technique for a given
application is often a difficult task, a combination of several
techniquesmay be necessary to obtain the segmentation goal.
Therefore, hybrid or combined segmentation methods have
been used extensively in different brain MRI segmentation
applications [78, 84, 112–120]. The main idea is to com-
bine different complementary segmentation methods into a
hybrid approach to avoid many of the disadvantages of each
method alone and improve segmentation accuracy.

Here are some examples of the hybrid brainMRI segmen-
tation methods. Kapur et al. [112] segmented different brain
tissues in adults using 2D MRI by combining expectation-
maximization segmentation, binary mathematical morphol-
ogy, and active contours models. Masutani et al. [113]
combined model-based region growing with morphological
information of local shape to segment cerebral blood vessels.
Warfield et al. [120] developed a combined 3D brainMRI seg-
mentation algorithm which iterates between a classification
step to identify tissues and an elastic matching step to align a
template of normal brain anatomy with the classified tissues.
Elastic matching step can generate image segmentation by
registering an anatomical atlas to a patient scan.

Furthermore, an unsupervised global-to-local brain MRI
segmentation is developed by Xue et al. [78]. They combined
minimum error global thresholding and a spatial-feature-
based FCMclustering to segment 3DMRI in a “slice-by-slice”
manner. In the work of Vijayakumar and Gharpure [117], a
hybrid MRI segmentation method, based on artificial neural
networks (ANN), is proposed for segmenting tumor lesions,
edema, cysts, necrosis, and normal tissue in T2 and FLAIR
MRI. More recently, Ortiz et al. [119] suggested an improved
brain MRI segmentation method using self-organizing maps
(a particular case of ANN) and entropy-gradient clustering.

Hybrid segmentation methods are also used for the
neonatal brain segmentation [115, 118]. For example, Despo-
tovic et al. [115] proposed a hybrid strategy to segment the
brain volume in neonates using T

1
-W and T

2
-W MRI by

combining thresholding, active contours, FCM clustering,
and morphological operations. Later on, Gui et al. [118] pro-
posed amorphology-driven automatic segmentationmethod
to segment different anatomical regions of the neonatal brain.

The main drawback of hybrid (combined) segmentation
methods is often the increased complexity in comparison
with each single method integrated into a hybrid one. This
includes a lower computational time and a higher number
of different parameters that needs to be tuned for a specific
application.Therefore, a hybrid segmentationmethod should
be carefully and wisely designed to give efficient and good
quality segmentation.

4.6. Partial Volume Effect Correction. As mentioned in
Section 2.5, the PVE problem is one of the most common
problems in brain MRI segmentation.The PVE describes the
loss of small tissue regions because of the limited resolution
of the MRI scanner and it is seen on MRI scans as a mix
of different tissues in a single pixel/voxel. This effect can
cause the misclassification of pixel/voxel that lies in the
transition between two (or more) tissues classes. Several
methods have been proposed to address the problem of PVE
in MRI segmentation for both adult and neonatal brains
[3, 42, 103, 121, 122].

One of the first approaches for the partial volume correc-
tion is the method by Santago and Gage [123]. They assumed
a uniform prior probability for mixed (nonpure) tissues and
calculated the intensity distribution of partial volume by
minimizing the distance between a model and an image
histogram. Another approach is proposed byNocera andGee
[124], where they used MRF to obtain spatial smooth vari-
ations of tissue mixing proportions and a MAP estimation
is then computed for partial volume segmentation. Later on,
Zhang et al. [3] employ a hidden Markov random field with
a finite mixture model to overcome possible PVE and bias
field distortions. In the work by Van Leemput et al. [122], a
statistical uniform framework for partial volume segmenta-
tion is presented without using a heuristic assumption for the
prior distribution ofmix proportions.They used a parametric
statistical image model where each voxel belongs to a single
tissue type and introduced an additional downsampling step
to cause partial volumes along the borders between tissues.
Then, they estimated the tissue mixing proportions by using
the expectation-maximization approach.

For all above-mentioned partial volume correctionmeth-
ods, very promising results have been reported for adult T

1
-

W MRI. However, these methods rely on the fact that the
intensity levels of partial volumes in adult MRI images do not
predominantly overlapwith the characteristic intensity of any
pure tissue class.This assumption is not possible for neonatal
MRI due to the inverted graywhite matter contrast and
great tissue overlap due to the existence of myelinated WM
and nonmyelinated WM; see Figure 8(b). Therefore, several
approaches have been proposed to address the PVE in neona-
tal MRI [42, 103]. Xue et al. [42] proposed method based on
expectation-maximization, Markov random field, and atlas
information to remove mislabeled voxels and correct errors
caused by PVE. They implemented a label propagation strat-
egy tomask off deepGMandmyelinatedWM,which enabled
the segmentation of cortical GM and nonmyelinatedWM. In
the paper of Wang et al. [103], a rather simple and effective
scheme is used to deal with the PVE problem and is based on
the anatomical observation that the misclassifiedWM voxels
are surrounded by the CSF and GM and that mislabeled CSF
voxels are unconnected from the true WM volume.

5. Validation of Brain MRI Segmentation

Validation and quantitative comparison of different segmen-
tation methods are a general problem in medical image
analysis. It requires a “ground truth” or gold standard to
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which the outcome of the segmentation method can be
compared. Unfortunately, the “ground truth” does not exist
for the analysis of in vivo acquired data in humans. Thus, the
“ground truth” of the real patients is typically generated after
image acquisition.

In brain MRI analysis, the “ground truth” for the real
patient data is usually made by one ormore expert physicians
who need to manually analyze and segment anatomical
structures of interest; see Section 4.1. Although this is the only
way to validate the real patientMRI data, this validationmust
be critically considered because the manual segmentation is
prone to errors, highly subjective, and difficult to reproduce
(even by the same expert) [59]. Also, this type of validation
is not always available because it is time-consuming and
depends on the human operator. Therefore, few alternative
validation methods evolved in the praxes to validate the
accuracy of the segmentation algorithms. The most popular
validation methods include the use of software simulations
and phantoms.

In software simulations, the artificial MR images are
generated with computer programs that simulate the real
acquisition process. In this way the “ground truth” is known
and the influence of different acquisition parameters and
imaging artifacts can be controlled and examined indepen-
dently. This type of validation is very flexible and easily
accessible by different researchers and can be performed with
little effort. However, a drawback of this validation is that
software simulators cannot take into account all factors that
might influence the real image acquisition and the simulated
images are only an approximation of the real images.

Since software simulations have certain limitations, val-
idation of new segmentation methods can be done using
human-like phantoms,whose physical properties (e.g., geom-
etry of the tissue structures and material properties) are
known and are similar to the in vivo properties.The phantom
images are generated using the MRI scanner and are more
realistic than images generatedwith software simulations. On
the other hand, the phantom images do not offer the flexibility
of the software simulations and imaging is more expensive
and labour intensive.

The most popular simulated images used for validation
of brain MRI segmentation methods are designed by Collins
et al. [125] and are also known as a realistic digital brain
phantom or simply BrainWeb. Images are freely available
online and easily accessible for all researchers to test the per-
formance of the new segmentation methods. The BrainWeb
data consists of 181 × 217 × 181 voxel matrix with a resolution
of 1mm× 1mm× 1mmand is available for different additive
noise levels. The noise level (expressed in percentages) is
relative to the average real and imaginary values of the overall
brightness of the tissue class. The noise is generated using a
pseudorandom Gaussian noise, which is added to both real
and imaginary components before the final magnitude value
of the simulated MR image is computed.

Beside the phantom BrainWeb data, the most popular
repository with real MRI data used for validation of brain
MRI segmentation methods is the Internet Brain Segmen-
tation Repository (IBSR) [126]. The IBSR repository is also
freely available online. It consists of 20 real T

1
-W MRI

brain data sets and manually guided expert segmentation
results, which are used as a “ground truth” segmentation.
Each MRI volume consists of about 60 coronal T

1
-W slices

with the interslice resolution of 3.1mm (thickness between
consecutive slices).

To quantify the overlap between the MRI segmentation
and the given “ground truth,” several similarity measures are
used in the literature. One of themost popularmeasures used
often with BrainWeb data is the Dice coefficient 𝜌

𝑖
[127]:

𝜌
𝑖
=
2
𝐴 𝑖⋂𝐵

𝑖


𝐴 𝑖

 +
𝐵𝑖

, (18)

where 𝑖 stands for a tissue type, 𝐴
𝑖
and 𝐵

𝑖
denote the set

of pixels labeled into 𝑖 by the “ground truth” and MRI
segmentation, respectively, and |𝐴

𝑖
| denotes the number of

elements in 𝐴
𝑖
. The Dice coefficient is in the range 0 ≤ 𝜌

𝑖
≤

1 and has value 0 if there is no overlap between the two
segmentations and 1 if both segmentations are identical.

The Tanimoto coefficient (also known as the Jaccard
index) is often used as a similarity measure with real IBSR
data. The Tanimoto coefficient T(𝑖) for each tissue type 𝑖 is
defined as follows:

T
𝑖
=

𝐴 𝑖⋂𝐵
𝑖


𝐴 𝑖

 +
𝐵𝑖
 −

𝐴 𝑖⋂𝐵
𝑖


, (19)

where 𝐴
𝑖
and 𝐵

𝑖
denote the set of pixels labeled into 𝑖 by the

“ground truth” and the segmentation method, respectively,
and 𝐴 𝑖

 denotes the number of elements in 𝐴
𝑖
. Note that

T(𝑖) ≤ 𝜌(𝑖) and 0 ≤ T(𝑖) ≤ 1.
More readings about similarity measures for evaluation

and validation in medical image analysis can be found in
[128].

6. Discussion and Conclusions

Image segmentation is an important step in many medi-
cal applications involving 3D visualization, computer-aided
diagnosis, measurements, and registration. This paper has
provided a brief introduction to the fundamental concepts of
MRI segmentation of the human brain and methods that are
commonly used.

In Section 2, we have defined the basic concepts necessary
for understanding MRI segmentation methods, such as 2D
and 3D image definition, image features, and brain MRI
intensity distributions. Following this, preprocessing steps
necessary to prepare images forMRI segmentation have been
described in Section 3.Themost important steps include bias
field correction, image registration, and removal of nonbrain
tissues or brain extraction. The correction of intensity inho-
mogeneity is an important step for the efficient segmentation
and registration of brain MRI. Image registration is required
in brain MRI segmentation for the alignment of multimodal
images of the same subject or several population groups taken
at different times and from different viewpoints.

Due to the rapid development of medical image modal-
ities, new application-specific segmentation problems are
emerging and new methods are continuously explored and
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introduced. Selection of the most appropriate technique for
a given application is a difficult task. In many cases, a
combination of several techniquesmay be necessary to obtain
the segmentation goal. Very often integration of multimodal
information (acquired fromdifferentmodalities or over time)
can help to segment structures that otherwise could not be
detected on single images.

The most popular image segmentation methods that are
used for brain MRI segmentation have been reviewed and
discussed in Section 4. Newer methods are usually designed
to bringmore accurate results by incorporating 3D neighbor-
hood information and prior information from atlases. As a
consequence, the segmentation process often becomes more
complex and time-consuming.The likely future research will
still focus not only on developing more accurate and noise-
robust methods, but also on improving the computational
speed of segmentation methods. Computational efficiency
will be particularly important in real-time processing appli-
cations such as computer guided surgery.

Probably one of themost important questions concerning
medical image segmentation is its use in real clinical settings.
It is undeniable that computerized segmentation methods
have shown their potentials and applicability in computer-
aided diagnosis and therapy planning. It is expected that
in the near future they will also become essential tools in
real clinical settings, particularly in qualitative diagnosis and
where 3D reconstruction and visualization of the anatomical
structures are important.
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[57] I. Despotovı́ć, E. Vansteenkiste, and W. Philips, “Spatially
coherent fuzzy clustering for accurate and noise-robust image
segmentation,” IEEE Signal Processing Letters, vol. 20, no. 4, pp.
295–298, 2013.

[58] D. C. Collier, S. S. C. Burnett, M. Amin et al., “Assessment
of consistency in contouring of normal-tissue anatomic struc-
tures,” Journal of Applied Clinical Medical Physics, vol. 4, no. 1,
pp. 17–24, 2003.

[59] E. Vansteenkiste, Quantitative analysis of ultrasound images of
the preterm brain [Ph.D. dissertation], Ghent University, 2007.

[60] M. Murgasova, Segmentation of brain MRI during early child-
hood [Ph.D. thesis], Imperial College London, 2008.



Computational and Mathematical Methods in Medicine 21

[61] P. A. Yushkevich, J. Piven, H. C. Hazlett et al., “User-guided 3D
active contour segmentation of anatomical structures: signifi-
cantly improved efficiency and reliability,” NeuroImage, vol. 31,
no. 3, pp. 1116–1128, 2006.

[62] ITK-SNAP, 2009, http://www.itksnap.org/.
[63] M. Sezgin and B. Sankur, “Survey over image thresholding

techniques and quantitative performance evaluation,” Journal of
Electronic Imaging, vol. 13, no. 1, pp. 146–168, 2004.

[64] R. M. Haralick and L. G. Shapiro, “Image segmentation tech-
niques,” Computer Vision, Graphics, and Image Processing, vol.
29, no. 1, pp. 100–132, 1985.

[65] N. Passat, C. Ronse, J. Baruthio, J.-P. Armspach, C. Maillot,
and C. Jahn, “Region-growing segmentation of brain vessels: an
atlas-based automatic approach,” Journal ofMagnetic Resonance
Imaging, vol. 21, no. 6, pp. 715–725, 2005.

[66] T. Weglinski and A. Fabijanska, “Brain tumor segmentation
from MRI data sets using region growing approach,” in Pro-
ceedings of the 7th International Conference on Perspective
Technologies and Methods in MEMS Design (MEMSTECH ’11),
pp. 185–188, May 2011.
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