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ABSTRACT Limited lifespan and senescence are near-universal phenomena. These quantitative traits
exhibit variation in natural populations due to the segregation of many interacting loci and from
environmental effects. Due to the complexity of the genetic control of lifespan and senescence, our
understanding of the genetic basis of variation in these traits is incomplete. Here, we analyzed the pattern of
genetic divergence between long-lived (O) Drosophila melanogaster lines selected for postponed repro-
ductive senescence and unselected control (B) lines. We quantified the productivity of the O and B lines and
found that reproductive senescence is maternally controlled. We therefore chose 57 candidate genes that
are expressed in ovaries, 49 of which have human orthologs, and assessed the effects of RNA interference in
ovaries and accessary glands on lifespan and reproduction. All but one candidate gene affected at least one
life history trait in one sex or productivity week. In addition, 23 genes had antagonistic pleiotropic effects on
lifespan and productivity. Identifying evolutionarily conserved genes affecting increased lifespan and
delayed reproductive senescence is the first step toward understanding the evolutionary forces that main-
tain segregating variation at these loci in nature and may provide potential targets for therapeutic inter-
vention to delay senescence while increasing lifespan.
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Limited lifespan and senescence, the post-reproductive decline in
survival and fertilitywith advancing age, arenear-universal phenomena.
They are quantitative traits that exhibit variation in natural populations
due to the segregation of many different interacting loci and envi-
ronmental effects (Finch and Tanzi 1997; Finch and Ruvkun 2001;
Pasyukova et al. 2004; Pitt and Kaeberlein 2015).

Due to the complexity of the genetic control of lifespan and senes-
cence, ourunderstandingof the genetic basis of variation in these traits is
incomplete. Evolutionary theory predicts that variants affecting lifespan
mayhaveantagonistic effects onotheraspectsoffitness (Williams1957),
have late-life specific deleterious effects (Medawar 1952) and/or have
negative pleiotropic effects on reproduction and somatic maintenance
(Kirkwood 1977), explaining why genetic variation for lifespan may
persist. Studies in Drosophila melanogaster provide experimental sup-
port for these predictions as there is increased genetic variance in
mortality (Hughes and Charlesworth 1994; Charlesworth and Hughes
1996) and fecundity (Durham et al. 2014) with increasing age; negative
genetic correlations between early fecundity and lifespan (Rose and
Charlesworth 1981a) and reduced early fecundity and increased life-
span of lines selected for late-age fecundity (Rose and Charlesworth
1981b; Rose 1984; Luckinbill et al. 1984; Sgrò and Partridge 1999;
Remolina et al. 2012; Fabian et al. 2018), and single mutations affecting
increased lifespan have deleterious effects on other fitness-related
quantitative traits (Magwire et al. 2010). However, to date only a few
causal genes underlying these relationships in a natural population
have been identified (Paaby and Schmidt 2008; Paaby et al. 2014).
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Identifying specific genes with allelic variants that causally affect
lifespan and senescence will enhance our understanding of the evo-
lutionary forces acting on these genes and empirically test the validity
and relative contributions of the evolutionary theories of senescence
and maintenance of genetic variation. These causal genes may also
offer potential targets for therapeutic intervention to delay senescence
while increasing lifespan.

Many mechanisms influencing lifespan have been implicated by
studies of effects ofmutations and segregatingnatural variation in short-
livedmodel organisms andhumans, suchas insulin signaling (Friedman
and Johnson 1988; Kenyon et al. 1993; Kimura et al. 1997; Paradis and
Ruvkun 1998; Tissenbaum and Ruvkun 1998; Gil et al. 1999; Clancy
et al. 2001; Holzenberger et al. 2003; Blüher et al. 2003; Giannakou et al.
2004; Hwangbo et al. 2004; Paaby et al. 2014), caloric restriction
(Lakowski and Hekimi 1998; Defossez et al. 2001; Lin et al. 2002;
Rogina and Helfand 2004; Grandison et al. 2009), environmental
stress (Rose et al. 1992; Lithgow et al. 1995; Zwaan et al. 1995; Lin
et al. 1998; Mockett and Sohal 2006; Rollmann et al. 2006; Ma et al.
2015), DNA repair and replication (Woodhead et al. 1985; Yu et al.
1996; de Boer et al. 2002), telomere integrity (Bodnar et al. 1998),
immune response (Zerofsky et al. 2005; Felix et al. 2012; Horn et al.
2014), sensory perception (Apfeld and Kenyon 1999; Libert et al.
2007), gene silencing (Kim et al. 1999), learning (Ping et al. 2015),
and reactive oxygen species (ROS) detoxification (Griswold et al.
1993; Ishii et al. 1998; Parkes et al. 1998; Sun et al. 2002; Kharade
et al. 2005). While many mutations have been identified that extend
lifespan, many more decrease longevity, suggesting that normal ex-
pression of the latter genes is essential for survival. For example, a
screen for P-element insertions affecting lifespan in D. melanogaster
identified 135 genes associated with an increase in lifespan and
296 genes associated with a decrease in lifespan (Magwire et al. 2010).

Quantitative trait loci (QTL) affecting lifespan have been mapped
in D. melanogaster (Nuzhdin et al. 1997; Leips and Mackay 2000;
Pasyukova et al. 2000; Vieira et al. 2000; Leips and Mackay 2002;
Forbes et al. 2004; Wilson, Morgan, and Mackay 2006; Durham et al.
2014; Ivanov et al. 2015; Fabian et al. 2018; Huang et al. 2020),
C. elegans Shook 1996; Ayyadevara et al. 2001; Shmookler Reis et al.
2006), mice (Jackson et al. 2002; Doria et al. 2004; Lang et al. 2010), and
humans (Beekman et al. 2013; Deelen et al. 2013; Deelen et al. 2014).
However, only a few genes implicated by QTL mapping have been
shown to be capable of affecting both lifespan and reproductive senes-
cence using an independent assay (Durham et al. 2014).

Here, we used genetic divergence between five long-lived (O)
D. melanogaster lines selected for postponed reproductive senescence
and five unselected control (B) lines (Rose 1984; Carnes et al. 2015) to
identify candidate genes underlying the response to selection. The O
lines live twice as long as the B lines and maintain high levels of re-
production at later ages compared to the B lines (Carnes et al. 2015).
We re-analyzed the genetic divergence data for these lines (Carnes et al.
2015) to identify intervals containing multiple variants with allele fre-
quency differences between the O and B lines. These regions contained
a large number of genes that could not be further resolved with existing
genetic data. We then evaluated the effect of RNAi for 57 of these
candidate genes on lifespan of males and females as well as lifetime
reproductive success. We identified candidate genes for which RNAi
increased lifespan and decreased early reproduction and vice versa,
candidate genes for which RNAi had opposite effects on lifespan in
males and females, candidate genes for which RNAi that increased
lifespan with no deleterious effects on reproduction, and one candidate
gene for which RNAi increased both lifespan and reproduction. These
results provide support for the antagonistic pleiotropy theory of aging

(Williams 1957) and the basis for further analysis of causal polymor-
phic variants contributing to the response to selection.

MATERIALS AND METHODS

Drosophila stocks
Thefive long-livedO lineshavebeenmaintainedwith70-daygeneration
intervals to preserve selection for delayed reproduction, and the five
unselected B lines have been maintained with 14-day generation inter-
vals (Rose 1984; Carnes et al. 2015). All RNAi lines were obtained from
the Vienna Drosophila Resource Center. The 39 P{KK} RNAi lines are
from the same genetic background, contain upstream activating se-
quenceUAS-RNAi constructs for each candidate gene at the same locus
on the second chromosome, and have no known off-target effects on
other loci (Dietzl et al. 2007). The 18 P{GD} RNAi lines are from the
same genetic background, contain P-element based transgenes in a
random insertion site, and have no known off-target effects on other
loci (Dietzl et al. 2007). All candidate genes tested are listed in Supple-
mentary Table 4.GAL4-c825 is specific to ovaries and accessory glands.
Apart from the O populations, which weremaintained in cages at room
temperature when not being used for assays, all stocks and experimen-
tal flies were maintained at 25�, 60–75% relative humidity, and on a
12-hour light-dark cycle.

Productivity assays: O and B lines
We assessed the productivity of females from the five O (O1 –O5) and
five B (B1 – B5) lines crossed to males from their own lines, and pro-
ductivity of O and B females crossed to males from the other selection
lines (O1♀·B1♂, O2♀·B2♂, O3♀·B3♂, O4♀·B4♂, O5♀·B5♂,
B1♀·O1♂, B2♀·O2♂, B3♀·O3♂, B4♀·O4♂, B5♀·O5♂) as de-
scribed in Carnes et al. (2015) with a few exceptions. Experimental flies
were produced by allowing six males and six females to mate and lay
eggs for three days in vials containing 5 mL culture medium. Offspring
from these vials were collected on the day of eclosion, anesthetized
using CO2, sorted into vials with three males or three females, and
given 24 hr to recover before setting up the experimental vials. Three
male and three female flies of each genotype were placed in each of
15 replicate vials and aged to three to five days old. They were then
allowed to lay eggs for 24 hr on 5mL culturemedia once a week for four
weeks. The total number of adults from each vial was counted until day
16 post-eclosion and divided by the number of living females in that
vial to give an average per female per vial. Experimental flies were
transferred without anesthesia to new vials containing 2 mL culture
media every 1-3 days to minimize bacterial and fungal infections. Data
were analyzed by an analysis of variance (ANOVA) with the model Y =
m +Gm+Gf +W +Gm·W +Gf·W +Gm·Gf + Gm·Gf·W + e, where
Gm is the fixed effect of the mother’s genotype, Gf is the fixed effect of
the father’s genotype, W is the fixed effect of week, and e is the error,
using JMP Pro 14 (SAS Institute, Cary, NC). Reduced model ANOVAs
of formY =m +Gm+Gf +Gm·Gf + ewere also run for eachweek, and
Tukey’s tests were performed to determine significant differences be-
tween each cross at each week.

Identification of intervals with high genomic divergence
Toidentifygenomic intervals that containedfixedornearlyfixedvariants
between the O and B lines, we first identified variants with allele
frequency differences greater than 0.8 between the O and B lines. Next,
wemerged any adjacent variantswhose allele frequencydifferenceswere
greater than0.8.These intervalswereoften interruptedby small numbers
of variants that did not meet this stringent allele frequency difference
threshold. These interruptionsweremergedwith their flanking intervals
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if they contained fewer than three variants and if the minimum allele
frequency differences were greater than 0.5. We calculated both the
length in bp of these merged intervals (Figure 2) and the number of
variants they contained (Supplemental Table 1). The interval lengthwas
computed as the distance between neighboring variants and tends to be
an underestimate when the number of variants was small.

Productivity and lifespan assays: RNAi lines
The first generation of experimental flies were produced by allowing six
GAL4-c825 males and six P{KK} or P{GD} UAS-RNAi females to mate
and lay eggs in vials containing 10 mL culture medium for two days.
The GAL4-c825 driver is expressed in amniosera, adult female ovary,
and adult male accessory glands and seminal vesicles. Two control
genotypes were also used: F1 progeny of v60100, which is the isogenic
strain in which the P{KK} UAS-RNAi lines were constructed with the
empty PhiC31 vector, crossed toGAL4-c825; and F1 progeny of v60000,
which is the isogenic strain in which the P{GD} UAS-RNAi lines were
constructed with a modified pUAST vector pMF3, crossed to GAL4-
c825. Of the F1 progeny from each mating, 3 males and 3 females were
sorted into vials containing 5 mL culture mediumwith 48 replicates for
each genotype. Three females per vial were allowed to lay eggs for 24 hr
on 10 mL culture media once a week for their entire lifespan, and the
average number of F2 offspring per female in each vial was recorded
until 16 days after the initial egg laying for 13 of the 48 replicates. Flies
were transferred without anesthesia to new vials containing 5 mL cul-
ture media every 1-3 days to provide fresh food and minimize bacterial
and fungal infections. Dead flies were removed, and their deaths
recorded. The sum of the average number of offspring across all weeks
determined the lifetime productivity for each vial. The mixed factorial
ANOVAmodelY =m + S +G+ S·G+Rep(G) + S·Rep(G) + ewas used
to partition variation in lifespan between the fixed main effects of Sex
(S), Genotype (G, RNAi vs. control) and their interaction, and the
random effect of replicate vial (Rep), nested within genotype. Reduced
model ANOVAs of form Y = m + G + Rep(G) + e were also run for
males and females separately. The full fixed effect factorial ANOVA
model for lifetime productivity, which is the summation of all individ-
ual weeks, was Y = m + G + e; where G is Genotype. The full fixed effect
factorial ANOVAmodel for weekly productivity was Y = m +W + G +
W·G + e; where W is Week and G is Genotype. Reduced models of
form Y = m + G + e were run for each week. These analyses were
performed in six blocks with different genes in each block.

Gene expression analyses
The magnitude of RNAi-mediated suppression of gene expression was
assessed using quantitative PCR (qPCR) of female ovaries and male
accessory glands for a subset of the RNAi and control genotypes. Ovary
tissue was dissected from females and accessory glands were dissected
from males at 3-5 days old, with 10 ovaries and 10 accessory glands in
each of two biological replicates per genotype, and RNA was extracted.
cDNAwas synthesized from120ngof totalRNAusing the iScript cDNA
synthesis kit (Bio-Rad).We performed qPCR for each of three technical
replicates per biological replicate using Maxima SYBR Green (Thermo
Scientific).GAPDHwas the internal control.The levels of expression for
each genewere normalized against the internal control and compared to
the RNAi line control to determine differences in gene expression of the
RNAi mutants. We first assessed overall differences in gene expression
using theANOVAmodel Y=m+L+G+L·G+Rep(L·G)+ e, whereL
indicates the RNAi or control line, G is the gene tested, R is biological
replicate, nested within line and gene, and e is the residual (technical
replicate) variance. Reduced models of form Y = m + L + Rep(L) + e
were run for each gene. Effect and p-Value summaries were performed

to determine significant differences of the RNAi line from the con-
trol line. All analyses were performed using JMP Pro 14 (SAS Institute,
Cary, NC).

Data availability
TheDNAsequencingrawdataarepublicly availableonGEOunderSRA
Project IDPRJNA286855. Supplementary Table 1 gives the raw data for
the four week productivity assay of the pure and reciprocal corsses
between the O and B lines. Supplementary Table 2 gives the analyses of
variance (ANOVAs) of O andB line productivity. Supplementary Table
3 shows the genomic regions containing genetically divergent SNPS.
Supplementary Table 4 gives the list of 57 candidate genes tested,
including their FlyBase ID, gene name, gene, symbol, and the Vienna
stock number used in the RNAi assay. Supplementary Table 5 gives the
raw lifespan data forGAL4-c825·UASRNAi andGAL4-c825 · control
F1 flies. Supplementary Table 6 gives the raw lifetime productivity data
for GAL4-c825 · UAS RNAi and GAL4-c825 · control F1 flies. Sup-
plementary Table 7 gives the raw weekly productivity data for GAL4-
c825 · UAS RNAi and GAL4-c825 · control F1 flies. Supplementary
Table 8 gives the analyses of variance (ANOVAs) of lifespan for GAL4-
c825 · UAS RNAi and GAL4-c825 · control F1 flies. Supplementary
Table 9 gives the analyses of variance (ANOVAs) of lifetime produc-
tivity for GAL4-c825 · UAS RNAi and GAL4-c825 · control F1 flies.
Supplementary Table 10 gives the analyses of variance (ANOVAs) of
weekly productivity for GAL4-c825 · UAS RNAi and GAL4-c825 ·
control F1 flies. Supplementary Table 11 gives the analyses of variance
(ANOVAs) of ovary qPCR for GAL4-c825 · UAS RNAi and GAL4-
c825 · control F1 flies. Supplementary Table 12 gives the analyses of
variance (ANOVAs) of accessory gland qPCR for GAL4-c825 · UAS
RNAi and GAL4-c825 · control F1 flies. Supplementary Table 13 is a
summary of genes for which RNAi affects lifespan and/or productivity.
Supplementary Figure 1 shows the results of ovary qPCR for the dif-
ference in expression between GAL4-c825 · UAS RNAi and GAL4-
c825 · control F1 flies. Supplementary Figure 2 show the results of
accessory gland qPCR for the difference in expression between GAL4-
c825 · UAS RNAi and GAL4-c825 · control F1 flies.. Supplemental
material available at figshare: https://doi.org/10.25387/g3.11503278.

RESULTS

Maternal effects on productivity in the O and B lines
In order to assess whether the net effects of selection on reproductive
senescence were maternally or paternally controlled, we quantified
productivity for females of each of the O and B lines at one, two, three
and fourweeks of age.We assessedproductivity forO females crossed to
males of the sameO line,O females crossed toBmales;B females crossed
to males from the same B line, and B females crossed to O males. We
found littledifference in the totalnumberofviableoffspringbetweenany
of these crosses for young flies, but divergence between the O and B
genotypes at later ages (Figure 1, Supplementary Tables 1, 2). The B line
females exhibited lower reproduction by week four than O line females,
but no differences depending on themale genotype. In the cross with an
O female and B male, there was higher productivity at week four than
the cross of the O female and O male. These data indicate that pro-
ductivity is largely maternally controlled, although the overall analysis
does indicate significant effects of the week bymale genotype (P= 0.012)
and female genotype by male genotype (P = 0.013) interaction.

Genomic intervals containing candidate genes
Carnes et al. (Carnes et al. 2015) sequenced the genomes and tran-
scriptomes of the O and B lines and assessed the genetic divergence
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between them, identifying 6,394 single nucleotide polymorphisms
(SNPs) in or near 1,925 genes with nominally significant (P , 1023)
allele frequency differences, nearly 300 of which showed gene expres-
sion changes consistent with delayed senescence between young and
old flies of the O and B lines. There were some large regions of genetic
divergence between the O and B lines in this study, especially on the X
chromosome. We re-analyzed these data, imposing the more stringent
criterion that genetically divergent variants were those for which the
average difference in allele frequency between the O and B lines was
greater than 0.8. This analysis identified individual variants as well as
intervals, some of which were quite large, containing multiple geneti-
cally divergent SNPs (Figure 2, Supplementary Table 3). The large
genetically divergent intervals may have arisen as a consequence of
selective sweeps, and Figure 2 presumably contain causal variants as
well as linked non-causal loci that were driven to fixation or near
fixation under selection for delayed reproductive senescence in the O
lines relative to the B lines. Existing genetic data cannot resolve these
regions any further. Therefore, it is necessary to assess the effects of
each candidate gene on lifespan and reproduction in order to infer
which ones are likely to harbor one or more functional polymorphisms
responding to selection.

Effects of RNAi on lifespan and productivity
We chose 57 candidate genes (Supplementary Table 4) that were either
located in the intervals with high SNP divergence between the O and B
lines (Supplementary Table 3), or that had low P-values from the pre-
vious genetic divergence analysis (Carnes et al. 2015) but for which the
average allele frequency difference between the O and B lines was less
than 0.8. The following criteria were used to choose among the many
genes in the high divergence intervals: (1) the P-value for individual
SNP divergence (Carnes et al. 2015) is, 1025; (2) the candidate gene is
expressed in ovaries and accessory glands since the productivity assay
of the O and B lines implicated a strong maternal and weaker paternal
effect, and selection was on reproductive senescence; and (3) viable
RNAi stocks with no off-target effects were available. We assessed life-
span (Supplementary Table 5), average lifetime reproduction (Supple-
mentary Table 6), and average weekly reproduction (Supplementary
Table 7) for the F1 progeny of UAS-RNAi lines crossed to GAL4-c825,
and F1 progeny of the crosses of an appropriate control line without the
UAS transgene and theGAL4 driver.GAL4-c825 is expressed in amnio-
sera, adult female ovary, and adult male accessory glands and seminal

vesicles and is therefore expected to reduce gene expression specifically
in these tissues.

RNAi of 47 of the 57 genes tested affected lifespan (Figure 3, Sup-
plementary Table 8). RNAi of 26 genes increased lifespan and 31 genes
decreased lifespan in at least one sex; 10 of these genes had sexually
antagonistic effects on lifespan (capu, Cdc7, CG13369, CG3326, Dredd,
egh, lama,MED22, Nmd3, Pgant1). The effects on lifespan were highly
sex-specific: seven genes increased lifespan in both sexes and six de-
creased lifespan in both sexes; eight genes increased lifespan in only one
sex and 15 decreased lifespan in only one sex.

RNAi of 15 genes affected total lifetime productivity: zf30c RNAi
increased total productivity, while blw, CG13933, CG14969, CG17777,
CG5254, CG7971, crn, CycE, Cyp4g1, Dredd, Fdx1, l(1)G0004, ND-ACP
andRpL22RNAi decreased total productivity (Figure 4, Supplementary
Table 9). However, RNAi of 50 candidate genes affected productivity
in at least one week (Figure 5, Supplementary Table 10) and RNAi
of 18 genes increased productivity in at least one week. Several
genes appeared to have a tradeoff in reproduction. RNAi of babos,
capu, Eip75B, MED22, and sov increased productivity at an early
age and decreased productivity at later ages. RNAi of CG13369,
CG32809, CG4281, CG4554, DAAM, and wds lowered productivity
at an early age and increased productivity at later ages.

Given these data on lifespan and productivity, we can now assess the
extent to which RNAi of these candidate genes gives the antagonistic
pleiotropic effects between different fitness traits predicted by evolu-
tionary theory (Williams 1957). RNAi of six genes affects lifespan and
not productivity (Figure 3, Figure 5): Lztr1, Nmd3, pcx and Pgant1
increase female lifespan with no deleterious effect on productivity;
while CG18273 and TRAM decrease male lifespan but do not have
significant effects on productivity. RNAi of nine genes affects produc-
tivity without significant effects on lifespan: CG7970, CG13933, Hsp22,
Hsl, l(1)G0004 and Fdx1 all decrease productivity; babos and sov have
increased productivity early in life and decreased productivity later in
life; and piwi has increased productivity at an early age. RNAi of blw,
boi, CG12018, CG14969, CG16868, CG17777, CG4452, CG5254, crn,
CycE, Cyp4g1, dx, ND-ACP, pn and RpL22 had deleterious effects on
lifespan in at least one sex and productivity in at least one week; and
RNAi ofCG3071, sgg and zf30c increased both lifespan and productivity
in at least one sex and at least one week. RNAi of dnc had no effects on
either trait.

RNAi of the remaining 23 genes had antagonistic pleiotropic effects
on lifespan and/or productivity (Figures 3 and 5, Supplementary Tables
8 and 10). RNAi of abo, CG13760, CG7971, fs(1)N, G9a, and Klp67A
had increased lifespan in at least one sex and decreased early produc-
tivity. RNAi of CG3704, msn and sra decreased lifespan in at least one
sex and increased early productivity. RNAi of Cdc7, CG3326, Dredd,
egh and lama decreased productivity but had sexually antagonistic
effects on lifespan; whereas RNAi of CG32809, CG4281, CG4554,
DAAM, and wds increased lifespan in at least one sex and decreased
early and increased late productivity. RNAi of Eip75B decreased
female lifespan and had increased early and decreased late produc-
tivity. Finally, RNAi of capu and MED22 had increased early and
decreased late productivity and decreased female and increased ma-
le lifespan; while RNAi of CG13369 reduced early and increased late
productivity and increased female and decreased male lifespan.

Effects of RNAi knockdown on RNA abundance
We assessed the effectiveness of the RNAi knockdown for 16 candidate
genes in female ovaries and RNAi knockdown of 12 genes in male
accessory glands using quantitative PCR (qPCR) (Supplementary Ta-
bles11, 12; SupplementaryFigures1,2).At the individualgene level,nine

Figure 1 Average number of offspring per week. Blue bars: B♀·B♂.
Purple bars: B♀·O♂. Red bars: O♀·B♂. Orange bars: O♀·O♂. Error
bars are 6 1 SE. Letters denote significant differences at P , 0.05.
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of RNAi lines tested in females and six of the RNAi lines tested inmales
had significantly reduced expression compared to the control.However,
all genes (with the exception of abo in accessory glands) had lower point
estimates of expression in the RNAi lines relative to the control, and the
combined analyses across all genes showed significant effects of gene
(Supplementary Tables 11, 12). Based on the large standard errors, we
infer the qPCR experiment to quantify gene expression differences be-
tween the RNAi lines and the control were underpowered, and that the
number of biological samples would need to be increased to detect
small changes in gene expression for some of these genes. In contrast,
the phenotypic data were based on large sample sizes and are thus
reliable read-outs of the effects of small differences in gene expression
in reproductive tissues.

DISCUSSION
Natural D. melanogaster populations harbor considerable segregat-
ing genetic variation for lifespan, as evidenced by the large number of
QTL affecting lifespan (Nuzhdin et al. 1997; Leips and Mackay 2000;

Pasyukova et al. 2000; Vieira et al. 2000; Leips and Mackay 2002;
Forbes et al. 2004; Wilson et al. 2006; Durham et al. 2014; Ivanov
et al. 2015; Huang et al. 2020) and rapid evolution of long-lived
strains by selecting for increased age of reproduction from several
different geographical populations (Rose 1984; Luckinbill et al. 1984;
Sgrò and Partridge 1999). Previously, we assessed the genetic diver-
gence between five long-lived O lines selected for postponed senes-
cence and five B control lines with normal lifespan (Rose 1984; Carnes
et al. 2015), and identified 1,925 nominally significant (P , 1023)
genes based on analyses of individual variants. Here, we re-analyzed
these data for signatures of local selective sweeps involving mul-
tiple variants and identified 1,071 genes in these intervals. Clearly,
the genetic architecture of natural variation in lifespan is highly
polygenic.

These data can be used to begin to address two fundamental
questions regarding naturally occurring genetic variation for lifespan
and reproductive senescence: what are the causal genes, and what is the
distribution of direct and pleiotropic effects of causal variants on each

Figure 2 Analysis of intervals with high genomic divergence between the O and B lines. Each vertical bar indicates the locations of intervals with
high genomic divergence on the major chromosome arms (x-axis) and the approximate length of each interval (bp) (y-axis).
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trait? However, not all of the candidate genes implicated by the di-
vergence analyses are likely to be causal, since selection will cause local
linkage disequilibrium between the focal variants and closely linked
variants. We chose a subset of candidate genes to evaluate with low
divergence P-values and for which RNAi reagents with no off-target
effects were publicly available. In addition, we assessed whether the

difference in reproductive senescence between the O and B lines was
due to maternal genotype, paternal genotype, or both. We found
that late life reproductive capacity is primarily determined by the
female genotype since O line females are on average more produc-
tive in weeks three and four than are B line females. However, the
male genotype is also significant at weeks one, three and four, such

Figure 3 Differences in lifespan between GAL4-c825 · UAS RNAi and GAL4-c825 · control F1 flies. Error bars are 6 1 SE. Significance of the
difference from control (P , 0.05) is denoted by darker colors. Red bars: Females. Blue bars: Males.
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that the productivity of O females crossed to B males is greater than
that of O females crossed to O males. One plausible explanation for
the paternal effect may be differences in the accessary gland prod-
ucts between the O and B males. Male accessory gland products
evolve rapidly and have profound effects on female life history traits,
increasing egg production, decreasing lifespan and reducing the
probability of re-mating (Sirot et al. 2015). It is possible that acces-
sory gland products of O males are not as effective in reducing
female lifespan and increasing early egg production as those of B
males. Thus, we chose to evaluate candidate genes that are expressed

in both ovaries and accessory glands and used a GAL4 driver that is
specific to these tissues (as well as for amniosera and seminal vesicles).

Of the 57 candidate genes tested, all but dunce affected lifespan
and/or productivity (Supplementary Table 13). RNAi of six genes
increased lifespan and/or reproduction, suggesting that normal lev-
els of expression of these genes in ovaries and accessory glands
inhibit extended lifespan and/or reproduction. RNAi of CG3071,
sgg and zf30c results in increased lifespan and productivity; RNAi of
Lztr1 and pcx increases lifespan with no deleterious effects on produc-
tivity; while piwi RNAi increases productivity with no deleterious

Figure 4 Differences in lifetime productivity (num-
ber of adult offspring) between GAL4-c825 · UAS
RNAi and GAL4-c825 · control F1 flies. Error bars
are 6 1 SE. Significance of the difference from con-
trol (P , 0.05) is denoted by darker colors.
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effects on lifespan. Thus, increasing lifespan does not necessarily
occur at the cost of reduced reproductive capacity (although other,
unmeasured, fitness components may be affected). piwi and sgg
are highly pleiotropic genes known to affect oogenesis; in addition,
both genes have been independently associated with naturally oc-
curring genetic variation in lifespan (Huang et al. 2020) and response
to selection for delayed reproductive senescence (Luckinbill et al.
1984; Fabian et al. 2018).

Not surprisingly, RNAi of 23 genes decreased lifespan and/or pro-
ductivity (Supplementary Table 13), as would be expected if normal
levels of expression of these genes in ovaries and accessory glands are
required for average lifespan and productivity. This suggests there
may be naturally occurring variation in levels of expression of these
genes in these tissues, and selection resulted in their increased
expression in ovaries and accessory glands in the O lines. Regardless
of whether this testable hypothesis is true, variation in nine of these
genes (blw, CG14969, CG4452, CG7970, CycE, Fdx1, Hsp22, l(1)G0004,

ND-ACP) has been independently associated with variation in life-
span (Garcia et al. 2017; Huang et al. 2020) and response to selection
for delayed reproductive senescence (Remolina et al. 2012) in other
populations.

RNAi of the remaining 27 genes in ovaries and accessory glands
resulted in antagonistic pleiotropic effects that varied in their complexity
(SupplementaryTable 13): antagonistic pleiotropybetween lifespan and
reproduction; sexual antagonistic pleiotropy for lifespan with no effects
on productivity; antagonistic pleiotropic effects on early and late re-
productionwithnoeffects on lifespan; sexual antagonistic pleiotropy for
lifespan and antagonistic pleiotropy between lifespan and reproduction
for one sex; antagonistic pleiotropy between early and late reproduction
and antagonistic pleiotropy between lifespan and early reproduction;
and sexual antagonistic pleiotropy for lifespan, antagonistic pleiotropy
between early and late reproduction, and antagonistic pleiotropy
between lifespan and reproduction. Variation in genes exhibiting
antagonistic effects between female lifespan and productivity affects

Figure 5 Significant differences (P , 0.05)
in weekly productivity (number of adult off-
spring) between GAL4-c825 · UAS RNAi and
GAL4-c825 · control F1 flies. Blue cells: De-
creased productivity relative to the control.
Red cells: Increased productivity relative to
the control. Gray cells: Not significantly dif-
ferent from the control. White cells: No data
due to decreased lifespan of GAL4-c825 ·
UAS-RNAi F1 flies.

1094 | G. A. Parker et al.

https://identifiers.org/bioentitylink/FB:FBgn0004872?doi=10.1534/g3.120.401041
https://identifiers.org/bioentitylink/FB:FBgn0003371?doi=10.1534/g3.120.401041
https://identifiers.org/bioentitylink/FB:FBgn0011211?doi=10.1534/g3.120.401041
https://identifiers.org/bioentitylink/FB:FBgn0035440?doi=10.1534/g3.120.401041
https://identifiers.org/bioentitylink/FB:FBgn0035981?doi=10.1534/g3.120.401041
https://identifiers.org/bioentitylink/FB:FBgn0035252?doi=10.1534/g3.120.401041
https://identifiers.org/bioentitylink/FB:FBgn0010382?doi=10.1534/g3.120.401041
https://identifiers.org/bioentitylink/FB:FBgn0011769?doi=10.1534/g3.120.401041
https://identifiers.org/bioentitylink/FB:FBgn0001223?doi=10.1534/g3.120.401041
http://flybase.org/reports/FBgn0027334
https://identifiers.org/bioentitylink/FB:FBgn0011361?doi=10.1534/g3.120.401041


alternative resource allocation strategies in terms of reproduction
and somatic cell maintenance. Variation in genes with sexually an-
tagonistic effects on lifespan affects variation in alternative life history
strategies in the two sexes. All sources of antagonistic pleiotropy can
lead to the maintenance of genetic variation for lifespan and repro-
ductive senescence at intermediate frequencies in natural populations,
depending on the model assumptions (Levene 1953; Williams 1957;
Zajitschek and Connallon 2018). Seven genes (babos, capu, CG4554,
CG7971, DAAM, Eip75B, Klp67A) with antagonistic pleiotropic ef-
fects between the sexes and/or between lifespan and productivity were
associated with variation in lifespan or response to selection for delayed
reproductive senescence in independent populations (Luckinbill et al.
1984; Remolina et al. 2012; Fabian et al. 2018; Huang et al. 2019).

In addition to piwi and sgg, 10 of the candidate genes also affect
oogenesis, spermatogenesis or another aspect of reproduction (abo,
capu, Cdc7, CycE, Dredd, egh, Eip75B, fs(1)N, MED22, sra) (Supple-
mentary Table 13) (Rübsam et al. 1998; Kozlova and Thummel 2000;
Takeo et al. 2012; Quinlan 2013; Lu and Fuller 2015; Stephenson et al.
2015; Ellis and Carney 2011). Many of the candidate genes have
pleiotropic effects on a large number of different molecular functions
and biological processes; for these genes, it is not obvious via which of
these annotations the effect on lifespan and reproduction is exerted.
For example,Dredd affects sperm individualization, but also regulates
defense against Gram-negative bacteria (Leulier et al. 2000; Jang et al.
2006); Eip75B affects oogenesis and also antimicrobial humoral re-
sponse (Kleino et al. 2005), and Cdc7 affects histone phosphorylation
and eggshell chorion gene amplification (Stephenson et al. 2015).
Genes known to affect a host of different biological processes affect
lifespan and/or productivity, including (but not limited to) mRNA
splicing (Herold et al. 2009), ATP synthesis (Di Cara et al. 2013),
detoxification of xenobiotics (Qiu et al. 2012), translation (Alonso
and Santarén 2006), carbohydrate phosphorylation (Gaudet et al.
2011), oligosaccharide biosynthetic processing (Ten Hagen et al.
2003), microtubule segregation (Zhang et al. 2007) and imaginal
disc cell formation (Klebes et al. 2005). Finally, this study has an-
notated effects on lifespan and productivity for 10 computationally
predicted genes (CG13760, CG14969, CG17777, CG18273, CG32809,
CG4281, CG4452, CG4554, CG5254, CG7970) for which prior infor-
mation on their function was lacking.

This study is the first step to ‘reverse engineer’ the genomic response
to selection for delayed reproductive senescence and the accompanying
correlated response of increased lifespan from variation segregating in
a natural population. We have shown that an RNAi screen targeting
knockdown of gene expression in reproductive tissues in both sexes for
genes that exhibit genetic divergence in replicate selection lines suc-
cessfully identified genes affecting lifespan and/or reproduction. Fur-
ther, the effects of RNAi knockdown are consistent with predictions
of evolutionary theory, in that RNAi knockdown can result in com-
plex sexually antagonistic pleiotropic effects on lifespan and antag-
onistic pleiotropic effects between lifespan and productivity – such
alleles would remain segregating at intermediate frequencies in na-
ture. RNAi resulting in increased or decreased lifespan (and/or pro-
ductivity) may mimic alleles remaining at intermediate frequency
due to antagonistic pleiotropic effects on other fitness traits not
assessed in his study. However, it is important to note that many
genes for which RNAi caused decreased lifespan and/or productiv-
ity may not be direct targets of selection, but in linkage disequilib-
rium with the true causal loci. Several of our candidate genes are
very closely linked, and only one of the genes in a high divergence
interval has increased lifespan and/or productivity. For example,
Klp67A has increased female lifespan, but not the tightly linked

genes CG4452, Fdx1 and Hsp22, which all have decreased lifespan
and/or productivity; and Nmd3 has increased female lifespan but
the adjacent gene pn has decreased female lifespan (Supplementary
Table 13). On the other hand, fs(1)N and DAAM are adjacent; as are
CG13760, wds and egh: RNAi of all of these genes causes increased
lifespan (Supplementary Table 13). Therefore, some large diver-
gence intervals may actually be due to selection of several closely
linked genes with effects in the same direction.

Thegenes forwhichRNAicauses increased lifespan inat leastonesex
are excellent candidates for the next step of the reverse engineering
paradigm, which is to identify the actual variants that cause increased
lifespan. Are there single variants in these genes that have sexually
antagonistic effects on lifespan or antagonistic pleiotropic effects on
productivity, or are different, closely linked variants in these genes
independently causing these effects? What are the mechanisms by
which these variants affect lifespan, and how do variants in different
genes interact? Are their effects the same in short-lived and long-
lived genetic backgrounds? Recent advances in gene editing tech-
nology will facilitate these future studies.
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