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Abstract 

The exponential growth of genomic datasets necessitates advanced analytical tools to effectively identify 

genetic loci from large-scale high throughput sequencing data. This study presents Deep-Block, a multi-

stage deep learning framework that incorporates biological knowledge into its AI architecture to identify 

genetic regions as significantly associated with Alzheimer's disease (AD). The framework employs a 

three-stage approach: (1) genome segmentation based on linkage disequilibrium (LD) patterns, (2) 

selection of relevant LD blocks using sparse attention mechanisms, and (3) application of TabNet and 

Random Forest algorithms to quantify single nucleotide polymorphism (SNP) feature importance, 

thereby identifying genetic factors contributing to AD risk. The Deep-Block was applied to a large-scale 

whole genome sequencing (WGS) dataset from the Alzheimer's Disease Sequencing Project (ADSP), 

comprising 7,416 non-Hispanic white participants (3,150 cognitively normal older adults (CN), 4,266 AD). 

First, 30,218 LD blocks were identified and then ranked based on their relevance with Alzheimer’s 

disease. Subsequently, the Deep-Block identified novel SNPs within the top 1,500 LD blocks and 

confirmed previously known variants, including APOE rs429358 and rs769449. The results were cross-

validated against established AD-associated loci from the European Alzheimer's and Dementia Biobank 

(EADB) and the GWAS catalog. The Deep-Block framework effectively processes large-scale high 

throughput sequencing data while preserving interactions between SNPs in performing the 

dimensionality reduction, which can potentially introduce bias or lead to information loss. The Deep-

Block approach identified both known and novel genetic variation, enhancing our understanding of the 

genetic architecture of and demonstrating the framework's potential for application in large-scale 

sequencing studies. 
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Introduction 

The advancement of deep learning in artificial intelligence has introduced new frameworks for analyzing 

complex genetic inheritance patterns, enhancing the interpretation of genomic data. (Avsec et al., 2021; 

Eraslan et al., 2019; Novakovsky et al., 2023; Zhou & Troyanskaya, 2015). For complex diseases such as 

Alzheimer's disease (AD), there is a critical need for advanced analytic tools provided by Artificial 

Intelligence (AI) to decipher the complexities of human genetic makeup (Berson et al., 2023; Eraslan et 

al., 2019; Shigemizu et al., 2023). The complexity of genomic studies necessitates innovative and 

adaptive approaches that transcend traditional machine learning techniques to analyze and elucidate 

these intricate genetic interactions (Bettencourt et al.; Karczewski & Snyder, 2018). The high 

dimensionality and large sample sizes characteristic of genetic data in AD research underscore the 

necessity for methods capable of navigating the complex landscape (Jo et al., 2023; Jo et al., 2022; 

Konietschke et al., 2021). While several machine learning-based dimensionality reduction methods have 

been proposed, they have encountered challenges such as loss of phenotypic association information 

during the reduction process, reproducibility issues, and data-dependent inconsistencies in results 

(Fujiwara et al., 2020; Shetta & Niranjan, 2020; Vogelstein et al., 2021).  

Here, we present Deep-Block, a deep learning framework designed to address the complexities of 

genomic sequencing data through targeted analysis of whole genome sequencing (WGS) data. Deep-

Block employs a linkage disequilibrium (LD) block-based approach to systematically identify significant 

genetic regions, aiming to preserve vital phenotypic associations and minimize the loss of genetic 

information crucial for understanding disease phenotypes. A key feature of Deep-Block is to efficiently 

handle missing data, a common challenge in large-scale genetic studies. The framework incorporates 

advanced machine learning and genomic imputation techniques (An et al., 2023; Rubinacci et al., 2020; 

Shishegar et al., 2021) to ensure a comprehensive dataset without any missing values for analysis. 

Furthermore, the integration of the TabNet model (Arik & Pfister, 2021; Vaswani et al., 2017), an 

attention-based neural network, enhances the process by providing a detailed assessment of feature 

importance within the genetic data, thus enriching the analysis. The calculation of phenotype influence 

scores (PIS) offers additional insights into the genetic basis of the disease, informing future research 

directions. 

Application of Deep-Block to a large-scale WGS dataset from the Alzheimer's Disease Sequencing 

Project (ADSP) Release 3, comprising 7,416 non-Hispanic white participants, demonstrated its capacity 

to effectively manage complex genomic data and identify single nucleotide polymorphisms (SNPs) as 

associated with AD. The Deep-Block framework identified AD-associated genetic loci, including well-
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known AD SNPs such as APOE rs429358 and rs769449 and novel single nucleotide polymorphisms 

(SNPs) not previously reported in AD genetic association studies, particularly within the top-performing 

LD blocks. 

 

Methods 

Data Collection and Quality Control 

The ADSP participants have WGS data sequenced using multiple platforms, including IlluminaHiSeq2000 

and IlluminaHiSeqXTen. This release (R3) includes 16,906 whole-genome sequences (WGS), processed 

and curated as part of the project. The release contains CRAMs, gVCFs, and quality-controlled project-

level VCFs (pVCFs) for autosomal biallelic single nucleotide variants (SNVs) and indels, along with 

structural variant (SV) calls generated by Manta, Smoove, and Strelka variant callers. The WGS data were 

called by the Genome Center for Alzheimer’s Disease (GCAD) using VCPA 1.1, a functionally equivalent 

CCDG/TOPMed pipeline. WGS data underwent comprehensive quality control (QC) procedures, 

including SNP call rates > 95%, Hardy-Weinberg equilibrium P values < 1 × 10^-6, minor allele 

frequencies (MAF) > 1%, absence of sex mismatches, and sample call rates > 95%. To mitigate false 

associations due to population stratification, the study analyzed genome-wide genotyping data from 

7,416 non-Hispanic White (NHW) participants (3,150 cognitively normal individuals (CN) and 4,266 AD 

patients), encompassing 10,764,329 SNPs. The male sex ratio was 56.3% for AD patients (mean age 70.1 

years) and 60.7% for CN individuals (mean age 80.2 years). 

Algorithm Implementation and Analysis 

The Deep-Block framework employs a structured, three-stage process to analyze large-scale WGS data: 

Stage 1: Segmentation of whole genome into LD blocks 

Following QC, the WGS dataset was segmented into linkage disequilibrium (LD) blocks using Plink 

software. The parameters were set as follows: the LD measure was r2 with a threshold of 0.9, window 

size of 50 variants, and maximum window physical size of 100 kilobases. LD blocks were then identified 

based on the genomic positions of SNPs and the extent of LD between adjacent SNPs. This 

configuration identified 30,218 LD Blocks, forming the basis for subsequent analyses. 

Stage 2: Imputation of missing genotype data 

Deep-Block utilizes machine learning approaches to impute missing genotype data within the LD blocks, 

a method supported by recent studies (An et al., 2023; Rubinacci et al., 2020; Shishegar et al., 2021). To 
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identify the most suitable imputer for imputing missing genotype data, preliminary experiments were 

conducted on the APOE gene region within the ADSP WGS dataset, assuming SNPs of this region are 

contained within LD blocks. The ADSP R3 WGS data, comprising 16,869 individuals, included 793 

variants from the APOE gene region. After QC, the missing data proportion in this region was 4.14E-

03. For the performance assessment of imputers, the missing rate was artificially increased to 8.70E-03. 

The modified dataset was then processed using the TopMed Imputer, establishing a benchmark for 

comparing the efficiency of other imputation methods. Several  imputers were used: 1-NN, 5-NN, 10-

NN, GAN, Iterative, MissForest (Stekhoven & Bühlmann, 2012), and Simple Imputer. All methods were 

applied to data with the same artificially increased proportion of missing genotype data to ensure 

consistent evaluation. The scikit-learn package (Pedregosa et al., 2011) was used for machine learning 

imputers and the GAIN package (Yoon et al., 2018) for the GAN Imputer. 

The Simple Imputer utilizes mean, median, or mode imputation to fill missing values with the most 

representative statistic of the available data. The k-Nearest Neighbors (k-NN) Imputers (1-NN, 5-NN, 

and 10-NN) leverage data point similarity to impute missing values based on the nearest neighbors' 

values. The GAN Imputer uses Generative Adversarial Networks to produce synthetic data mimicking 

the original data distribution, thus imputing missing values. The Iterative Imputer employs a round-

robin approach, modeling each feature with missing values as a function of other features stepwise, 

capturing complex interactions and dependencies. The MissForest Imputer utilizes a Random Forest 

approach, leveraging multiple decision trees to accurately predict missing values. 

The performance of these methods was evaluated using five well-established metrics: accuracy, Root 

Mean Squared Error (RMSE), R-squared (R2), Mean Absolute Error (MAE), and Normalized RMSE 

(NRMSE). The accuracy quantifies the proportion of correctly imputed values, directly reflecting an 

imputer's performance. The RMSE measures the average magnitude of imputation errors, providing a 

straightforward accuracy metric. The R2 indicates the proportion of variance in the original data 

explained by the imputed data, offering insights into the imputation method's ability to preserve data 

structure. The MAE calculates the average absolute error between imputed and actual values, presenting 

error distribution without directional bias. The NRMSE normalizes RMSE to the dataset range, facilitating 

the performance comparison across differently scaled datasets. 

Stage 3: Identification of Key LD blocks and phenotype association 

The final stage identifies key LD blocks as significantly associated with the AD phenotype using TabNet, 

a deep learning model optimized for efficient tabular data processing (Arik & Pfister, 2021). TabNet's 

architecture combines the interpretability of decision tree-based models with deep learning capabilities, 

featuring an encoder-decoder structure, feature transformers, and attentive transformers. TabNet's 
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encoder processes raw tabular data, selecting relevant features through a sequential multi-step 

procedure using feature transformers. These transformers apply non-linear transformations to enhance 

the model's learning capabilities. The attentive transformer, a key encoder component, employs the 

sparsemax normalization function to focus selectively on the most relevant features, optimizing model 

interpretability and efficiency. This stage uses TabNet to identify LD Blocks with high phenotypic 

relevance, focusing on features critically associated with AD. TabNet's decoder reconstructs features 

from the original dataset, identifying key features within the top LD Blocks. This process assigns 

Phenotype Influence Scores (PIS) to significant features, reflecting their phenotypic impact. The method 

integrates TabNet's feature importance metrics with the Mean Decrease Impurity (MDI) metric from 

Random Forest, offering a systematic approach to understanding genetic influences on phenotypic 

traits (Figure 1). 
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Figure 1. Overview of the Deep-Block Framework. This figure illustrates the sequential stages of the 

Deep-Block framework used in the analysis of large-scale whole genome sequencing (WGS) data for 

Alzheimer's disease (AD). The process initiates with the quality control procedure (QC) of WGS data, 

ensuring the integrity and reliability of the genetic information. Subsequently, the data is organized 

into Linkage Disequilibrium (LD) blocks, indicated by red dotted lines, which reflect the partitioning 

based on LD parameters. The next phase, Automated imputation, is visualized as various modules 

corresponding to different machine learning-based imputation techniques—each tasked with 

estimating and inputting missing genomic data. Following imputation, the TabNet encoder's role in 

decision-making is depicted, using feature transformers and attentive transformers to select and 

prioritize LD blocks that show significant associations with AD. The final element of the diagram 

focuses on the identification of the Phenotype Influence Score (PIS) using the TabNet decoder in 

conjunction with Random Forest metrics. 

 

This approach combines the strengths of both metrics to identify the most significant AD-associated 

genetic markers, offering a robust method for detecting key genetic markers within LD blocks. The 

Phenotype Influence Score (PIS) is calculated using the following combined formula: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝐼𝐼 ∙ 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎−𝑏𝑏,𝑗𝑗 + (1 − 𝐼𝐼) ∙ 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 

where I is an indicator variable that is automatically set to 1 when the TabNet model yields a higher 

predictive accuracy in phenotype-related classification using previously selected features, and is 

automatically set to 0 when the Random Forest algorithm shows superior performance in the same 

task. 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎−𝑏𝑏,𝑗𝑗, the feature importance from the TabNet model, represents the aggregate feature 

importance mask for the j-th feature. The calculation uses the total number of decision steps (N), the 

learning rate at each decision step (𝜂𝜂𝑏𝑏[𝑖𝑖]), and a binary mask (𝑀𝑀𝑏𝑏,𝑗𝑗[𝑖𝑖]) that is set to 1 if the j-th feature 

is utilized at the i-th decision step, and 0 otherwise. Here, D represents the total number of features. 

The corresponding formula is as follows: 

𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎−𝑏𝑏,𝑗𝑗=
∑ 𝜂𝜂𝑏𝑏[𝑖𝑖]𝑀𝑀𝑏𝑏,𝑗𝑗[𝑖𝑖]𝑁𝑁
𝑖𝑖=1

∑ ∑ 𝜂𝜂𝑏𝑏[𝑖𝑖]𝑀𝑀𝑏𝑏,𝑗𝑗[𝑖𝑖]𝑁𝑁
𝑖𝑖=1

𝐷𝐷
𝑗𝑗=1

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 , the Mean Decrease Impurity from the Random Forest algorithm, quantifies the impurity 

reduction for a specific SNP (𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗). This calculation encompasses the total number of decision trees 

in the model (𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), each tree (t), and the node (i), using 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 for splitting, includes the number of 

samples at node i before the splitting (𝑛𝑛𝑖𝑖𝑡𝑡) and the impurity reduction at this node (∆𝑖𝑖(𝑠𝑠𝑖𝑖𝑡𝑡)). The MDI is 

calculated as follows: 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 =
𝐼𝐼

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
� �

𝑛𝑛𝑖𝑖𝑡𝑡

𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 ∆𝑖𝑖(𝑠𝑠𝑖𝑖𝑡𝑡)
𝑖𝑖∈𝐼𝐼𝑗𝑗

𝑡𝑡

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡=1
 

Results 

This study analyzed large-scale WGS data from the ADSP, comprising 7,416 non-Hispanic White 

individuals (4,266 with Alzheimer's disease and 3,150 cognitively normal older adults). After quality 

control procedures, several imputation methods were comparatively evaluated: Simple, GAN, 1-NN, 5-

NN, 10-NN, Iterative, MissForest, and TopMed Imputers. The assessment utilized metrics including 

accuracy, Root Mean Squared Error (RMSE), R-squared (R2), Mean Absolute Error (MAE), and 

Normalized RMSE (NRMSE). 

The MissForest Imputer demonstrated superior performance among the machine learning-based 

methods, achieving the highest accuracy (0.999359), lowest RMSE (0.0039), and highest R2 (0.9993). 

The 5-NN and 10-NN Imputers also performed well, with accuracy rates of 0.999734 and 0.999626, 

R2 values of 0.9993, and RMSEs of 0.004 and 0.0041, respectively. The TopMed imputation server 

achieved an accuracy of 0.996416, RMSE of 0.0047, and R2 of 0.9081. While effective in reducing 

RMSE, it showed a lower capacity to capture dataset variance compared to the leading machine 

learning methods (Figure 2, Table 1).  

Computation time for imputation methods was crucial due to the large-scale WGS data. Table 2 

shows that the MissForest Imputer required up to 327 seconds for the largest block size, significantly 

longer than the 5-NN Imputer, which processed the same block in just over 50 milliseconds. 

Balancing imputation accuracy and processing efficiency, the 5-NN Imputer was selected as the most 

suitable imputation method for our dataset. This choice was based on its high accuracy and fast 

imputation capability. 

 

A B 
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Figure 2. Comparative performance of imputation methods in WGS data. Fig. 2A illustrates the 

accuracy for several imputation methods, which reflects the proportion of correctly imputed 

genotypes to the total number of predictions made. A value closer to 1 denotes a higher rate of 

correct imputations. In this analysis, the 1-NN Imputer exhibits the highest accuracy, while the Simple 

Imputer shows the least accuracy, pointing to a greater discrepancy in its predictions. Fig. 2B displays 

the Root Mean Square Error (RMSE) across the imputation methods, a metric for quantifying the 

average errors in the predicted values. The lower the RMSE, the more accurate the imputation. Here, 

the MissForest Imputer emerges as the most accurate with the smallest RMSE, while the Simple 

Imputer displays the largest RMSE, indicative of lower accuracy. The results of the Topmed Imputer 

were not as pronounced, falling behind with lower accuracy and a higher RMSE than several other 

imputers. 

 

Table 1. Comparison of imputation efficacies of imputation methods. The table shows performance 

metrics for several imputation methods of missing genotypes. The accuracy measures the proportion 

of correctly imputed genotypes, where the 1-NN Imputer ranks the highest, suggesting the greatest 

precision in imputation among the methods. The Mean Squared Error (MSE) shows the MissForest 

Imputer as the most accurate, with the smallest values indicating minimal deviation from actual data. 

R-squared (R2) values for the 5-NN, 10-NN, Iterative, and MissForest Imputers indicate that these 

models account for a significant portion of the variance, suggesting a strong correlation with the 

observed data. The Mean Absolute Error (MAE) is lowest for the 1-NN, 5-NN, and MissForest Imputers, 

indicating higher precision. The Normalized Root Mean Squared Error (NRMSE) further confirms the 

MissForest Imputer’s superior performance. Overall, the MissForest Imputer exhibits the highest 

precision in imputation of missing genotypes. 

 

 

 

IMPUTER METHOD  ACCURACY RMSE R2 MAE NRMSE 
1-NN IMPUTER 0.999875 0.0049 0.9989 0 0.0049 
5-NN IMPUTER 0.999734 0.004 0.9993 0 0.004 

10-NN IMPUTER 0.999626 0.0041 0.9993 0.0001 0.0041 
GAN IMPUTER 0.999606 0.0102 0.9981 0.0002 0.0102 

ITERATIVE IMPUTER 0.999373 0.004 0.9993 0.0001 0.004 
MISSFOREST IMPUTER 0.999359 0.0039 0.9993 0 0.0039 

TOPMED IMPUTER 0.996416 0.0047 0.9081 0.0002 0.0047 
SIMPLE IMPUTER 0.995432 0.0143 0.9965 0.0006 0.0143 
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BLOCK SIZE SIMPLE IMPUTER 5-NN IMPUTER 10-NN IMPUTER MISSFOREST IMPUTER 

40 0.0096 0.0076 0.0079 4.1889 

80 0.0169 0.0122 0.0124 16.5368 

120 0.0238 0.0174 0.0169 41.4959 

160 0.0316 0.0236 0.0227 87.8926 

200 0.0385 0.0257 0.0278 158.3003 

300 0.0567 0.0387 0.0401 232.4933 

400 0.0748 0.0506 0.0526 327.3879 

Table 2. Comparison of computation time in imputing missing genotypes for imputation methods 

(measured in seconds).  The table highlights the variation in processing time for imputation methods 

with increasing block sizes. While the Simple, 5-NN, and 10-NN Imputers show a gradual increase in 

processing time as block sizes increase, the MissForest Imputer exhibits a notably steep rise in 

computation time. This pronounced increase is especially significant for larger block sizes, where the 

MissForest Imputer's high accuracy is offset by its extensive processing time. Due to this substantial 

time consumption, the 5-NN Imputer, offering a balance between time efficiency and accuracy, was 

determined to be the most practical choice for our dataset. 

 

LD blocks were determined using Plink, resulting in 30,218 LD blocks with an average size of 388 

genetic variants. Genomic regions not covered by LD blocks, comprising only 0.19% of the genome, 

were excluded from the analysis due to their negligible size. Figure 3B demonstrates the correlation 

between the number of blocks per chromosome and chromosome length. TabNet was then applied 

to the LD blocks to assess phenotype prediction accuracy using a binary classification model. Blocks 

were ranked based on prediction accuracy, and as the number of blocks increased, the analysis 

showed that the number of important features with non-zero TabNet feature importance did not 

increase significantly. Figure 3A illustrates this by depicting genetic variants within the key blocks as 

blue bars. The analysis extended up to 1500 blocks, revealing a plateau in the count of important 

features, indicating that the critical variants for phenotype prediction were already captured within the 

initial top blocks. This suggests that further analysis beyond these blocks may not provide additional 

meaningful insights. 
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Figure 3. Feature importance and distribution across LD blocks in the ADSP WGS Dataset. In Fig. 3A, 

the analysis determined the feature importance using TabNet for the top 100 to 1500 LD blocks. The 

blue bars represent genetic variants within these blocks, where TabNet was assigned a feature 

importance greater than zero, indicating their relevance in phenotype prediction. The gray bars 

indicate all selected features, regardless of their importance score. The steady count of important 

features across increasing block ranks suggests that the most critical variants for phenotype 

prediction were concentrated in the top blocks. Fig 3B visualizes the distribution of LD blocks and 

SNP counts across chromosomes. The bar chart demonstrates that the number of LD blocks and 

SNPs is proportionate to the chromosome length, with larger chromosomes containing more blocks.  

 

The study analyzed 54,949 genetic variants within the top 1500 blocks, calculating the PIS for each 

genetic variant using the methodology outlined in the Methods section. Table 3 presents the genetic 

variants with the highest PIS. The SNP rs429358 within the APOE gene on chromosome 19, a well-

known AD risk SNP, demonstrated the highest importance score. Other high-importance SNPs, 

including rs11556505 in TOMM40 and rs34342646 in NECTIN2, further emphasize the relevance of 

chromosome 19 in AD. The study also confirmed AD-associated SNPs, rs10414043, rs10119, and 

rs71352238, within the APOC1 and TOMM40 genes. 

In addition to confirming the importance of known genes, this study identified novel high-importance 

SNPs not previously identified in genetic association studies for AD, particularly within the top 1500 

LD Blocks examined. Notably, the study identified SNPs such as rs200986288 and rs199988716 (also 

known as rs62153752), along with genes like LOC107984083 and ANKRD30BL, which have not been 

previously associated with AD in the literature. The study also identified previously unreported SNPs 

and their related genes in the context of AD, including rs66626994 (APOC1P1), rs73876031 (FRG1), 

A B 
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rs200608168 and rs201356360 (ANKRD36), and rs199988716 (ANKRD36C). 

 

RANK FEATURE CHROMOSOME POSITION VARIATION GENE IMPORTANCE 
1 rs429358 19 44908683 T/C APOE 8.00E-04 

2 rs11556505 19 44892886 C/T TOMM40 7.23E-04 

3 rs34342646 19 44884872 G/A NECTIN2 6.85E-04 

4 rs5117 19 44915532 T/C APOC1 6.85E-04 

5 rs483082 19 44912920 G/T APOC1 6.09E-04 

6 rs10414043 19 44912455 G/A APOC1 5.43E-04 

7 rs10119 19 44903415 G/A TOMM40 5.11E-04 

8 rs71352238 19 44891078 T/C TOMM40 4.76E-04 

9 rs6857 19 44888996 C/T NECTIN2 4.63E-04 

10 rs59007384 19 44893407 G/A G/T TOMM40 4.57E-04 

11 rs111789331 19 44923867 T/A 
 

4.34E-04 

12 rs12721046 19 44917996 G/A APOC1 3.75E-04 

13 rs4420638 19 44919688 A/G APOC1 3.61E-04 

14 rs283811 19 44885242 A/C A/G NECTIN2 3.37E-04 

15 . N/A N/A N/A N/A 3.06E-04 

16 rs200986288 20 30185632 A/C A/T 
 

2.87E-04 

17 rs199988716 N/A N/A N/A N/A 2.51E-04 

18 rs202143966 9 63769614 T/C 
 

2.49E-04 

19 rs377656811 22 16427107 C/A C/T 
 

2.45E-04 

20 rs157582 19 44892961 C/T TOMM40 2.37E-04 

21 rs78790997 16 33736499 C/G LOC107984083 2.28E-04 

22 rs141490255 N/A N/A N/A N/A 2.27E-04 

23 rs75997270 4 189924739 C/A C/G LOC728339 2.21E-04 

24 rs75627662 19 44910318 C/T 
 

2.20E-04 

25 rs147747785 17 22046134 G/T 
 

2.20E-04 

26 rs1160985 19 44900154 C/T TOMM40 2.18E-04 

27 rs2075650 19 44892361 A/G TOMM40 2.16E-04 

28 rs202221379 17 22046133 G/T 
 

2.14E-04 

29 rs34404554 19 44892651 C/G TOMM40 2.09E-04 

30 rs769449 19 44906744 G/A APOE 2.09E-04 

Table 3. SNPs with highest phenotype influence scores (PIS) associated with AD. This table catalogs the 

top 30 single nucleotide polymorphisms (SNPs) ranked by PIS, derived from an extensive examination 

of 54,949 genetic variants within the top 1500 LD blocks using TabNet. The highest-scoring SNPs are 

predominantly located on chromosome 19, related to genes such as APOE, APOC1, NECTIN2, and 

TOMM40—well-established AD-associated genes. Additionally, this table includes novel findings, 

highlighting SNPs and genes previously unidentified in AD genetic association studies. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4 displays vertically aligned, symmetrical Manhattan plots (Miami plot) from two genetic 

association analysis methods: Deep-Block and Plink. The upper plot depicts the Phenotype Influence 

Scores (PIS) derived from Deep-Block, while the lower plot shows the statistical significance levels (-

log10 P-value) obtained using Plink across all chromosomes. Both plots arrange chromosomes along 

the x-axis, offering a chromosomal position view of the analyzed genomic variants. Each plot 

highlights the top 40 genetic variants using color-coded dots: red for the top 1-10 genetic variants, 

blue for the top 11-20 genetic variants, green for the top 21-30 genetic variants, and gray for the top 

31-40 genetic variants. Of note, the Deep-Block approach identified the same genetic variants that 

the Plink identified as well as novel genetic variants that the Plink could not identify. 

 

 

Figure 4. Miami plot showing comparison of association test statistics from between Deep-Block and 

Plink. The Miami plot displays Manhattan plots from two genetic association analysis methods, Deep-

Block and Plink. The upper Manhattan plot shows genetic association test statistics from the Deep-

Block framework, indicating the feature importance of single nucleotide polymorphisms (SNPs) 

throughout the genome, while the lower Manhattan plot presents the genetic association analysis 

results from Plink, reflecting the statistical significance of SNPs. The results correspond to the same 

genomic coordinates across the horizontal axis, which lists the chromosomes numerically. The 

significance of SNPs is visually encoded with colors: red dots mark the top 1-10 most important or 

significant SNPs, blue for the top 11-20, green for the top 21-30, and gray for the top 31-40.  The 

side panel to the right of the plots enumerates SNPs within each color category. 
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Discussion 

This study developed and applied the Deep-Block framework to large-scale WGS data from the ADSP 

to investigate the genetic basis of AD. The approach centered on utilizing LD blocks combined with 

automated imputation to improve the accuracy of genetic analysis. This methodological framework 

identified an array of genetic loci, including both previously identified known SNPs and newly identified 

novel SNPs. 

The analysis revealed well-known associations between AD and several genetic loci (APOE, TOMM40, 

NECTIN2, and APOC1) and identified known variants (e.g., APOE rs429358 and rs769449). The findings 

align with previous genetic association studies, validating the effectiveness of the Deep-Block framework 

in identifying AD-associated genetic markers. In addition, the identification of both known and novel 

SNPs demonstrates this method's potential to broaden our understanding of AD's genetic factors. 

To contextualize the Deep-Block findings, the identified loci were compared to established AD-linked 

genetic loci reported in the European Alzheimer's and Dementia Biobank (EADB) and the recently 

updated GWAS  catalog (Lambert et al., 2023). The analysis aligned with 15 genetic loci from the GWAS 

catalog, distributed across various tiers (3 in Tier1, 1 in Tier2, 2 in Tier3, 2 unverified, and 3 in the 'Other' 

category), as detailed in Table S1. This comparison excluded the well-studied APOE, 

TOMM40/APOC1/NECTIN2 loci to focus on other significant genetic associations. The results were also 

compared against databases referenced in the GWAS catalog, including IGAP2 (Kunkle et al., 2019), 

PGC1 (Jansen et al., 2019), IGAP2+UKB (Schwartzentruber et al., 2021), GR@ACE (de Rojas et al., 2021), 

PGC2 (Wightman et al., 2021), and EADB (Bellenguez et al., 2022). Table 4 highlights Tier1 genes ABCA7, 

BIN1, and CR1, identified in multiple studies. This confirms the Deep-Block method's relevance to known 

AD genetic markers and indicates both confirmatory and potentially novel genetic associations with the 

disease. 

The analysis revealed previously unidentified genetic variants and genes (e.g., rs200986288, rs199988716, 

LOC107984083, and ANKRD30BL) associated with AD. These findings suggest additional genetic factors 

may influence AD, enhancing our understanding of the genetic architecture of AD. However, this study 

used sequencing data from non-Hispanic white individuals, which may limit the broad applicability of 

the findings. This limitation underscores the need for future studies involving more diverse participants 

to ensure broader relevance and applicability of findings across different populations. 

 

Gene Group Study GRCh38 rsID 
ABCA7 Tier1 IGAP2 chr19:1050875:A:G rs12151021 
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PGC1 chr19:1039324:C:G rs111278892 
IGAP2+UKB chr19:1050875:A:G rs12151021 
GR@ACE chr19:1043639:C:T rs3752231 
PGC2 chr19:1053525:C:G rs3752241 
EADB chr19:1050875:A:G rs12151021 
Deep-Block chr19:1045974:CCAGCC:CC rs3764648 

BIN1 Tier1 

IGAP2 chr2:127135234:C:T rs6733839 
PGC1 chr2:127133851:A:C rs4663105 
IGAP2+UKB chr2:127135234:C:T rs6733839 
GR@ACE chr2:127135234:C:T rs6733839 
PGC2 chr2:127133851:A:C rs4663105 
EADB chr2:127135234:C:T rs6733839 
Deep-Block chr2:127085030:A:G rs10207708 

CR1 Tier1 

IGAP2 chr1:207577223:T:C rs679515 
PGC1 chr1:207577223:T:C rs679515 
IGAP2+UKB chr1:207577223:T:C rs679515 
GR@ACE chr1:207629207:A:C rs4844610 
PGC2 chr1:207577223:T:C rs679515 
EADB chr1:207518704:A:G rs6656401 
Deep-Block chr1:207594103:T:C rs6697005 

Table 4. Comparison between previously identified known genetic variants and findings from the Deep-

Block framework. This table provides a cross-study comparison between known genetic variants and 

our findings associated with AD, focusing on the ABCA7, BIN1, and CR1 genes within the Tier 1 category. 

In particular, Deep-Block identified a SNP (rs150593211) in ABCA7, which is different from the 

rs12151021 variant commonly reported in previous research. Similarly, novel variants in the BIN1 and 

CR1 loci were also detected, showing the utility of Deep-Block in identifying genetic variants that may 

have been missed in traditional genetic association analyses. 

 

Conclusion 

This study developed and applied the Deep-Block AI framework to large-scale ADSP WGS data for 

genetic association analysis for AD. The approach involved segmenting the whole genome into LD 

blocks and applying automated imputation of missing genotypes for data preprocessing. The Deep-

Block framework identified AD-associated genetic loci, including both previously identified and novel 

SNPs, leading to the identification of complex genetic patterns associated with AD that may have been 

overlooked in traditional genetic association methods and emphasizing the importance of advanced 

sequencing data analysis tools. Compared to traditional methods such as Plink and SKAT-O (Lee et al., 

2012), Deep-Block uses LD structure and attention-based feature selection to analyze high-dimensional 

genomic data more comprehensively, potentially capturing genetic interactions that are not detected 

by conventional approaches. Unlike SWAT-CNN (Jo et al., 2022), which utilizes fixed genomic fragments, 

Deep-Block segments the genome based on LD-defined regions, thereby improving the identification 
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of biologically relevant patterns. This framework demonstrates its capability to analyze large-scale 

genomic data effectively and identify both known and novel genetic variants associated with Alzheimer’s 

disease. 
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Biological samples and associated phenotypic data used in primary data analyses were stored at Study 

Investigators institutions, and at the National Centralized Repository for Alzheimer’s Disease and Related 

Dementias (NCRAD, U24AG021886) at Indiana University funded by NIA. Associated Phenotypic Data 

used in primary and secondary data analyses were provided by Study Investigators, the NIA funded 

Alzheimer’s Disease Centers (ADCs), and the National Alzheimer’s Coordinating Center (NACC, 

U24AG072122) and the National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site 

(NIAGADS, U24AG041689) at the University of Pennsylvania, funded by NIA. Harmonized phenotypes 

were provided by the ADSP Phenotype Harmonization Consortium (ADSP-PHC), funded by NIA (U24 

AG074855, U01 AG068057 and R01 AG059716) and Ultrascale Machine Learning to Empower Discovery 

in Alzheimer’s Disease Biobanks (AI4AD, U01 AG068057). This research was supported in part by the 

Intramural Research Program of the National Institutes of health, National Library of Medicine. 

Contributors to the Genetic Analysis Data included Study Investigators on projects that were individually 

funded by NIA, and other NIH institutes, and by private U.S. organizations, or foreign governmental or 

nongovernmental organizations. 

The ADSP Phenotype Harmonization Consortium (ADSP-PHC) is funded by NIA (U24 AG074855, U01 

AG068057 and R01 AG059716). The harmonized cohorts within the ADSP-PHC include: the Anti-Amyloid 

Treatment in Asymptomatic Alzheimer’s study (A4 Study), a secondary prevention trial in preclinical 

Alzheimer's disease, aiming to slow cognitive decline associated with brain amyloid accumulation in 

clinically normal older individuals. The A4 Study is funded by a public-private-philanthropic partnership, 

including funding from the National Institutes of Health-National Institute on Aging, Eli Lilly and 

Company, Alzheimer's Association, Accelerating Medicines Partnership, GHR Foundation, an anonymous 

foundation and additional private donors, with in-kind support from Avid and Cogstate. The companion 

observational Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) Study is funded 

by the Alzheimer's Association and GHR Foundation. The A4 and LEARN Studies are led by Dr. Reisa 

Sperling at Brigham and Women's Hospital, Harvard Medical School and Dr. Paul Aisen at the 

Alzheimer's Therapeutic Research Institute (ATRI), University of Southern California. The A4 and LEARN 

Studies are coordinated by ATRI at the University of Southern California, and the data are made available 

through the Laboratory for Neuro Imaging at the University of Southern California. The participants 

screening for the A4 Study provided permission to share their de-identified data in order to advance 

the quest to find a successful treatment for Alzheimer's disease. We would like to acknowledge the 

dedication of all the participants, the site personnel, and all of the partnership team members who 

continue to make the A4 and LEARN Studies possible. The complete A4 Study Team list is available on: 

a4study.org/a4-study-team.; the Adult Changes in Thought study (ACT), U01 AG006781, U19 AG066567; 

Alzheimer’s Disease Neuroimaging Initiative (ADNI): Data collection and sharing for this project was 
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funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant 

U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is 

funded by the National Institute on Aging, the National Institute of Biomedical Imaging and 

Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's 

Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-

Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and 

Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; 

GE Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson 

& Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;Meso 

Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals 

Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition 

Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical 

sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes 

of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and 

Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the 

University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at 

the University of Southern California; Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA): 

5R37AG015473, RF1AG015473, R56AG051876; Memory & Aging Project at Knight Alzheimer’s Disease 

Research Center (MAP at Knight ADRC): The Memory and Aging Project at the Knight-ADRC (Knight-

ADRC). This work was supported by the National Institutes of Health (NIH) grants R01AG064614, 

R01AG044546, RF1AG053303, RF1AG058501, U01AG058922 and R01AG064877 to Carlos Cruchaga. The 

recruitment and clinical characterization of research participants at Washington University was 

supported by NIH grants P30AG066444, P01AG03991, and P01AG026276. Data collection and sharing 

for this project was supported by NIH grants RF1AG054080, P30AG066462, R01AG064614 and 

U01AG052410. We thank the contributors who collected samples used in this study, as well as patients 

and their families, whose help and participation made this work possible. This work was supported by 

access to equipment made possible by the Hope Center for Neurological Disorders, the Neurogenomics 

and Informatics Center (NGI: https://neurogenomics.wustl.edu/) and the Departments of Neurology and 

Psychiatry at Washington University School of Medicine; National Alzheimer’s Coordinating Center 

(NACC): The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC data are contributed 

by the NIA-funded ADRCs: P30 AG062429 (PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, 

MD), P30 AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 

AG066514 (PI Mary Sano, PhD), P30 AG066530 (PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, 

PhD), P30 AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI 
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Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, MD), P30 

AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), P30 AG072975 (PI David 

Bennett, MD), P30 AG072978 (PI Neil Kowall, MD), P30 AG072977 (PI Robert Vassar, PhD), P30 AG066519 

(PI Frank LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric Reiman, 

MD), P30 AG062422 (PI Gil Rabinovici, MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 

(PI Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), P30 AG072973 (PI Russell 

Swerdlow, MD), P30 AG066506 (PI Todd Golde, MD, PhD), P30 AG066508 (PI Stephen Strittmatter, MD, 

PhD), P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI Suzanne Craft, PhD), P30 

AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik 

Roberson, MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI Gary Rosenberg, MD), P20 

AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI James 

Leverenz, MD); National Institute on Aging Alzheimer’s Disease Family Based Study (NIA-AD FBS): U24 

AG056270; Religious Orders Study (ROS): P30AG10161,R01AG15819, R01AG42210; Memory and Aging 

Project (MAP - Rush): R01AG017917, R01AG42210; Minority Aging Research Study (MARS): R01AG22018, 

R01AG42210; Washington Heights/Inwood Columbia Aging Project (WHICAP): RF1 AG054023;and 

Wisconsin Registry for Alzheimer’s Prevention (WRAP): R01AG027161 and R01AG054047. Additional 

acknowledgments include the National Institute on Aging Genetics of Alzheimer’s Disease Data Storage 

Site (NIAGADS, U24AG041689) at the University of Pennsylvania, funded by NIA. 

Conflict of Interest: Dr. Saykin receives support from multiple NIH grants (P30 AG010133, P30 AG072976, 

R01 AG019771, R01 AG057739, U19 AG024904, R01 LM013463, R01 AG068193, T32 AG071444, U01 

AG068057, U01 AG072177, and U19 AG074879). He has also received support from Avid 

Radiopharmaceuticals, a subsidiary of Eli Lilly (in kind contribution of PET tracer precursor) and 

participated in Scientific Advisory Boards (Bayer Oncology,  Eisai, Novo Nordisk, and Siemens Medical 

Solutions USA, Inc) and an Observational Study Monitoring Board (MESA, NIH NHLBI), as well as External 

Advisory Committees for multiple NIA grants. He also serves as Editor-in-Chief of Brain Imaging and 

Behavior, a Springer-Nature Journal. The other authors declare no conflict of interest. 
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