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Abstract: Breast cancer (BC) is a heterogeneous disease, affecting millions of women every year. Early
diagnosis is crucial to increasing survival. The clinical workup of BC diagnosis involves diagnostic
imaging and bioptic characterization. In recent years, technical advances in image processing allowed
for the application of advanced image analysis (radiomics) to clinical data. Furthermore, -omics
technologies showed their potential in the characterization of BC. Combining information provided
by radiomics with –omics data can be important to personalize diagnostic and therapeutic work up
in a clinical context for the benefit of the patient. In this review, we analyzed the recent literature,
highlighting innovative approaches to combine imaging and biochemical/biological data, with the
aim of identifying recent advances in radiogenomics applied to BC. The results of radiogenomic
studies are encouraging approaches in a clinical setting. Despite this, as radiogenomics is an emerging
area, the optimal approach has to face technical limitations and needs to be applied to large cohorts
including all the expression profiles currently available for BC subtypes (e.g., besides markers from
transcriptomics, proteomics and miRNomics, also other non-coding RNA profiles).
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1. Introduction

Breast cancer (BC) is a complex disease and the second leading cause of cancer-
associated death in women [1]. In 2020, 2.3 million women were diagnosed with BC and
685, 000 women died worldwide from BC [2]. Notably, the number of patients affected by
BC is rapidly increasing, especially in developed countries, with an estimate of a further
increase for delays in diagnosis and treatment due to the COVID-19 pandemic. Early
detection is a key step for BC diagnosis in order to improve survival. In the last decades,
imaging emerged as a powerful tool both for early detection and the characterization of
BC as well as for the subsequent monitoring of therapy response (i.e., [3,4]). Technolog-
ical advances in image technologies as well as in imaging processing approaches have
also contributed to give a central role to different diagnostic imaging tools such as X-ray
mammography, ultrasound, magnetic resonance imaging (MRI) and positron emission
tomography (PET) for BC diagnosis (e.g., [5–9]). One of the major advantages of imaging,
over the bioptical evaluation of a finite set of tumor tissue portions, is the possibility to
spatially inspect the entire tumor over time, both in vivo and non-invasively. Even today,
in a clinical context, reporting of medical images is mainly performed by qualitative visual
assessment. In recent years, the advances in image processing methodologies, derived by
increasingly powerful informatics resources, allowed for the exploration of the advantages
of the quantitative analysis of medical images, with the aim of supporting and enhancing
the diagnostic confidence in oncological diseases including BC [10]. New computer vision
tools, developed in non-medical contexts, were adapted and explored for their application
to medical images, in order to extract quantitative features from the images of an entire
tumor capturing the overall image content hidden to the naked eye [11]. The hypothesis
is that information hidden to the naked eye can reflect and reveal biologically relevant
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information, such as tumor heterogeneity, that can be responsible for different clinical out-
comes or different responses to therapy. The new paradigm of radiomics is thus emerging
as the high-throughput extraction of quantitative features from medical images (imaging
biomarkers) to characterize the imaging phenotype as the in vivo expression of genotype
of oncological diseases including BC (e.g., [12]). The collection of imaging biomarkers
and their correlation with clinical information, molecular data and genomic or proteomic
assays is supposed to assess the prognosis, to support clinical decisions, and to predict
the response to therapy [13,14]. In particular, in an approach of personalized medicine, a
great interest in the research community arose from the potential in mining and combining
radiomic imaging features with genomic data for improving BC patient’s diagnosis and
prognosis (e.g., [15]).

In this brief review, we highlight the main advantages of using imaging diagnostic
power and genetic/epigenetic profiles, alone or in combination, underlying the limits of
each technique and their potential future applications. The review was focused on the
relationship between imaging and biological markers that are already usable in a clinical
context such as circulating miRNAs. Our intent was to provide an overview of the works
that can potentially be more easily reproduced in a clinical context; this would transfer
radiogenomics effectively in the clinical setting, using molecular BC data that can be
obtained with minimally invasive methods, and using samples that can be easily collected
and analyzed without significant costs. This would allow for the generalization of the
results using a large cohort and ensuring the reliability of the results.

2. Biomarkers for BC
2.1. Biochemical Markers: Advantages and Limitations

The purpose of the biochemical and molecular analysis of a biopsy is to analyse the
expression of specific molecules (DNA, RNA, small non-coding RNA, proteins) or cell
types selected a priori [16]. The molecular characterization of a tumor could integrate all
the information coming from the -omics profiles; indeed, it includes all the data on the
changes of genes (genomic profile), mRNAs (transcriptomic profile), non-coding RNAs, and
DNA modification (epigenomic profile), metabolism (metabolomic profile) and proteins
(proteomic profile) between healthy tissues and tumor samples. The integration of the
information coming from all these profiles, i.e., by machine learning approaches, allows
for the selection of diagnostic biomarkers. If this method is applied to different tissues
of the same tumor, selected on their grade of prognosis, a prognostic biomarker could be
proposed. This approach towards the precision medicine takes into account the individual
differences within the tumoral tissue, improving the application of personalized medicine
tools [17]. The molecular characterization of the tumor provides additional information for
tumor subtyping and could identify genetic aberrations that allow the clinicians to provide
the patient with the best therapeutic option. In BC, the current molecular classification
divides the tumor into five groups, namely luminal A, luminal B, ErbB2/Her2+, basal
and normal-like [18]. Each of them is characterized by specific marker expression, and
it is associated with a different prognosis [19]. Luminal A BC is an estrogen receptor
(ER)-positive, progesterone receptor (PR)-positive, HER2-negative tumor, having a low
level of proliferation marker Ki67. These make the tumor a slow growing cancer with
a good prognosis. Luminal B BC is an ER positive, PR and HER2-negative or positive
tumor, with high levels of Ki67, which makes it grow faster. This implies a worse prognosis
compared to Luminal A. HER2-enriched or positive BC is ER-negative, PR-negative and
HER2-positive cancer, growing faster than luminal BC and having a poor prognosis. It
could be successfully treated with drugs targeting the HER2 protein. Triple negative BC or
basal BC lacks ER, PR, and HER2 proteins’ expression, and this makes it one of the more
aggressive subtypes [20]. All of the molecular characterizations need to be performed on
bioptic samples of the primary BC. The molecular profiling of BC bioptic tissues, although
easier to be performed at lower costs, cannot replace the imaging analysis, but could be an
auxiliary method to be flanked to clinical classical diagnosis. Liquid biopsy is emerging as
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a promising and minimally invasive tool in precision medicine [21]. Indeed, it is able to
provide an overview of primary and metastatic tumors at different times, also considering
spatial and temporal tumor heterogeneity, requiring only by a blood sample. This kind of
biopsy allows the identification of different types of molecules, such as circulating tumor
DNA (ctDNA) (also called circulating free DNA, cfDNA), circulating tumor cells, and
different circulating small RNA, such as microRNAs and long non-coding RNAs.

1. Circulating tumor DNA (ctDNA) or circulating free DNA (cfDNA) are small fragments
released in the blood system from the primary tumor or metastatic cells. They are DNA
fragments less than 500 bp in length and exhibit the same somatic alteration present
in the tumor from which they originate, including point mutations, chromosomal
rearrangements, copy number variations, and DNA methylations. As the amount of
cfDNA is very small, the detection method used for their quantitation is mainly based
on polymerase chain reaction (PCR) amplification and next-generation sequencing
(NGS). These DNA fragments could be actively released via microvesicle release
or the degradation of apoptotic and necrotic cancer cells [22]. From the original
discovery of cfDNA in 1948, several papers have demonstrated that these DNA
fragments originated from tumor cells undergoing genomic instability. In 1994, it
was demonstrated that these small DNA showed the same specific genomic mutation
of the primary tumor [23,24]. cfDNA obtained by plasma isolation at different time
points could be helpful in the description of the natural course of cancer development
before and after therapeutic treatment.

2. Circulating tumor cells (CTCs). The presence of disseminating tumor cells is a common
feature of solid cancer, such as BC. The detection of these cells is associated with poor
outcomes at the level of both overall survival and disease-free survival in BC [25].
Disseminated tumor cells are usually isolated from a patient’s bone marrow, with an
invasive technique that is not always accepted by the patients. CTCs are epithelial cells
released by the primary tumor in the number of less than 100 cells per ml of peripheral
blood. They are able to differentiate cancer patients from healthy subjects [26].

3. Non-coding RNAs (ncRNA). ncRNAs are crucial regulators of gene expression and are
strongly associated with BC. The large family of ncRNAs includes several regulatory
RNAs, such as microRNA (miRNAs), long non-coding RNAs (lncRNA), and circular
RNAs (circRNAs). miRNAs are small RNAs of 19–25 nucleotides able to regulates the
mRNA profiles inside each cells; they could also be secreted in the microenvironment
of the tumor as well as in body biofluids (blood, lacrimae, urine, etc.). The list
of miRNAs have been deposited into miRBse database (https://www.mirbase.org,
accessed on 1 July 2022) [27], which annotated more than 38,500 predicted miRNA
sequences (release V22.1).

LncRNAs are 200 nucleotides base long RNAs able to regulate the expression of
miRNAs, thus affecting the cellular mRNAs’ profile. They are annotated in LNCipedia
containing more than 127,000 releases (July 2022) [28].

circRNAs are single-stranded RNAs that are more stable than other non-coding RNAs
due to their form, and are formed by back splicing of coding RNAs. Many circRNAs have
been found in different types of cancer, where they also regulate the expression of miRNAs,
acting as miRNA sponges, or regulating the expression of parental genes. circRNA are
annotated in an updated database called CircNet 2.0 [29]. Among the main circRNAs
involved in cancer, hsa-circ-005505, hsa-circ-0007289 and hsa-circ-0058514 are involved in
the regulation of metastasis of BC cells, while hsa-circ-0000479 or hsa-circ-0001783 have
a role in carcinogenesis (for a review see [30]). Over 58,300 circRNAs, 15,500 lncRNAs,
and more than 18,000 mRNAs have been found in human serum, mainly associated with
exosomes [31], suggesting the existence of a complex regulatory network for non-coding
RNA release, and intercellular and intra-tissue communication.

https://www.mirbase.org
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2.2. BC imaging Biomarkers: From Standard Quantification to Radiomics

The term “biomarker” was conceived to identify biological molecules that can be
used as an indicator of normal or pathological processes [32]. With the massive use of
imaging and the widespread use of quantitative image processing methodologies, this term
was extended to imaging: imaging biomarkers were defined as information that can be
extracted from images to characterize normal or pathological processes [33].

Imaging biomarkers may be classified as qualitative or quantitative [34,35].
Diseases can be described and reported by nuclear medicine physicians and radiolo-

gists using semantic lexicon features. Semantic features are those that are commonly used
in clinical practice as radiology lexicon to describe regions of interest, highlighting the
presence of disease aggressive behavior, morphology, infiltration and metastatic capac-
ity [12,14]. These features, even if used in clinical practice and of prognostic value, have
several limitations, including the subjective expertise of the referring physicians in image
interpretation and their limited human ability to capture subtle disease features and their
temporal changes using the naked eye. Examples of qualitative semantic breast imaging
descriptors which are typically used in BC diagnosis are the shape of the tumor and the
appearance of the margin [36].

On the contrary, quantitative imaging biomarkers are numerical data that are extracted
on images using standard or advanced computational approaches. Quantitative approaches
to medical image analysis have been developed and implemented thanks to technical ad-
vances in imaging systems. The underlying hypothesis for image quantification is that
image contrast, quantified by imaging metrics, reflect the pathophysiology of tissues. In
order to obtain mineable images, image quantification requires a massive standardization of
all processes to extract image metrics, from acquisition to image analysis and mining quan-
titative data. Proper international initiatives stimulated this important task (e.g., [37,38]).
Image quantification workflow in oncology (Figure 1) requires the definition of Volume Of
Interest (VOI), using proper segmentation strategies, so that quantitative information is
related to the considered oncological lesion. The quantitative information extracted from
VOI are known as imaging features [38]. At the beginning, VOI standard quantification
methodologies were developed to overcome the limitation of the semantic description of
pathologies. Standard imaging biomarkers include mean glucose consumption reflected
by Standardized Uptake Value (SUV) in PET [39] or cellular arrangement within VOI
evaluated by Apparent Diffusion Coefficient (ADC) in Diffusion Weighted MR Imaging
(DWI-MR) [40].

Figure 1. The radiomic workflow.
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In recent years, radiomics has emerged to overcome standard quantification ap-
proaches considering BC images as a source of a large amount of quantitative data, not
perceivable with human eyes and extracted from images by applying complex mathemati-
cal methods, such as texture analysis. Regardless of the image modality, an optimal and
standardized radiomics clinical workflow [41] starts with the definition of the study design,
including the proper choice of protocol and the standardization of data collection from
the acquisition of images and clinical data to the setting of data analysis. Even if great
efforts are made in multicentric research studies for standardization of image acquisitions
across different scanners and manufacturers, published radiomics studies still present a
large variability in terms of image acquisition protocols, thus affecting the generalizability
of the results. The basic workflow of a radiomic study is presented in Figure 1.

Concerning the definition of the clinical protocol, one of the major issues is related to
sample size. Since advanced image analysis produces big data to be mined, the sample
size of the cohort and feature selection methodologies have to be properly considered
in order to avoid limitation of the statistical power of the radiomic analysis, potentially
generating data over-fitting in the decision models [14,42]. The standardization of radiomic
analysis involves a large number of radiomic workflows, starting from image acquisition
to the setting of decision models. Once acquired, images have to be segmented in order
to identify a VOI or sub-volumes of interest within the lesions to be analysed [43]. VOI
segmentation is a complex task in medical imaging. A variety of segmentation approaches
have been proposed, even for a single image modality (e.g., [44–47]), however, at present,
no segmentation strategy can be considered as a standard method for tumor segmentation.
Semi-automatic or automatic segmentation strategies are suggested in order to avoid inter-
and intraobserver variability of manual segmentation [48,49].

On segmented VOIs, several Imaging Features (IFs) can be extracted by several dif-
ferent methods. Besides standard IFs extracted from a lesion as a whole and referred as
“local intensity features”, advanced methods allow for the definition of features classified
into a number of families with clear computational methods that include morphological
and statistical features and filtering techniques [50]. A great effort by the IBSI initiative [50]
allowed for the partial compensation of the initial lack of standardization in terms of nomen-
clature, definitions of features, and methods and software for radiomic feature calculation.
Each of the methods used for feature extraction allows for the extraction of a huge amount
of data for a single patient so, as to generate hypotheses from data, data reduction (also
known as feature selection) is a crucial step. Feature selection can be performed using
different approaches, and it is mandatory to avoid redundant information in data before
modelling the endpoint of interest. Accurate, reproducible and not-redundant imaging
features can be used for modelling the endpoint of interest, exploring the relationship of
IFs with clinical outcome, clinical parameters or immunohistological data (e.g., [13,14]). A
model is intended to select relevant information for the outcome of interest in order to be
able to make predictions for new input data. In addition to training and testing a model, a
validation on an independent dataset is currently required to clearly define the validity of
the developed approach.

Different imaging methods are included in diagnostic workups of BC. In the last
years, an increasing number of scientific works were dedicated to exploring the impact of
radiomic biomarkers by using different image modalities.

X-ray mammography is widely diffused as primary imaging methods for screening
and early detection of BC [51]. From a clinical point of view, despite its role as an effective
screening tool, X-ray mammography presents disadvantages for women with dense breasts
or those that have had surgical interventions [52,53]. The use of ultrasound imaging (US)
in conjunction with X-ray mammography was proposed to enhance screening performance;
however, the US is characterized by a high rate of false positives.

The possibility to extract standard metrics from X-ray mammography, such as mam-
mographic breast density, was described in different works (e.g., [54]). In recent years,
radiomics works were published dealing with the analysis of X-ray mammography by
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using advanced image acquisition techniques such as Contrast-Enhanced Mammography
(CEM) [55] or contrast-enhanced spectral mammography (CESM) [56]. Son et al. [57]
worked on synthetic mammography reconstructed from digital breast tomosynthesis (DBT)
in order to predict molecular subtypes of BC using radiomics signatures. Interestingly, the
patient cohort was consistent (higher than 300 pz), and a temporally independent validation
cohort was provided. Despite this, it was demonstrated that the radiomic signature is only
able to distinguish triple negative tumors with respect to other molecular subtypes.

Breast ultrasound (US) showed potential as an imaging tool for BC in conjunction to
X-ray mammography and the use of advanced acquisition techniques, such as elastography,
Doppler, or contrast-enhanced US (CEUS), which can provide information about tissue
properties. US is routinely implemented in BC, but few radiomic studies have focused on
this image modality mainly because of technical issues affecting US images (such as the
large variability of image quality from both acquisition processes and operator experience
as well as from the presence of noise and artifacts).

In a pilot study, Qui X et al. [58] proposed a US-based radiomic nomogram for pre-
dicting presurgical axillary lymph node metastasis status in BC. Even if used on a limited
cohort (less than 200 patients) and without an external validation, the results suggest that
radiomic signatures and nomograms are promising in a clinical setting.

Guo X et al. [59] applied an innovative approach using deep learning (DL) radiomics
in a multicentre study by building a DL model based on US features to predict the risk of
axillary non-sentinel lymph node involvement. The model was built on a large cohort of
patients (more than 900 patients) and underwent both an internal and an external validation,
showing a good performance to be proposed as a simple preoperative tool to promote
personalized axillary management of BC.

The breast MRI is currently a well-established method to be used in clinical practice
for the diagnosis and preoperative staging of BC with the advantage of preventing patient
exposure to radiation. The advantages of MRI are also related to the possibility of obtaining
different information in a single examination by performing a multiparametric acquisition,
combining several parameters from morphological information of T1 and T2-weighted
images, and to functional information derived from dynamic contrast-enhanced MRI
(DCE-MRI) or DWI-MR.

Different works were devoted in the last decades to exploring the use of radiomic
IFs for different clinical issues. Recently, several studies have explored the application
of advanced machine learning methods and deep learning to breast MRI (e.g., [60,61])
publishing a clinical–radiomics model combining a DCE-based radiomics signature and
clinical data to predict complete response after neoadjuvant chemotherapy in patients with
axillary lymph node metastasis.

Considering the need to improve the performance of clinical imaging for BC diagnosis,
whole body techniques such as PET/CT and PET/MRI are currently explored and widely
used in clinical contexts to detect and characterize BC. These techniques, besides allowing
a characterization of primary BC from both a morphological and a functional point of view,
provide a full BC staging, with the evaluation of the axilla [61] and of distant metastasis [62],
thus allowing for the better tailoring of the therapy procedure. From a quantitative point-
of-view, it is expected that, with the use of hybrid PET/CT and PET/MRI, the combined
modalities should be able to highlight the complementary tumor characteristics in order to
maximize the information that could be extracted with radiomics.

At present, an increasing number of research studies was dedicated to exploring the
advantages of information provided by hybrid imaging, even if the majority of these works
were dedicated to evaluating the relationship between radiomic features and immunohisto-
chemical BC data (e.g., [41,63–66]).
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3. Radiogenomics: Combining Molecular and Imaging Biomarkers for
BC Characterization

The concept of radiogenomics broadens the purpose of radiomics: in radiogenomics,
IFs are supposed to reflect the underlying molecular and genotypic basis of BC, thus
characterizing the disease at a finer level, interfacing system biology and imaging. The
correlation of radiomics features with genomic analysis is an emerging area. The hypothesis
behind this model of analysis is that the imaging phenotype (-radio), obtained in vivo and
in a non-invasive way should reflect the genomic phenotype (-genomics) described by the
mRNA profile of the tumor.

In the last two decades, the number of papers dedicated to radiogenomics in oncology,
and in particular in BC studies, has rapidly increased. It is expected that information
obtained by such analysis could impact in a better characterization of primary BC thus
selecting those patients who will benefit by a specific therapy/surgical treatment. In this
section, an overview of the recent literature involving the integration of IFs and gene
expression profiles will be provided. Table 1 summarizes the main findings on these
radiogenomic studies focused on breast cancer.

Using Cancer Genome Atlas (TCGA) and the corresponding imaging information
stored in The Cancer Imaging Archive (TCIA), Mazurowski et al. [67] applied computer
vision algorithms for the extraction of 23 IF on 48 BC patients. These IFs were tested for
their association with molecular subtypes determined on the basis of genomic analysis.
The authors showed that the luminal B subtype is associated with DCE-MRI features of
both the tumor and the background parenchyma.
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Table 1. Summary of literature findings on radiogenomics.

Imaging Aim BC Patients Data Source IFs Findings Ref.

DCE-MRI

molecular subtype
(determined on the

basis of genomic
analysis) vs. IFs

N = 48 TCIA-TCGA

Morphological IFs,
Local intensity IFs

(from kinetics)
GLCM IFs

There is an association between dynamic contrast
material–enhancement IF that quantifies the relationship between

lesion enhancement and background parenchymal enhancement and
luminal B subtype

[67]

Mammography
and MRI

IFs vs. Oncotype DX
Test Recurrence Score N = 408

Retrospective
in-house clinical

protocol
Semantic IFs Semantic IFs from mammography and MRI can be used for imaging

biomarkers of breast cancer recurrence risk [68]

DCE-MRI
IFs vs. miRNAs,

mRNAs, and
regulatory networks

N = 37 TCIA-TCGA

Morphological IFs,
Histogram intensity

IFs, GLCM IFs,
GLRLM IFs

A radiomiRNomic signature including both miRNAs and imaging
features have better classification power of Luminal A versus the

different BC subtypes than using miRNAs or imaging alone
[69]

PET/MRI IFs vs. circulating
miRNAs N = 77 Prospective in-house

clinical protocol
Morphological and
Local intensity IFs

Different Local intensity IFs have a correlation with miRNAs
expression, showing potential for risk stratification of BC and to

improve diagnostic accuracy
[70]

DCE-MRI IFs vs. and RNA
genomic profile N = 47

Retrospective
in-house clinical

protocol

Morphological IFs,
Local intensity IFs

(from kinetics)
GLCM IFs,

Several molecular pathways related to replication, proliferation,
apoptosis, immune system regulation and extracellular signalling

have a robust association to IFs
[71]

DCE-MRI

IFs vs. gene
expression levels

from RNA
sequencing

N = 295 Prospective in-house
clinical protocol

Morphological IFs,
Local intensity IFs

(from kinetics)

DCE-MRI phenotypes are related to underlying molecular biology
revealed by using RNA sequencing [72]

DCE-MRI

IFs for prediction of
cell invasion in the

tumor
microenvironment

N = 73 TCIA-TCGA

Morphological IFs,
Histogram intensity

IFs, GLCM IFs,
GLRLM IFs,
GLSZM IFs,

Univariate correlations of IFs and abundance of fibroblasts.
Multivariate models with AUCs ranging from 0.5 to 0.68 for the

multiple cell type invasion predictions
[73]

DCE-MRI

IFs vs. DNA
mutation, miRNA
expression, protein

expression, pathway
gene expression and

copy number
variation

N = 91 TCIA-TCGA

Morphological IFs,
Local intensity IFs

(from kinetics)
GLCM IFs

MRI is a potential non-invasive approach to probe the cancer
molecular status, since several transcriptional activities of various

genetic pathways were positively associated with different IFs
[74]
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Table 1. Cont.

Imaging Aim BC Patients Data Source IFs Findings Ref.

DCE-MRI IFs vs. lncRNA
expression and MFS N = 70

Morphological IFs,
Local intensity IFs

(from kinetics),
Histogram

intensity IFs

5 lncRNAs, involved in the control of cell cycle, cell survival or
apoptosis, cellular development, and cell growth, are associated

with IFs
[75]

IFs Imaging Features; TCIA Tumor Cancer Imaging Archive; TCGA Tumor Cancer Genomic Archive; MRI Magnetic Resonance Imaging; DCE-MRI Dynamic Contrast Enhanced
MRI; GLCM Grey Level Co-Occurrence Matrix GLRLM Grey Level Run Length Matrix; GLSZM Gray Level Size Zone Matrix; GLDM Gray Level Dependence Matrix; NGTDM
Neighboring Gray Tone Difference; Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI); miRNAs non-coding RNA molecules; lncRNA long noncoding RNA;
MFS metastasis-free survival.
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In an approach involving qualitative radiogenomics, Woodard et al. [76] investigated
the relationship between semantic features (i.e., BI-RADS lexicon from mammography and
MR imaging) and clinically available genomic assay OncotypeDX recurrence risk scores.
On a large cohort, the authors suggest that qualitative radiogenomics data indicate that
BI-RADS descriptors might be potential imaging biomarkers of BC recurrence risk.

We have recently proposed a new combinatorial approach combining radiomics with
epigenomic miRNA profiles in BC subtypes, generating a new field of research called
radiomiRnomics [69]. BC has been molecularly divided into four types, namely Luminal A,
luminal B, HER-2 enriched and basal-like. Each of these subtypes demonstrate differences
in response to therapy [77,78]. The TCGA and the corresponding imaging information
stored in TCIA allowed the development of a computational approach that correlates the
phenotype from DCE-MRI with microRNAs (miRNAs), mRNAs, and regulatory networks,
developing a radiomiRNomic map in the different BC molecular subtypes. The obtained
results have to be validated on an enlarged prospective cohort.

Using a similar approach, Incoronato et al. [70] evaluated the associations between
the deregulation of circulating miRNAs with high diagnostic accuracy for BC and morpho-
functional characteristics of the tumour, as assessed in vivo by PET/MRI. Even if the
study was performed on a limited cohort and no advanced textural IFs were provided,
standard quantification imaging biomarkers from DCE-MRI, DWI-MRI and PET were found
to be correlated with circulating miRNAs (miR-143-3b and miR-125b-5p). In particular,
the authors used 77 BC patients performing in the same day PET/MRI analysis and
blood collection and 78 healthy subjects that were recruited as negative controls. Of the
84 miRNAs identified, the authors found that miR-125b-5p, miR-143-3p, miR-145-5p, miR-
100-5p and miR-23a-3p were significantly upregulated in plasma BC samples. A strong
correlation was obtained between the expression level of miR-143-3p and the mean initial
area under the concentration curve (iAUCmean) and the mean reverse efflux volume
transfer constant (Kepmean) in stage II BC, suggesting a possible role for miR-143-3p in the
regulation of tumor vascularization. Moreover, a strong correlation was observed between
miR-143-3p and the maximum standardized uptake value (SUVmax) at stage II, suggesting
that this miRNA is also involved in the control of tumor metabolism. miR-125-5p was
inversely correlated with the mean forward volume transfer constant (Ktrans mean) and
the proliferation Ki67 index at stage IV. As Ktrans mean is a parameter linked to tumor
vascularization, the highest plasma levels of miR-125-5p are predictive of a better prognosis.

The extensive use of genomic profiling techniques has allowed the combination of
imaging features with genomic profiles. One of the most recent publications of the combina-
torial approach of radiomic features and RNA genomic profile integrates whole transcrip-
tome analysis using RNASeq with 3 T DCE MRI data of patients with BC [71]. This study
demonstrated a positive association of IFs extracted from DCE-MRI with multiple replica-
tion and proliferation pathways and a negative association with the apoptosis pathway: in
particular, the authors claimed that the increased expression of the apoptosis genes was
associated with more spherical and less irregular breast tumors. Tumors with increased
immune activation appeared to be more confined on imaging, as shown by negative cor-
relation with size features and positive correlation with sphericity. Tumors with immune
activation also have the tendency to be more heterogeneous in texture, as shown by a
positive correlation with IF Entropy from texture analysis and a negative correlation with
IF Energy from texture analysis. The vascular endothelial growth factor (VEGF) pathway
and several radiomic phenotypes have been associated, such as the dynamic contrast
enhanced MRI, which quantifies changes in the microvascular physiology of tumors [79].
The increased expression of VEGF was positively correlated with the variability of enhance-
ment and negatively correlated with IF homogeneity from texture analysis, supporting
the idea that VEGF activation may result in the disorganized formation of “leaky vessels”
quantifiable on DCE-MRI [71].

In the Multimodality Analysis and Radiological Guidance in Breast-Conserving Ther-
apy (MARGIN) study, the authors collected 21 imaging features from MRI analysis, con-
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densed into 7 MRI factors (tumor size, tumor shape, initial enhancement, late enhancement,
smoothness a of enhancement sharpness, and sharpness variation) and associated these
factors with gene expression profiles obtained by RNA sequencing analysis [72]. The
study involved 295 patients. The authors found a strong association between proliferation
and tumor size. Highly proliferative tumors are those with poor prognosis, and larger
tumors have a worse prognosis than smaller ones. Moreover, they found that low initial
enhancement, increased smoothness and low sharpness are associated with the expression
of ribosomal mRNAs, which is a well-known target of chemotherapeutic agents; increased
smoothness of enhancement, smaller tumor size, and an irregular tumor shape are asso-
ciated with the expression of genes of the extracellular matrix and collagen production,
highlighting the role of fibroblast in cancer progression.

In a recently published paper [73], the authors used Dynamic Contrast Enhanced
Magnetic Resonance Imaging of 73 patients to identify which of the MRI-derived radiomics
features could predict cell invasion in the tumor microenvironment. They found that
the size and morphology radiomics features (such as diameter and perimeter) correlate
positively with neutrophil abundance, while the abundance of fibroblasts and endothelial
cells correlates with kinetic features of the tumor (positive correlation with mean quick WIS,
negative correlation with Tumor skewness in Post-contrast2). Also, in this paper, fibroblast
involvement in collagen and connective tissue deposits emerges as a predictive factor of
invasive ability of the tumor cells, observed both in MRI and CT imaging and in genomic
profiling. Moreover, endothelial cells, CD8+ T cells and neutrophils are also predicted
using radiomic features, confirming the robustness of radiomic features in reflecting the
association with the cell type of CD8+.

In [74] the authors integrated multi-omics molecular data from TCGA (also including
miRNA profiles) with MRI imaging data from TCIA for 91 invasive carcinomas. They
obtained a strong association between the transcriptional activity of the tumors and four
tumor size phenotypes (lesion volume, effective diameter, surface area, and maximum
linear size). On the contrary, there is a strong negative association between transcriptional
activity and tumor morphological features (margin sharpness and variance of radial gra-
dient histogram), meaning and association between transcription activity and a blurred
tumor margin, as a sign of tumor invasion within the surrounding microenvironment.
Also, the transcription pathway is positively associated with the irregular tumor shape
(irregularity and surface to volume ratio). Regarding the miRNA profile, they found a
high association between miRNA expression (in particular miR-128-1 and miR-18a) and
tumor size and enhancement texture. This would suggest that miRNAs mediate tumor
growth and the heterogeneity of the blood vessel system of the tumor. miRNAs of the
cluster miR-17-92 would be associated with the enhancement texture phenotype (including
contrast, correlation, difference variance, entropy and maximum correlation coefficient),
a sign of the aggressive phenotype of the lesion. On the contrary, Let7b expression is
negatively associated with enhancement texture phenotype, possibly due to the tumor
suppressor activity of this miRNA. miR-10b expression is associated with the effective
diameter of the tumor, acting as a modulator of tumor invasion and metastasis.

Little is known of the relation among long non-coding RNA (lncRNA) expression and
the tumor phenotype described by MRI and CT imaging data. Yamamoto and collogues in
2015 [75] performed a radiogenomic analysis of BC patients (n = 70) by dynamic contrast
material-enhanced (DCE) MRI and correlated the imaging features with early metastasis
and lncRNA expression obtained by next generation sequencing. They found that the
enhancing rim fraction (ERF) score is strongly correlated with the early occurrence of
metastasis. The ERF score, dividing the patients into low-expressing and high-expressing,
allows the identification of eight lncRNAs, of which five (RP11-278, L15.2-001, LINC00511-
009, HOTAIR, AC004231.2-001) are strongly, positively associated with the ERF score. These
lncRNAs are mainly involved in the control of the cell cycle, cell survival or apoptosis,
cellular development, and cell growth.
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4. Limitations of Radiogenomic Approach

Molecular characterization of BC uses genomic, transcriptomic and proteomic tools,
and requires tissue sampling from invasive surgery or tissue biopsy. The bioptic sample
may not be representative of the entire lesion, being obtained from a small portion of the
heterogeneous lesion of the tumor. That’s the reason for collecting blood withdrawn in
order to obtain a profile of possible circulating cancer-associated molecules, such as cfDNA
or RNA. Large-scale genomic profiling is not feasible due to high cost, although it would
allow the genetic profiling of a big population. Another issue is the high amount of data to
be stored, a complex approach for data analysis and interpretation. This severely limits the
development of prospective clinical trials of radiogenomics.

At present, there are few databases (mainly TCGA and TCIA) associating imaging data
with genomic profiling, and the reduced number of samples in these databases. Often these
databases do not contain the immunohistochemistry images to be compared and correlated
with all of the other data. Moreover, bioptic samples in which genetic/epigenetic analyses
have been performed might not be representative of the entire tumor, as seen by imaging
techniques. The ideal database should contain radiomic feature data, genomic (mutations,
copy number variations, etc.), epigenomic (non-coding RNAs), proteomic, metabolomic,
transcriptomics, and immunohistochemical information altogether.

Furthermore, an effort to standardize the imaging and biochemical techniques of
analyses is needed to define stable and reproducible radiogenomics biomarkers.

Despite this, the interest of the radiogenomic approach is expected to stimulate the
development of international standardized perspective studies for recruitment of a large
amount of data to support clinicians in the personalized diagnosis of BC. Standardization
of the non-coding RNA profiles as well as of the technique and the machine used for
imaging acquisition and the selection of imaging features are still challenges. Finally, for
the generalization of the results, a large cohort and biological sample collection is necessary
in order to have reliable results.

Figure 2 summarizes the limitations and challenges of radiogenomics.

Figure 2. Limitations and challenges of radiogenomic approach.

5. Future Perspectives

Radiogenomics is the combination of genomic and radiomic data. This new approach
could become a promising tool to increase precision in diagnosis, providing important
in vivo information on BC behaviour and development. Indeed, precision medicine could
be optimized considering the genotypic and phenotypic characteristics of a tumor. The
approach of precision medicine is based on system biology, which integrates mathematical
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modelling and cellular biology, genomics, transcriptomics, proteomics, metabolomics
and epigenomics (Figure 3). Radiomics, extracting large volumes of quantitative data
from digital images and matching them with clinical and patient data, could help in the
development of new radiogenomics approaches integrating this information into public
shared databases containing molecular profiles. Radiogenomics may provide imaging and
genetic information voxel-by-voxel for a complete, heterogeneous tumor.

Figure 3. Integrative approaches for a better description of BC early biomarkers. Images were taken
and modified from [69,80].
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