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Abstract

A fundamental question in neuroscience is how neural networks generate behavior. The lack of 

neuron subtype specific genetic tools makes it challenging to determine the roles of individual 

subtypes in behavior. We describe a compressed sensing based framework to rapidly infer 

candidate neurons controlling behaviors with much fewer measurements than previously thought 

possible by exploiting non-specific genetic tools. We tested this framework by inferring 
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interneuron subtypes regulating the speed of locomotion of the nematode Caenorhabditis elegans. 

We validated the inferences using a novel real time stabilization microscope for accurate long-

time, high magnification imaging and targeted perturbation of neural activity in freely moving 

animals. We show that a circuit of three interconnected interneuron subtypes, RMG, AVB and SIA 

control different aspects of the speed as the animal navigates the environment. Our work suggests 

that compressed sensing approaches can be broadly used to identify key nodes in complex 

biological networks.

Main

In multiple studies on nematodes, fruit fly, zebrafish, and mouse, the number of key neurons 

that regulate specific behaviors have been found to be a small fraction of the total number of 

neurons in the nervous system1–10. Conventional methods for the identification of this small 

fraction (Fig. 1a,b) require the interrogation of the different subtypes of neurons in the 

neural network one at a time11. However, genetic and molecular approaches to implement 

this search are challenging due to the lack of unique genetic markers and promoters specific 

to only one neural subtype both in C.elegans12 and in other animals13–15. Even if specific 

genetic tools did exist, the measurements would have to be made one neuron sub-type at a 

time. Compressed sensing techniques from statistics16,17 have been extremely successful in 

both efficient sampling and accurate inference of the small fraction of key features in 

data18–21. If only a small fraction of the neurons in a neural network are essential for 

specific behaviors as suggested by experimental and theoretical observations1–10, 

compressed sensing methods could provide an alternative strategy for rapidly prioritizing the 

contribution of the different neurons towards a behavior, allowing for a more focused and 

sophisticated analysis of the key neurons. Indeed, we show that an experimental framework 

based on compressed sensing allows us to identify key sets of neurons controlling speed of 

locomotion of C. elegans, despite the lack of promoters to target individual neuronal 

subtypes.

The first concept behind compressed sensing is to make measurements in an incoherent 

basis: defined as a basis in which the data are not sparse22. In the context of neural circuits, 

this implies that perturbations of neural activity should not target one neuron subtype at a 

time to match measured responses to a small number of key neurons. Instead groups of 

neuron subtypes should be perturbed simultaneously (over a total of at least ~ log   N groups, 

where N is the total number of neuron subtypes in the network). Following theorems by 

Candes and Tao16,22,23, these groups need not be carefully chosen, and the method will work 

for most arbitrary choices, even with very different numbers of neuron subtypes in each 

group. The second concept of compressed sensing is that the data from as few as ∼ nlog   N
such measurements can be analyzed using L1-norm regularization to find the small number 

n of key neuron subtypes driving the behavior (  n < < N). This is much less than the N
measurements needed using a conventional approach that uses unique promoters to 

addresses one neuronal subtype at a time.
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Results

Compressed sensing framework to identify essential interneurons controlling speed in C. 
elegans

The lack of specific promoters and mutations that affect individual interneuron subtypes in 

C.elegans has hindered efforts to systematically uncover the roles of these neurons in 

different behaviors. We thus used C.elegans as a system in which to test a framework based 

on compressed sensing to systematically identify the key interneuron subtypes controlling 

speed. We first designed an incoherent measurement matrix by leveraging non-specific 

promoters. We selected 27 promoters, primarily expressed in interneurons, with 

characterized expression patterns in the literature (Supplementary Table 1). Each of these 

promoters drove expression in anywhere from 2 to 15 neurons. Together, these promoters 

were active in 88 of the 118 neuron-types in the animal, including 56 types of interneurons, 

22 types of sensory neurons, and 10 types of motor neurons (Fig. 1c, Supplementary Table 

1)12,24,25. These 27 promoters generate an incoherent 27 × 88 dimensional measurement 

matrix M, where each row of this matrix corresponds to the promoter identity and each 

column to the neuron-type. If promoter drives expression in neuron type j, Mi j = 1, and else 

Mi j = 0 (Fig. 1c). To experimentally implement the measurement matrix, we constructed 

transgenic C. elegans lines in a lite-1 mutant background26, with each line driving the 

expression of archaerhodopsin-3 (Arch)27,28 under the control of one of the 27 promoters. 

Although most of our lines showed expression patterns, in a defined set of neurons, 

consistent with the literature, a few promoters (Supplementary Fig. 1) were significantly 

different. We used our observed expression patterns in these instances to correct the 

measurement matrix (see Methods).

To measure the locomotory phenotypes of the 27 lines, animals were grown on bacteria with 

all trans-retinal (ATR) and then placed 1.5 cm away from the center of a bacterial lawn about 

~0.3 mm in radius on a standard agarose plate while being exposed to 5mW/mm2 of 525nm 

(green) light to inhibit all neurons expressing archaerhodopsin-3 (Supplementary Fig. 2a,b; 

see Methods for details of the experiment and the choice of light power level26). Using 

multi-particle tracking, we measured the speed of transgenics as they performed chemotaxis 

(Supplementary Fig. 2b,c and Supplementary Fig. 3). Of the 27 transgenic lines, five 

(Promflp-21, Promnpr-4, Promodr-2b, Promsra-11, Promdop-2) showed speed distributions that 

were significantly different from that of the control animals (see Methods) as scored by the 

KL-divergence (Fig. 1d). Thirteen lines showed changes in reversal frequency or a lower 

arrival fraction on the bacterial lawn than the control (Supplementary Fig. 4) despite not 

showing any phenotype in speed changes. Thus, while the opto-genetic perturbations are 

effective in many of these different lines, the ability to control speed is not broadly 

distributed among all the neurons of the nervous system.

Next, we used these 27 distinct sets of measurements to find the contribution of each of the 

88 neuron types towards the observed phenotype. We formulated the problem as an 

underdetermined set of equations Mω = P , where M is the measurement matrix, ω  is the 

vector of the neuron weights, and P  is the phenotype vector. The measured fractional 
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reduction in the mean speeds of the 27 lines compared to the wild type gave us the 

phenotype vector P  (Supplementary Fig. 2d). To solve this underdetermined set of 

equations, we imposed a sparsity constraint that only a small fraction of all the neuron 

subtypes must be essential for controlling speed. Since we did not know how many neurons 

were key to controlling speed, we cannot constrain the sparse solution to contain a specific 

number of neurons. We thus used Lasso regression29,30, imposing sparsity of the solution by 

constraining the sum of the absolute values of the individual weights of the neurons (i.e., the 

L1 norm ofω ). Minimizing the sum of the mean squared error (χ2 = Mω = P
2
) and the 

L1-norm of the weight vector ( ω 1) multiplied by a Lagrange multiplier λ, i.e., 

(Mω = P )
2

+ λ ω
1
imposes a sparsity constraint on the solution. Tuning the sparsity 

parameter λ allows one to change the sparsity of the solution: increasing the value of λ leads 

to fewer neurons being used to fit the data. Thus, using Lasso we obtained solutions for the 

neuron weights with λ spanning over three orders of magnitude. We also calculated the 

errors in the estimated neuron weights (see Methods). Over a wide range of values of the 

sparsity parameter, the χ2 error of the fit of the weight vectors to Mω = P  remained stable, 

and our analysis yielded three key interneurons with large weights: AVB, RMG and SIA 

(Fig. 1e). AIY appeared in the solution but had smaller weights. While the weights of AIY 

increased for large values ofλ, in this regime, the fit of the inferred weight vectors to 

Mω = P  deteriorated rapidly (Fig. 1e). Due to error propagation, AIB, AIZ, AVA, AVK, 

RIA, RIC, RID, RIF, RMD, SIB, BAG, CEP, IL2, RIM, and URA appeared with small 

weights in a small fraction of the solutions (Fig. 1f).

We tested the robustness of the results. Using either an L1-norm minimization alone or a 

non-linear phenotype vector yielded results consistent with those above: a core set of three 

neurons (AVB, RMG and SIA) along with few other neurons with small weights 

(Supplementary Fig. 5a-d). We further tested that our results were robust to corruption of the 

original measurement matrix to account for potential variations in the levels of 

archeorhodopsin expression (Supplementary Fig. 6 and 7; Methods) and the sensitivity of 

our answers to the chosen promoters by changing the number of promoters from 22 to 32. 

(Supplementary Fig. 8; Methods). Next, we determined the accuracy of our results by 

estimating the false positive and false negative discovery rates (Supplementary Fig. 9; 

Methods). The number of false negative interneurons using our measurement matrix with 27 

promoters was on average less than one for up to 6 essential neurons (Supplementary Fig. 

9a,f). Finally, we computationally tested the efficacy of our method to analyze non-linear 

deep learning networks which suggested that in such networks31, our methods has the 

potential to identify the key neurons. This is consistent with the efficacy of Lasso regression 

in the presence of nonlinear distortion32. (Methods, Supplementary Fig. 10).

Stabilization microscope for long-time calcium imaging and optogenetic manipulation on 
freely moving animals

To validate the solutions inferred using Lasso, we sought to accurately image and perturb 

neural activity in freely behaving animals. Imaging neural activity in a moving animal at 
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high magnification is challenging despite impressive progress in recent works33–36. To make 

such imaging possible, these efforts33–36 restricted animal movement so that they are not 

completely free to move (restricted at least by a glass coverslip for accurate z tracking), 

hence potentially affecting their speed of movement. Furthermore, these papers imaged at 

light levels of at least 14 mW/mm2 to track the animal for five minutes by which time, the 

effects of phototoxicity are evident35. To overcome these limitations, we built a new real-

time image-stabilization microscope with the capacity to perform imaging at high 

magnifications and at less than a tenth of the light power levels than previously possible33–35 

to image animals for an hour without any sign of phototoxicity. Our stabilization microscope 

is capable of accurately imaging fluorescence signals from both the soma and processes of 

multiple neurons in different z-planes as the animal moves freely on an agar plate over ten 

centimeters (Fig. 2a). We achieved this level of performance by stabilizing a marker neuron 

(AWCON, expressing mKOrange; Fig. 2b, top-right) within our field of view in x, y and z to 

micron accuracy (Fig. 2b, top right, Supplementary Video 1) and its angular movement to 

within 45 degrees as the animal crawled freely (Fig. 2c, σ = 22.3 degrees; Supplementary 

Video 2) through a 7 millisecond control loop. We achieved z tracking without a coverslip in 

a freely moving animal by imaging the fluorescent marker neuron simultaneously at two 

focal planes (Fig. 2b, left, Supplementary Video 3; see Methods). Rotational stabilization 

was achieved using a dove prism (Supplementary Video 4) mounted on a rotation stage. 

Having stabilized the marker neuron accurately, we used a tunable liquid lens to 

simultaneously image other neurons expressing GCaMP37, whose fluorescence changes 

based on the calcium levels in the cell, at different z planes (Supplementary Fig. 11 and 

Supplementary Video 5). We calibrated the accuracy and performance of this microscope to 

image from individual neurons (Fig. 2d-f and Supplementary Fig. 12a). Using a DLP 

projector, we could target light on a specific individual neuron in an animal in which 

multiple neurons expressed Arch, allowing for specific inhibition (Fig. 2f, Supplementary 

Fig 12b and Supplementary Video 6). The ability to simultaneously monitor and perturb 

neural activity with micron precision in animals moving freely several centimeters on an 

agar plate allowed us to uncover the roles of individual neuron subtypes in controlling speed 

(see Methods and Supplementary Note 1 for details of the microscope).

Targeted inhibition of single neurons SIA, RMG, and AVB reduces speed of locomotion

Using our microscope, we tested our inference that SIA, RMG and AVB control speed. We 

selectively inhibited SIA in a Promdop-2::Arch line using targeted illumination with a 

randomized duty cycle to accurately infer the effects of the inhibition38. We observed a 

consistent decrease in speed every time SIA was illuminated (Fig. 3a). To quantify this 

effect, we normalized the speed of animal using the speed during light-off intervals as a 

baseline (Fig. 3b). While control worms fed no ATR did not show speed reduction, selective 

SIA inhibition showed significant reduction (32%) in speed (Fig. 3b). Similarly, targeted 

inhibition of RMG (Promflp-21::Arch) and AVB (Promsra-11::Arch) showed significant 

reduction in speed (59% and 33% respectively) compared to the no ATR controls (Fig. 3c-f 

and Supplementary Fig. 13a), validating the inference methods.

Along with certain sensory neurons (Supplementary Note 2), the interneurons AIY and RIB 

have been implicated in the literature as being important for speed control39. Of the 
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interneurons, AIY was assigned a low weight through compressed sensing and RIB was not 

identified. Further while the command interneuron AVB have been shown to control forward 

movement and is identified above, the command interneurons PVC40,41 as well as AVA, 

AVE and AVD which control reversals were not. To test the validity of our findings we 

inhibited these neurons individually using our microscope. Inhibition of AIY or RIB did not 

show a speed phenotype (Fig. 3g). Further, while the inhibition of command interneurons 

(AVA, AVD and AVE) showed a suppression of reversals, they did not affect speed 

distribution (Supplementary Fig. 13b-d)42. In addition, we selectively inhibited the activity 

of 10 neural subtypes that had small or no weights in our compressed sensing solution. Of 

the neurons we tested (AIB, RIM+RIC, IL2, CEP, BAG, URX, AVE, RIM, MI, PVQ), only 

URX showed small but significant change (17% increase) in speed with inhibition.

Calcium imaging reveals distinct roles of SIA, RMG and AVB in controlling speed

To further understand how these neurons control speed during foraging behavior, we used 

our microscope to measure calcium activity in different neurons as freely moving animals 

searched for food on agar plate. Calcium activity in URX which showed a slight speed 

change upon inhibition, as well as the other neurons (AIY, CEP, IL2, BAG, RIM) whose 

inhibition in previous experiments resulted in no change in speed, showed no significant 

correlation with speed (Fig. 4a and Supplementary Fig. 14; see Methods for details of the 

cross-correlation analysis). Again, calcium activity in RIB which was implicated in the 

literature to control speed did not show any correlation with speed (Fig.4a). Similarly, while 

the calcium activity in the command interneuron AVA correlated with reversals, it did not 

correlate with speed (Fig. 4a; Supplementary Fig. 13d). Thus, the interneurons in the 

literature being identified as unimportant for speed regulation by compressed sensing are not 

false negatives in the context of chemotaxis.

In contrast to these neurons above, activity patterns in the three neuron types RMG, SIA, 

and AVB, which we identified through our analysis as speed-controlling neurons, showed a 

significant correlation (Fig. 4a and Supplementary Fig. 12). These results together with the 

results from the targeted inhibition of these neurons (Fig. 3) validated our compressed 

sensing solutions.

We next investigated the activity patterns of SIA, RMG and AVB to understand their role in 

controlling speed. SIA calcium dynamics in animals, freely searching for food (Fig. 4b, 

Supplementary Fig. 15a,b and Supplementary Video 7) showed an autocorrelation time of 

~50 seconds (Fig. 4c and Supplementary Fig. 15c). Further, the correlation between SIA 

activity and speed increased with the window size of low-pass filter beyond 1 minute, 

plateauing at window sizes over 3 minutes (Fig. 4d and Supplementary Fig. 15d). The slow 

modulation in SIA activity and the frequency dependent cross correlation analysis suggests 

that SIA controls speed modulations on the timescale of minutes (Supplementary Fig. 15b). 

In contrast, significant correlations of RMG calcium activity with speed arose solely due to 

pausing events (Fig. 4e,f, Supplementary Fig. 15e and Supplementary Video 8); when 

pausing events were removed computationally, correlations between RMG activity and 

speed vanished (Fig. 4g). During pausing, RMG activity decreased, but then increased again 

as the animal began moving, which in conjunction with our inhibition experiments suggests 
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that RMG neurons control whether the animal pauses or moves (Supplementary Fig. 13a). 

Consistent with AVB’s role as a forward command interneuron as described in 

literature40,41, we observed that AVB activity decreases whenever the animal makes a 

reversal and increases during the onset of transition from backward to forward motion (Fig. 

4h,i, Supplementary Fig. 15f and Supplementary Video 9). In addition to these dynamics, we 

also observed that AVB activity decreases during pausing (Fig. 4h, Supplementary Fig. 

15c,d).

Discussion

As the nematode C.elegans animal searches for food in its environment, the spatial profiles 

of odors are translated into temporally changing signals by ciliated sensory neurons exposed 

at the nose tip. These signals are then processed by the interneurons of the animal to 

determine exploration strategies. The translation of the spatial information into a time series 

of odor signals is determined by the speed of the animal. Here, we identified the three 

interneuron types, RMG, SIA and AVB that control the nematode’s speed. These three 

neuron types form a circuit with RMG synapsing onto both AVB and SIA24 (Fig 4j). Our 

analysis revealed that RMG, an inter-motor neuron that synapses heavily onto head muscles, 

determines when the animal pauses during chemotaxis. RMG has previously been 

implicated in controlling how active the animal is in the context of different O2 

concentrations43,44 and has been termed a ‘hub’ interneuron involved in signal integration45. 

As predicted from previous work40, we observed that forward command interneuron AVB 

activity correlates with the initiation of forward movement. However, we also discovered a 

slower AVB dynamic that correlates with pausing. We found that SIA activity modulates 

speed continuously. SIA neurons were originally identified as interneurons24 but they also 

innervate neck muscle groups11. In this circuit of RMG, SIA and AVB neuron types, our 

data together suggest that RMG acts a switch to determine whether the animal moves or not, 

AVB acts as a rectifier, to determine whether the animal moves forward or not, and SIA 

modulates the speed continuously over timescales of a minute (Fig. 4j). Our work raises the 

interesting question of how inputs into this circuit, including from dopaminergic neurons, 

which is upstream of RMG and SIA, play a role in modulating circuit activity and the 

resulting speed modulations during chemotaxis (Fig. 3g, Fig. 4a and Supplementary Fig. 

14a).

Statistical analyses of the measurement matrix through corruption and changes in size allow 

one to determine the robustness, and false positive/false negative rates of the inferences. 

Such analyses also allow us to identify specific promoters that can be added to the 

measurement matrix to improve the quality and accuracy of the inferences (Supplementary 

Fig. 9). These statistical analyses on our experimental measurement matrix suggest that we 

could have missed one interneuron subtype in our set of key neurons controlling speed. 

Future experiments activating neurons using channel rhodopsin and analyzing the data using 

our framework will help identify additional neurons we could have missed.

In conclusion, a compressive sensing based framework that exploits non-specific genetic 

tools, in conjunction with the microscope and the set of archaeorhodopsin lines developed in 

this work should allow us to rapidly and comprehensively understand the neural circuits that 

Lee et al. Page 7

Nat Methods. Author manuscript; available in PMC 2019 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



drive the behaviors of C.elegans. Similar experimental methods based on compressive 

sensing have the potential to discover the key nodes that control a phenotype in complex 

biological networks including the nervous systems of higher organisms as well as gene 

regulatory networks.

Methods

Strains

Strains were grown and maintained under standard conditions unless indicated otherwise. 

All experiments were done in lite-1(ce314) mutants to minimize the animal’s sensitivity to 

blue light. All transgenic Arch lines were generated by injecting fused 

promoter::Archaeorhodopsin-3-tagRFP/GFP constructs. The details of all transgenic lines 

used in this study can be found in Supplementary Table 1 and Supplementary Table 2.

Promoter expression, neuron identification and measurement matrix

The neuronal expression pattern of the promoter::arch constructs was verified using high 

magnification (63X) fluorescence and DIC microscopy. Only lines showing a phenotype or 

those with expression patterns that were obviously different from that of the literature under 

a lower magnification fluorescence microscope were examined. In most instances, a 

combination of fluorescence-DIC co-localization and neuron process morphology was 

sufficient to determine the expression pattern. We imaged a minimum of 10 animals for each 

line and claimed that the line expressed those neurons reliably if they were observed in at 

least 75% of the animals. Promoters and lines that showed a higher degree of mosaicism was 

discarded. The measured expression patterns were used to generate the measurement matrix 

M.

Behavioral assay with optogenetic perturbations and image processing

All promoters were fused to Archaerhodopsin-3 by fusion-PCR and injected into C. elegans 
using standard protocols to create transgenic animals. Transgenic animals were fed all-trans 

retinal (1mM), a cofactor required for rhodopsin activity, for 12+ hours prior to the 

behavioral assay. To minimize the effect of the mosaicism in the experiments, animals were 

carefully selected under fluorescent microscope to pick only the worms that express Arch in 

all of the identified neurons in each behavioral experiment. Only young adults from each 

transgenic line were used in the behavioral assay. 5 to 50 animals at a time were placed 1.5 

cm away from the center of the bacteria lawn, which is about 3 mm in radius. The same 

number of worms per run was used for corresponding controls every time. The green light 

(5mW/mm2) from a ScopeLED G250 used to activate arch covered >70% of the plate area 

with less than 15% variation in intensity as verified with a Thorlabs S120C photodiode. It 

has been reported that worms can behave normally for more than hour under 5.5 mW/mm2 

green light26. Thus, we used 5mW/mm2 as the safest known high power level in our 

silencing experiments. A video camera was used to record the movements of the worms at 

3–5 fps46. Only data from ~70% of the plate area centered on the bacterial lawn was 

processed and analyzed. For each set of experiments performed on a day, a parallel set of 

positive and negative control experiments were performed under identical conditions. As 

positive controls, experiments were performed on animals with pan-neuronal expression of 
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Archeorhodopsin. Under illumination, these animals paralyze, thus validating our set up as 

well as the quality of all-trans retinal. As negative controls animals from the same line that 

were not fed all trans retinal (and were hence unaffected by green light) and lite-1 animals 

were used. The same LED illumination was used for the control and the experiments.

Custom MATLAB software with elements from “The Parallel Worm Tracker” (Miriam 

Goodman Lab)47 was used to segment and track the position of individual nematodes across 

camera frames. We tracked worms until they entered the bacterial lawn. To estimate sub-

pixel and hence sub-resolution scale displacements, we binned the real space into discrete 

pixels based on pixel size, i.e. a non-zero displacement was only observed if the animal 

moved more than 2 × pixel width, the distance between diagonally adjacent pixels. Such 

analysis is likely more accurate than arbitrary time averaging which is typically used and 

does not take spatial resolution into account. Under roughly 1x magnification, each animal 

was typically around 50–100 pixels in size. Speed was calculated by taking the time 

derivative of centroid position.

Data analysis for behavior screen

The speed of animals was measured until they reached the bacteria lawn. Speed naturally 

fluctuates during the movement of wild type animals, and so to determine whether neurons 

affect speed, one must measure the distribution of the speed over the course of the 

behavioral experiment. Therefore, for each transgenic line and corresponding control, speed 

data from at least 10 animals was analyzed to obtain the speed distribution for that line. To 

determine whether the transgenic line showed significant changes in speed, we measured the 

Kullbach-Leibler (KL) divergence between the speed distribution of this line and the control 

experiment. In parallel we also measured the KL divergence between the 131 distinct control 

experiments in our data set to obtain the distribution of the intra-control KL divergence 

values. As long as the KL divergence between the speed distribution of the transgenic line 

and the control was above the 95th percentile of the intra-control KL divergence values, we 

assumed that the transgenic line showed a speed phenotype.

To infer key neurons robustly, we tested two different phenotype vectors based on KL-

divergence: binarized and continuous. For continuous phenotype vector, mean speed 

reductions were calculated with respect to control. Promoters not distinguishable from 

control were taken to have no speed change (we further tested that this latter assumption did 

not affect the results). Using the phenotype vector P , and the measurement matrix M, both 

the neuron weights ω  and confidence in these weights were calculated for each 88 neuron 

types. To calculate the confidence in the weights, errors in the measured mean speed 

changes were propagated onto inferred neuron weights with bootstrapping. We sampled 

phenotype vector 10,000 times from normal distribution with a mean as fractional mean 

speed changes and standard deviation as standard error on mean speed changes. We, then, 

used these phenotype vectors to calculate the weight distribution for each 88 neuron types. 

For these analyses, Lasso and LassoCV packages from Python machine learning library 

(scikit-learn v0.19.2) was used with the default tolerance value. Other optimization methods 

were also tested such as MATLAB lasso, convex optimization package (CVX package 
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(http://cvxr.com/cvx), MATLAB linprog (L1-norm minimization: min ||ω ||1 subject to 

Mω = P  ). They also yielded consisted results.

Artificial neural network

In order to test whether we could infer key neurons in a nonlinear neural network, we trained 

a fully connected feedforward neural network using deep learning algorithms to recognize 

handwritten digits (which is a standard task for deep neural networks)48. This network 

classified digits as 0 to 9 from 28 by 28 size gray scale images (MNIST, http://

yann.lecun.com/exdb/mnist/). The network consisted of the input layer of 784 neurons, 4 

hidden layers each having 100 neurons and the output layer consist of 10 neurons signaling 

the output class of the digits (Supplementary Fig. 10a). Each neuron in the network was 

extremely nonlinear with a sigmoidal activation function (Supplementary Fig. 10b). We 

trained this network on a training dataset (60,000 images) using categorical-crossentropy as 

a loss function. During training to produce networks with a small number of key neurons 

and to promote sparse representation of the data, we added L1 constrain to activations of 

neurons. After training, when the network was shown examples of handwritten digits from 

the training dataset, a fraction of units(neurons) in the network showed activity for 

individual digit images while with white noise data, the activation was broad 

(Supplementary Fig. 10c). For simplicity, we focused on single hidden (intermediate) layer 

of the trained network in our analysis. Exploiting our computational access to the neurons in 

this network, we inhibited each neuron in a layer one at a time to measure the change in 

accuracy of handwriting recognition on a test dataset consisting of 10,000 images. These 

measurements quantified the weights of individual neurons in handwriting recognition and 

constituted the ground truth about the network (Supplementary Fig. 10d). We then tested 

whether through compressed sensing we could recover these weights and in particular 

identify neurons that play an essential role in digit recognition. To do so, we built a 

measurement matrix by generating 50 groups each containing 5 randomly chosen neurons. 

As in our C.elegans experiments, we inhibited all the neurons in a row of the measurement 

matrix and measured the phenotype (change in accuracy of handwriting recognition on the 

test dataset) (Supplementary Fig. 10e,f). Using Lasso, with this measurement matrix we 

could correctly identify the key neurons essential for digit recognition. (Supplementary Fig. 

10g-i). We also determined how error rate and accuracy of inference changes with the size 

(number of rows) of the measurement matrix. We changed the number of rows (equivalent 

the number of independent measurements using different groups) from 25 to 60 to determine 

how performance of the method changes with the size of the measurement matrix 

(Supplementary Fig. 10j). These tests suggested that compressed sensing can be used to find 

essential neurons in this extremely nonlinear artificial neural network. This work was 

implemented using Keras v2.1.3 python deep learning library with TensorFlow backend.

Statistical analysis of the measurement matrix

In order to evaluate the performance of our measurement matrix, we performed simulations. 

In these simulations we first assigned a randomly chosen set of n neurons (with n between 1 

and 11 out of the total of 88 subtypes covered by the measurement matrix) as essential for 

behavior. We assigned weights (ω real) to these essential neurons such that when each of 
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these essential neurons was inhibited in our simulation, the phenotype changed positively or 

negatively by at least 30% of the wild type value. We assigned 0 weights to non-essential 

neurons. We first assumed that when multiple neurons were inhibited simultaneously, the 

effects of these neurons on the phenotype added linearly. We used our measurement matrix 

to calculate the phenotype vectorP = Mω real. We then hid the identities of the essential 

neurons and attempted to infer these identities from this phenotype vector P  using 

compressed sensing. We used Lasso to infer the weights ω in f erred of individual neurons. We 

compared ω in f erred against ω real to obtain false positive and false negative rates. By 

performing this computational test thousand times for different randomly chosen sets of 

essential neurons, we determined the average false positive and false negative rates 

(Supplementary Fig. 9a). We then ascertained that the false positive/false negative rates were 

robust to how the phenotype vector was evaluated by using an non-linear function such that 

the combined phenotype of multiple neurons did not add linearly. We did so by evaluating 

the phenotype: P = sgn Mω real  where sgn x = −1   i f   x 0; 0   i f   x = 0; 1   i f   x 0  ) and 

repeated the calculation of the false positive and false negative rates (Supplementary Fig. 

9b). We further evaluated the false positive and false negative rates as the measurement 

matrix size changed from 22 to 32 rows (promoters) (Supplementary Fig. 9c-e) as well as 

how these rates depended on the total number of promoter constructs used in the 

experiments (Supplementary Fig. 9f).

Promoter removals and additions

We tested the robustness of the solution: RMG, SIA and AVB to the removal of promoters 

from and additions of promoters to the original set, and thus to changes in the measurement 

matrix. We used mean speed changes as our phenotype vector as before, but we did not do 

bootstrapping analysis with the uncertainty on the measurements this time for simplicity. 

First, we randomly removed from 1 to 5 promoters from our measurement matrix to create 

new measurement matrices. We next obtained the identities of the key neurons for a range of 

sparsity parameter for each of these new matrices (Supplementary Fig. 6a). In all instances, 

the inference of AVB, SIA and RMG was robust to the removal of promoters 

(Supplementary Fig. 6b). Nevertheless, upon removal of Pmgl-1, the solution contains AIA 

and decreases the weight of AVB (Supplementary Fig. 6b). This is because AIA is expressed 

in two promoters: Pmgl-1 with no speed phenotype and Psra-11 with significant speed 

phenotype. Therefore, removal of Pmgl-1 introduces AIA as a neuron that could control 

speed. Once Pmgl-1 and the fact that it does not show a speed phenotype is included, AIA is 

not contained in the sparse solution (Supplementary Fig. 6c). The sensitivity of the inference 

to perturbations of the measurement matrix allows us to determine the neurons whose 

inferences are most sensitive to the identity of the chosen promoters.

To test the robustness upon promoter additions, we generated 5 more transgenic lines 

expressing Arch in multiple neurons and measured speed phenotype in each of these lines. 

We added these five new promoters (Podr-2(16), Popt-3, Pntr-2, Psams-5, Ptdc-1) to the 

original set to increase the size of our matrix to 32 promoters. The identity of the key 
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inferred neurons remained unchanged with these new behavioral data and the expanded 

measurement matrix (Supplementary Fig. 7).

Arch efficiency simulations

While the arch lines were imaged at high magnification to validate their expression pattern 

and only animals showing clear expression patterns of the fluorescent tag were picked for 

behavioral assays, errors in our inference due to variations in the levels of archeorhodopsin 

expression are possible. We further tested the robustness of our methods to corruption of the 

measurement matrix. Our original measurement matrix had an entry of 1 if a promoter drove 

expression in a neuron type and 0 otherwise. We corrupted 10% of the entries of our 

measurement matrix at random computationally, such that the 1s were changed with equal 

probability to a number between 0 and 0.5 (corresponding to randomly reducing or 

abrogating the expression of a subset of the neurons in a subset of the promoters). We thus 

generated 1000 distinct corrupted measurement matrices. We then used these corrupted 

measurement matrices to infer the key neurons from behavioral experiments to determine 

the statistical robustness of our inferences to reduction and abrogation of expression levels in 

subsets of neurons. In almost every instance, the solutions (RMG, SIA, AVB) were robust. 

There were two exceptions: when the corruption of the measurement matrix (Supplementary 

Fig. 8a) led to the abrogation of expression in RMG in the promoter Pflp21 or in AVB in the 

promoter Psra-11, RMG or AVB were missed as key neurons respectively. This is because in 

our entire set of promoters, only Pflp21 drives expression in RMG, and only Psra-11 drives 

expression AVB. Such perturbations of level reduction in SIA in individual promoters did 

not affect the inference because multiple promoters in our arch lines show expression in SIA 

(Supplementary Fig. 8a,b).

Tracking (Stabilization) Microscope

Real-time tracking and image stabilization—Tracking and image stabilization are 

achieved through a combination of fast acquisition, computation, and mechanical feedback. 

Our system is able to image, process, and feedback to x, y, z and rotational controls, all 

within 7 milliseconds. In order to stabilize worm movement, motion in the x,y,z coordinates, 

and rotation resulting from head bending, must all be tracked simultaneously. Briefly, a 

green 543nm laser (<5mW/mm2) is used to excite the mKusabira-Orange (mKO) tagged 

marker neuron, AWCON. Fluorescence is collected by a 50X, 0.55 numerical aperture 

(Nikon 50X LU Plan ELWD 0.55NA) objective and passed through a dove prism mounted 

on a rotation stage. The dove prism utilizes internal reflections to rotate the image. The 

rotated beam is then split into two adjacent images that focus at slightly different z depths on 

an EMCCD - one in focus, the other slightly out of focus (Fig. 2b). This step, colloquially 

referred to as “dual-view”, was accomplished by inserting a slightly focusing lens in one of 

the otherwise optically equal length paths and is a modern interpretation of a classic 

technique used by H. Berg to track swimming E. coli49. The pixels from the camera are then 

read serially onto the FPGA and processed immediately as they enter.

To facilitate fast and reliable real-time processing, Field Programmable Gate Arrays were 

used. FPGAs are parallel processing CPUs, that allow high speed synchronization of 

multiple simultaneous processes required for our tracking system. Positional x,y,z,r 

Lee et al. Page 12

Nat Methods. Author manuscript; available in PMC 2019 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information were simultaneously extracted from raw images in parallel, without any one 

process delaying another. The x,y position was calculated from the centroid of the cell body 

in the focused image. Z position was measured by calculating the difference in intensity 

between the focused and out-of-focus images. The angular orientation, θ, was calculated 

from the marker neuron’s process which extends from the cell body to the animal’s nose tip. 

The displacement from the target position was then passed to x,y,z,θ stages (x,y: piezo

+servo, z: stepper, θ: servo) to mechanically move worm back to the target location. This 

was all done at 100 frames per second and less than 10 millisecond latency. As a result, we 

could stabilize the >250um/sec movements of the marker neuron cell body to 1 um—less 

than its radius. Head bending motion artifacts were also reduced two-fold (Fig. 2b). 

Tracking and stabilization with 1-micron accuracy could be maintained over an hour and 

over centimeters of travel.

Dove prism for image rotation—We used a dove prism (Thorlabs PS992-A) mounted in 

a rotation stage to rotate the image and compensate for the worm’s head bending since rapid 

computation by the FPGA was only possible using addition and subtraction operations and 

hence there was insufficient time to computationally rotate the image. Dove prisms have 

been used in astronomy and machine vision as ‘beam rotators’50. A challenge of aligning the 

dove prism is that its rotation axis must be collinear with that of the rotation stage. Small 

lateral or angular deviations result in image nutation, or ‘rocking’. Fortunately, there are 

some established alignment procedures51,52. We assembled an alignment apparatus using a 

combination of off-the-shelf stages. Then, we aligned the dove prism by minimizing the 

rotational displacement. More precisely, we measured the trajectory of a point-like 

fluorescent particle in our field of view as we rotated the dove prism and iteratively adjusted 

translations orthogonal to optical axis as well as the azimuth (tilt) to minimize the path total 

length and asymmetry as previously done in literature51,52.

Z tracking from two focal planes—We tracked z position by comparing the fuzziness 

between two images of the marker neuron taken at different focal planes. The technique was 

first utilized by Berg in 197149 to track swimming E. coli. The fuzziness of an object, as 

measured by its intensity, does not give the absolute position as the fuzziness is symmetric 

above and below the focal plane. Comparing this to the image from a different focal plane, 

however, allows the exact z position to be calculated as the difference in intensity between 

the two images is monotonic near either focal plane. Berg explains, as the object moves 

toward one focal plane, “its image sharpens on [that focal plane] and fuzzes out more on [the 

other plane]”49.

X, Y, Z, R stages—To get precision and speed, along with range, we stacked fast but small 

x,y piezo stages (PI) on long travel servomotor stages (Newport LTA-HS). Micron-scale 

position was read from the encoded stages onto an FPGA (National Instruments 

PXIe-7966R) as an analog voltage. A non-encoded linear stepper motorized stage (Thorlabs 

ZFS13B, Sparkfun EasyDriver) was used for controlling z position. The dove prism used for 

rotating the image was placed in a servo controlled rotation stage (Newport URB100C) 

which was set to track a voltage and corresponding angle using its own internal PID 

feedback. The servo stages were all driven by a stage controller (Newport XPS Controller) 
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and custom written .tcl scripts. All tracking movement signals were processed and sent by an 

FPGA. Custom built digital-to-analog and analog-to-digital converters (Harvard University 

Electronic Instrument Design Lab) were used wherever necessary.

LabVIEW FPGA for hardware control and real-time processing—Field 

Programmable Gate Arrays (FPGAs) were used to control both tracking and imaging. 

Processes on FPGAs can run in parallel as opposed to sequentially on a CPU. This means 

that each process loop runs exactly at its specified rate no matter the loading on itself or 

other loops. We used a National Instruments 1483 Camera Link Adapter Module to interface 

the camera (Andor iXon Ultra 897) to the FPGA. The different stages have different 

sampling rates and because the FPGA can communicate with each of them independently, 

no process delays another.

FPGAs are programmed with The LabVIEW FPGA platform without using low-level 

hardware language. LabVIEW FPGA compiles code written in the standard LabVIEW 

interface into VHDL (Hardware Description Language). LabVIEW FPGA has the additional 

benefit of a PC interface which we used to not only to save images and data, but also to 

monitor the experiment in real-time and manually control the stages when necessary. 

Although data was saved on the PC where rates are variable, we minimized timing 

uncertainty by bundling timestamps from the FPGA clock with the data. All GCaMP, 

tracking, and wide-field images were synchronized using these timestamps.

The algorithms used to process images and track the worm are simple and fast. In the x,y,z 
tracking loop, 2 focal plane images of the marker neuron are first thresholded to remove all 

but the soma. The centroid of the soma from the in-focus image was calculated to obtain x 

and y positions. The difference in power, sum of all pixel intensities, between the in and out 

of focus images was used as a measurement for z position. In the tracking loop, a different 

threshold was used to remove background noise but keep the cell process. The angular 

orientation of process was determined by first fitting an approximate spline. The process was 

first split into roughly 8 segments by binning pixel rows roughly perpendicular to the 

process, calculating the centroid in each of them, and then drawing a line between centroids 

from adjacent bins. The angular orientations of these segments were then averaged to obtain 

the process’ orientation. All of these position calculations occurred as pixels are serially read 

from the camera and completed by the time the last pixel in the image was read. This setup 

ensured the calculations did not add any latency, and their speeds were limited only by the 

camera’s data transfer rate.

GCaMP imaging—Tracking and image stabilization allowed GCaMP to be imaged as if 

the worm were immobilized. A blue LED or DLP projector (Logic PD DLP 

LightCommander) was used to provide wide-field illumination for GCaMP imaging. 30 

millisecond exposure time was used, which enabled us to use blue light levels around only 

0.5–1 mW/mm2—several times less than the reported dangerous level26. This low blue light 

level is one of the reasons we have been able to image freely moving worms at high spatio-

temporal resolution for an order of magnitude longer than other methods. Sampling rate was 

15.625 frames per second. Stabilizing the image also enabled us to perform volumetric z 

scans as can be done on some commercial microscopes equipped with autofocus systems, 
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such as Zeiss Definite Focus and Nikon Perfect Focus, except that those systems track the 

coverslip surface rather than the sample. These commercial systems can compensate for 

temperature related z drift but cannot do volumetric scanning in a moving sample. Rather 

than changing the objective to sample distance to vary the focal plane, a liquid lens with an 

adjustable focal length (Optotune EL-10–30-C) was placed in a 1x relay system between the 

tube lens and GCaMP imaging camera (Hamamatsu ImagEM X2). An FPGA (National 

Instruments PXIe-7961) was used to acquire images from the camera and control the liquid 

lens. The focal length of the tunable lens is voltage controlled and can be varied between 

100 to 200mm. In this configuration, the tunable lens can scan through the entire ~50 um 

width of the worm without any variance in image quality or magnification53. Including the 

30ms exposure times, the entire worm (15 z-slices) could be scanned through in one second.

GFP control to characterize motion artifacts and sampling noise—We used GFP 

as a control to characterize remaining motion artifacts and noise in the microscope. A 

specific promoter (Pttx-3) was used to drive GFP expression in a left right pair of 

interneurons: AIYR/L. Movement artifacts would have the same effect on measuring GFP as 

it would GCaMP. Similarly, readout and dark noise from the camera would be the same, as 

would shot noise given that the GFP and GCaMP intensities are comparable. GFP control 

shows that the error in the measurement, including all remaining motion artifacts and camera 

noise, was less than 18% as measured by the standard deviation (Fig. 2e). Smoothed GFP 

intensity time series over 3 seconds had standard deviation is less than 10% indicating that 

much of the noise we observe is at frequencies faster than 0.3Hz.

Structured illumination—The DLP projector was used for spatially structured 

illumination for targeted photo-activation. A series of ~ 75mm relay lenses were used to map 

the image of the DLP to the sample plane and appropriate excitation filters were used 

depending on the application. The DLP was controlled using a combination of software 

written in LabVIEW and its native software. In our configuration, the DLP is limited to 

refreshing at 30 fps through HDMI, but with more hardware-level control, this could be 

increased to 60+ fps.

Targeted inhibition of neurons

Animals expressing multiple neurons were fed with ATR overnight before tracking with our 

stabilization microscope. After tracking and stabilization, we located the position of the 

neuron of interest on the camera. A pattern of light was then projected from the DLP 

projector to selectively target the neuron of interest. In order to ensure that only the neuron 

of interest remained illuminated as the worm changed orientation, we used a custom labview 

script that computationally rotated the projected image in sync with the dove prism. This 

was made possible by aligning the center of the rotation of the projected pattern to the center 

of rotation of the dove prism. By following the entire process on camera, we were able to 

confirm the selective illumination of the neuron (Fig. 2f).

Targeted inhibition experiments were performed by pulsing structured illumination patterns 

while recording the animals speed. Speed changes due to inhibition shown in Fig. 3 were 

found by smoothing the speed traces with a ~1 sec low pass filter and then normalizing 
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speed during pulses (light ON periods) with the speed between pulses (light OFF periods). If 

OFF period average speed was less than 20μm/s, we discarded those cycles since it generates 

artifacts and introduce bias to the distribution. The results are not sensitive to 20μm/s 

threshold. Each track (data points) had 5 cycles on average. Transgenic lines used in targeted 

inhibition experiments and single neuron expressing lines related to Fig. 3 are listed in 

Supplementary Table 2.

Image analysis of GCaMP data

GCaMP intensity information was extracted using custom software written in MATLAB. 

Regions of interest and segmentation corresponding to different neurons in x,y are obtained 

from the maximum intensity projection. Because of the image stabilization and tracking, 

each neuron stays localized to a specific region of interest throughout the time series 

(Supplementary Fig. 11a,b). Within a region of interest that resolves neurons in x,y 

(Supplementary Fig. 11b), neurons at different z position could be identified from the 

distribution of maximum intensity pixel containing slice each stack since the intensity of a 

neuron increases towards the focused plane. The best focal plane was taken as that which 

maximizes intensity in the region of interest for specific neuron (Supplementary Fig. 11c,d).

GCaMP activity and speed correlation analysis

Cross correlation between calcium activity and speed of animals were obtained at different 

frequencies by applying low pass, high pass or band pass filters to both GCaMP and Speed 

to find the best significant correlation between two signals using Pearson correlation. 

GCaMP data was randomly shuffled 100 times and the correlation coefficient was 

calculated. The correlation with the shuffled data was used to measure if cross-correlation 

between the actual calcium activity and speed was significant or not. For instance, SIA 

experiments shown in Supplementary Fig. 15a and b, have significant correlation even when 

the smoothing window sizes are up to 3 minutes long (Supplementary Fig. 15g,h) while the 

significance of the correlation of other neurons deteriorated with the smoothing window size 

(Supplementary Fig. 15i,j).

Statistical information and reproducibility

Statistical test used in this study is written in corresponding figure legends. Other 

randomization and bootstrapping methods applied to data were explained in detail in the 

Methods section. Details on statistical test used in Fig. 3 can be found in the Supplementary 

Table 3. Experiments in Fig. 2b,c were repeated independently with similar results more 

than fifty times. Experiments in Fig. 2d,e were repeated three times independently with 

similar results. Targeted illumination control experiments as in Fig. 2f were repeated three 

times independently with similar results. Experiments in Fig. 3a-f were repeated 

independently with similar results 5, 5, 10, 5, 5 and 10 times respectively. Experiments in 

Fig. 4b were repeated nine times independently with similar results. Experiments in Fig. 4e,f 

were repeated four times independently with similar results. Experiments in Fig. 4h,i were 

repeated seven times independently with similar results. Experiments in Supplementary 

videos 7, 8 and 9 were repeated independently with similar results nine, four and seven 

times respectively.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1|. Compressed sensing framework allows identification of essential neurons controlling 
speed in C. elegans.
a, A network of nodes (black dots) with a small number of essential nodes for a phenotype 

(red), synaptic connections (grey lines). A node is either individual neuron or neuron 

subtypes. b, Identifying essential neurons by perturbing nodes one at a time is equivalent to 

solving matrix equation with N×N diagonal measurement matrix (diagonal entries of one for 

the perturbed neuron, zero otherwise) multiplying unknown neuron weight vector ω  set 

equal to measured phenotype vector P . The number of measurements N linearly increases 
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with the size of the network. c, 27×88 measurement matrix M generated from 27 transgenic 

lines expressing Archaerhodopsin-3 under the control of non-specific promoters. Rows are 

promoters, columns are neuron types. Matrix has an entry 1 (white) if the promoter drives 

expression in that neuron type, else 0 (black). Bars above the measurement matrix shows 

number of times each neuron appears in the matrix (interneurons: blue, sensory neurons: 

green, motor neurons: red). Finding key neurons from 88 types using just 27 measurements 

requires solving underdetermined set of linear equations Mω = P . d, KL divergence 

between speed distributions of control and Arch line placed in descending order. Inset: 

variation of KL divergence in wild type replicates, blue dashed lines: 95th percentile of the 

distribution. e, Median neuron weights from 10,000 lasso regression solutions through 

bootstrapping for sparsity parameter spanning three orders of magnitude (see Methods). Red 

arrow: sparsity parameter picked for (f). Dashed line: mean squared error χ2 = (Mω − P )
2
 of 

optimized solution for given sparsity parameters. f, Neuron weights distribution for each 

neuron types for sparsity parameter shown in (e). Red line: median, box: 25 and 75, 

whiskers: 5 and 95 percentiles. The neurons arranged in the same order in (c).
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Fig. 2|. Stabilization microscope for long-time calcium imaging and optogenetic manipulation of 
freely moving animals.
a, Schematic of tracking and image stabilization microscope (orange: mKO emission, light 

green: GCaMP emission, blue: GCaMP excitation, dark green: mKO excitation). Data from 

Camera 1 is processed by FPGA1 to control x,y,z and rotation stages for simultaneous 

tracking. Camera 2 acquires GCaMP imaging data via FPGA2 that also controls tunable lens 

for z scan. Camera 3: low magnification animal behavior. DLP mirror array, controlled by a 

PC, is used to target specific neurons. b, Left, images of marker neuron AWCON at two z 
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planes in freely moving animal for z-tracking. Right, heat map of percentage of time spent 

by center of mass of marker neuron at each pixel for animal in (a) shows 1μm x and y 

tracking accuracy. c, Left, AWCON marker neuron thresholded image (from Camera 1) to 

track rotation angle (θ). Right, histogram of θ with (orange) and without (blue) stabilization 

using rotation optics. d, AIY::GFP images (Camera 2) at different z-positions through z-scan 

using liquid lens. Left to right: AIYL (blue), AIY process (red), AIYR (green). e, 
Quantification of noise. Left top, intensity data (AIYL: blue, AIYR: green, Process: red all 

expressing GFP) from freely moving animal shows 18% fluctuations in GFP fluorescence. 

Fluorescence signal changes above 18% from GCAMP determined statistically significant. 

Left bottom, speed of animal moving freely on agar plate during the experiment. Right, 

trajectory of animal. Inset image from Camera 3. f, Control for targeted illumination of 

neuron of interest. Top, Pflp-21::GFP images (Camera 2) at four time points with targeted 

light on or off. Middle, GFP intensities from RMG, M2 and URA neurons. Blue bar: the 

patterned light on. Bottom, speed of animal during targeted illumination.
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Fig. 3|. Targeted inhibition of single neurons SIA, RMG and AVB reduces the speed of 
locomotion.
a, Time trace of speed with targeted RMG inhibition using on-off 540nm light cycle. Gray 

bars: light on. b, Percentage speed change upon optical inhibition. Speed trace normalized to 

the light-off speed as light switches from off to on, inhibiting RMG (n= 71 ATR+, 86 ATR- 

cycles). Green bars: light on. c,d, SIA (n= 47 ATR+, 54 ATR- cycles). e,f, AVB (n= 153 

ATR+, 122 ATR- cycles). b,d,f, Data mean (solid line) ± s.e.m (shaded area). g, Percentage 

of speed change upon targeted inhibition of specified neurons (All n values in 
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Supplementary Table 3). Blue bars: animals fed with ATR; pink bars: NO ATR controls. 

Data shown as mean ± s.e.m. (* RMG: p=5.36E-11, SIA: p=2.23E-5, AVB: p=1.26E-6, 

URX: p=0.01, two-sample, two-sided t-test). p-values for other neurons are bigger than 0.05 

(see Supplementary Table 3).
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Fig. 4|. Calcium imaging of SIA, RMG and AVB reveals distinct roles in controlling speed.
a, Cross-correlation between calcium imaging and speed versus the speed change upon 

inhibition for neuron types: RMG(n=10), SIA(n=9) AVB(n=7), AIY(n=7), CEP(n=5), 

RIM(n=9), RIB(n=7), IL2(n=5), URX(n=4), BAG(n=5), AVA(n=5) where n is the number of 

animals imaged for each neuron type. b, Trajectory of a worm color coded by SIA calcium 

activity (above) and the speed of the animal (below). High mag images (from camera 2 in 

Fig. 2) shown at three time points marked on the trajectory. c, Autocorrelation function for 

SIA activity shows the correlation time of ~1 min (n=9). d, Cross-correlation between speed 
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and SIA activity with low pass filter (n=9). e, Time trace of RMG activity (red) and speed 

(blue) for a typical animal. f, Neuron intensity images and worm body posture images at 

three different time points from RMG experiment in (e) showing of activity in RMG and 

corresponding snapshot of the animal. g, Cross-correlation between RMG, SIA, AVB (n=4 

for each) and speed with pausing and after pausing regions are removed. h, Trace of AVB 

GCaMP (red) and speed (blue) for a typical freely behaving animal. AVB activity correlates 

both with pausing events and forward motion onset. Gray bars indicate reversal events. i, 
Top, zoom-in to show AVB activity increase with forward motion initiation. Bottom, 

quantification of the increase in AVB activity with forward motion onset over reversal cycles 

(n=63 reversals). Time zero is the end of reversal and beginning of forward motion. a,c,d,g,i, 
Data are shown as mean ± s.e.m. j, RMG-SIA-AVB circuit controls speed. RMG synapses 

onto both AVB and SIA. RMG acts as switch controlling pausing, AVB acts as a rectifier 

controlling forward motion and SIA controls the value the speed continuously.
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