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Pressure induced structural phase 
crossover of a GaSe epilayer grown 
under screw dislocation driven 
mode and its phase recovery
Nhu Quynh Diep1, Ssu Kuan Wu1, Cheng Wei Liu1, Sa Hoang Huynh1*, Wu Ching Chou1*, 
Chih Ming Lin2*, Dong Zhou Zhang3 & Ching Hwa Ho4

Hydrostatically pressurized studies using diamond anvil cells on the structural phase transition of 
the free-standing screw-dislocation-driven (SDD) GaSe thin film synthesized by molecular beam 
epitaxy have been demonstrated via in-situ angle-dispersive synchrotron X-ray diffraction and Raman 
spectroscopy. The early pressure-driven hexagonal-to-rock salt transition at approximately ~ 20 GPa 
as well as the outstandingly structural-phase memory after depressurization in the SDD-GaSe film 
was recognized, attributed to the screw dislocation-assisted mechanism. Note that, the reversible 
pressure-induced structural transition was not evidenced from the GaSe bulk, which has a layer-by-
layer stacking structure. In addition, a remarkable 1.7 times higher in bulk modulus of the SDD-GaSe 
film in comparison to bulk counterpart was observed, which was mainly contributed by its four times 
higher in the incompressibility along c-axis. This is well-correlated to the slower shifting slopes of out-
of-plane phonon-vibration modes in the SDD-GaSe film, especially at low-pressure range (< 5 GPa). 
As a final point, we recommend that the intense density of screw dislocation cores in the SDD-GaSe 
lattice structure plays a crucial role in these novel phenomena.

The substantial progress of two-dimensional van der Waals (2D-vdW) diatomic-layered GaSe materials in size/
thickness scalability, phase/growth mode controllability, and heterostructural/compositional engineering demand 
more profound investigations1–3 to explore a gem of physical properties for interdisciplinary applications from 
electronics4,5, opto-electronics6–9, photonics10–12, and spintronics13–15, to gas sensors16, photovoltaic17, and water 
splitting18–20. In general, these entire novel behaviors are originated naturally from the diverse electron cor-
relations in weak-bonding vdW interlayers, leading to the complex electronic band structure of the materials. 
Different from the monotypic graphene, the natural structure of 2D-layered GaSe consists of covalent-bonded 
Se-Ga-Ga-Se intralayers linked to each other by weak-vdW bonding. The difference in stacking sequences of 
the intralayers along out-of-plane direction enables thus its phase diversity (including β-, ε-, γ-, and δ-phase 
as illustrated in Fig. 1). This scenario is much more complicated to be understandable and controllable as layer 
confinement, strain engineering, and structural phase transition are taken into consideration; however, this 
also opens lots of opportunities to explore physically emergent properties for applications. Indeed, the physical 
properties of 2D-GaSe material can be experimentally tuned via several approaches, including growth mode21,22, 
substrate alternation23, intercalation24, layer confinement25, strain engineering26, oxygen functionalization27, and 
pressurization28,29. Among these, employing the high-pressure technique offers a wider degree of freedom to 
modify the lattice dynamic and thus the interlayer interactions that allow driving the quantum-phase behaviors 
in 2D materials30. In particular, a semiconducting-to-metallic (or even superconducting at low temperature) 
transition which directly relating to the structural phase transition in ε-GaSe bulk was observed at pressure over 
25 GPa28,29,31. Interestingly, ε-GaSe bulk has been also predicted to have a phase crossover from semiconducting 
to topological insulating at an appropriate biaxial tensile strain of 8% or an equivalently applied pressure of 4 
GPa14,15. Recently, we have first time reported on the screw-dislocation-driven (SDD) growth mode of 2D-layered 
GaSe using molecular beam epitaxy (MBE)22. In this growth mode, although the pure ε-GaSe layered structure 
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was confirmed, its band gap exhibited a strong redshift as compared to that of the bulk counterpart (~ 0.3 eV), 
which was mostly attributed to the lattice misalignment-induced strain near the screw-dislocation-core (SDC) 
regions and the substrate–layer interface-correlation22,23. Thus, these raise an important question on how the 
structural and optical properties of a free-standing SDD-GaSe layer grown by MBE, i.e., only the effect of SDCs 
takes into account, respond to the gradual pressurization. The answer to this would not only introduce a new 
candidate, SDD-GaSe, for developing future pressure-manipulated electronics or optoelectronics but also be 
extendible to other 2D materials.

In this study, hydrostatically pressure-driven structural phase transition in a 200 nm substrate-free (sub-
free)/free-standing SDD-ε-GaSe thin film and GaSe bulk have been characterized comprehensively by in-situ 
angle-dispersion synchrotron X-ray diffraction (ADXRD) and Raman spectroscopy. Compared with bulk GaSe, 
an earlier onset point of transition was observed in the SDD-GaSe film at ~ 20 GPa. Remarkably, while the out-
of-plane incompressibility of SDD-GaSe film was approximately four times higher than that of the bulk form, 
a reversible pressure-induced structural transition was evident from the SDD-GaSe film but not from the GaSe 
bulk. As a result, the impact of SDCs in these phenomena is noticeable and discussed.

Results and discussion
2D-GaSe has a honeycomb-like structure from the top-view, while a monolayer GaSe is composed of sand-
wiched links between two Ga atoms and two Se atoms along the side-view (Fig. 1a). For bulk GaSe, there are 
four different polytypes including β-(2H/D6h), ε-(2H’/D3h), γ-(3R/C3v), and δ-(4H/C6v), identified by AA’…, 
AB…, ABC…, and AA’B’B… stacking sequence of consecutive monolayers, respectively33. Experimentally, both 
ε-GaSe and γ-GaSe are generally co-existent in most of the epitaxial films and their bulk counterpart. In this 
work, high purity of 200 nm-thick single-crystalline 2D ε-GaSe thin films have been epitaxial deposited on 
GaAs (001) substrate by MBE for the high-pressure experiments. The growth conditions can be referred to our 
previous work22. As shown in Figs. 1b and S1a, the surface morphology of the epitaxial GaSe film grown under 
SDD growth mode typically exhibited in spiral-like structure. The samples were then mechanically polished to 

Figure 1.   (a) Polytypic crystals of 2D GaSe materials visualized by VESTA program32. (b) AFM image of 
ε-SDD-GaSe grown on GaAs (001) substrate by MBE; inset of (b) is step-height profile corresponded to the 
green line. (c) Optical image of a free-standing SDD-GaSe film on glass after substrate removal. (d) Illustration 
of a diamond anvil cell used in the experiment. (e) Raman spectra of the SDD-GaSe film before and after 
substrate removal under 532 nm and 633 nm laser excitation.
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remove the GaAs substrate (Fig. 1c) and carved up to the appropriate sizes for loading into the DAC (Fig. 1d). 
Raman spectra of the GaSe film before and after substrate removal as shown in Fig. 1e confirm the success of the 
polishing process based on the elimination of the longitudinal-optical (LO) phonon at 291 cm−1 and transverse-
optical (TO) phonon signal at 269 cm−1 of GaAs substrate. To confirm the dominant phase existing in the SDD 
film, Raman spectrum of the sub-free GaSe film were also carried out under 633 nm laser excitation. As can be 
seen in Fig. 1e, the emergence of the E2

1g Raman resonant mode (~ 251 cm−1) under 633 nm laser excitation that 
was unobservable under 532 nm excitation identifies the dominance of single ε-phase in the SDD-GaSe film22. 
Besides, no Raman peak shifting between the samples with and without substrate was observed, meaning that 
the localized strain potential generated at the film/substrate interface is negligible. High uniformity of the film 
quality was verified on a sizable area sub-free 2D ε-GaSe film (up to ~ 4 mm2) as revealed in Fig. S1b. This is also 
a valuable achievement of our work, offering flexible transferring to other substrates and scalable fabricating 
opto-electronic devices based on 2D-GaSe materials.

Anomalous out‑of‑plane incompressibility and structural transition in SDD‑GaSe film.  In 
order to verify the potential structural phase transition of the materials at high pressure, two parallel in-situ 
synchrotron ADXRD experiments were carried out on the 200 nm-thick free-standing ε-GaSe film and the GaSe 
bulk under hydrostatic pressurization at room temperature. The compressive pressure ranges for both samples 
were extended up to 35–40 GPa with fine increments of 0.5 GPa. Selected ADRXD patterns during compres-
sion are extracted from 2D-plate images (see Fig. 2a), where diffraction peaks of the SDD-ε-GaSe film are dis-
played (black arrows). As increasing the compression, all GaSe XRD peaks progressively shifted toward higher 
2θ-angles along with broadening and diminishing in their linewidth and intensity, respectively. This is attributed 
to a gradual shrinkage of the crystal lattice with pressure. Indeed, refined d-spacing of the assigned diffraction 
planes of the GaSe film with pressure exhibits a compression as illustrated in Fig. 2b. As increasing the external 
pressure beyond ~ 20 GPa, foreign features located at 2θ angles of ~ 10.4°, ~ 14.8°, and ~ 20.9° started to be vis-
ible, while all hex-GaSe lines were continuously being suppressed and substantially disappeared at ~ 25 GPa. 
In comparison, the foreign features in the bulk appeared later than that in the GaSe film where its onset pres-
sure is ~ 22 GPa (Fig. S2). The rise of alien diffractions is a signature of the structural phase transition from the 
hexagonal-to-rock salt (hex-to-RS) phase as reported previously29,34, where these XRD film peaks (blue arrows) 
can be assigned as (002), (220), and (004) diffraction lines of the GaSe rock-salt phase.

To give a better understanding of the structural transition on the epitaxial film and bulk sample, we have 
analyzed the unit-cell volume (V) and the normalized cell parameters a(P)/a0, c(P)/c0, c(P)/a(P), and V(P)/V0 
as a function of pressure, where a0, c0, and V0 are in-plane, out-of-plane lattice constant, and unit-cell volume at 
ambient conditions, respectively. Then, the individual lattice compressibility along a-axis and c-axis as well as 
the bulk modulus of the samples were quantitated using inverted Birch-Murnaghan Equation of State (BM-EoS) 
fitting as described in Eqs. (1–3)35,36:

Figure 2.   (a) Selected ADXRD spectra of the sub-free SDD-GaSe film during pressurization. (b) Refined 
d-spacing of the sub-free SDD-GaSe film as a function of applied pressure.
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and

where K0a (K’
0a) and K0c (K’

0c) are in turn in-plane (IP) and out-of-plane (OOP) inverse linear compressibility 
(its pressure derivative). Hereinafter K0a and K0c are called as IP and OOP incompressibility, respectively. B0 (B’

0) 
is the bulk modulus (its pressure derivative) of the materials.

The results are addressed in Fig. 3 and Table 1, including reproduced experimental data on GaSe bulk from 
U. Schwarz’s group for reference29. Figure 3a displays an excellent agreement in the pressure-dependent in-plane 
lattice constant (a) between our bulk sample and the referred study. Interestingly, even though the sub-free-SDD-
GaSe film possesses a distinct layer-stacking configuration, i.e., spiral stacking, as compared to the layer-by-layer 
(LBL) stacking in bulk samples22, the pressure-dependent in-plane parameters observed in the GaSe film and the 
bulk samples are no visual difference. Indeed, the IP incompressibility values of these samples are comparable, 
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Figure 3.   (a–c) Pressure dependence of normalized lattice parameters of the sub-free SDD-GaSe film and 
GaSe bulk, in comparison to the reproduced data with permission from Ref.29. (d) Inverted Birch-Murnaghan 
EoS fitting of the sub-free SDD-GaSe film. (e) Unit-cell volume of the sub-free SDD-GaSe film as a function of 
pressure revealing a transition region (20–25 GPa) from hexagonal to high-pressure rock-salt phase.
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which are ~ 186 ± 7 GPa (for sub-free SDD-GaSe film), 188 ± 7 GPa (GaSe bulk), and 198 ± 10 GPa (referred data). 
In other words, regardless of different layer stacking configurations, the in-plane compressibility in 2D-GaSe 
materials is identical. In contrast, the pressure-dependent out-of-plane lattice parameter of the SDD-GaSe film 
reveals an unusual phenomenon as shown in Fig. 3b,c.

Its compression rate was nearly linear and much lower than that of the bulk samples, especially at the low-
pressure range of < 5.0 GPa. In fact, from c(P)/c0 inverted BM-EoS fitting, while the OOP incompressibility of our 
GaSe bulk is in good agreement to the data of Schwarz et al.29, the K0c of SDD-GaSe film unveils a notable value 
of 164 ± 5 GPa, i.e., ~ 4 times higher in magnitude than those of the bulk samples. We claim that the classically 
spiral structure in SDD-GaSe film is much more incompressible and strongly close-packed along c-axis, which 
may be due to building up in coupling interaction between adjacent GaSe intra-layers, especially near SDCs. 
This behavior thus directly results in a ~ 1.7 times higher bulk modulus of the SDD-GaSe film (B0f. ~ 60 ± 4 GPa) 
as compared to that of the bulk sample (B0

b ~ 35.5 ± 3 GPa) as noted in Figs. 3d and S3a. Furthermore, abrupt 
shrinkages in the unit-cell volume (V) that were observed at specific pressures, i.e., ~ 20 GPa for the SDD-GaSe 
film (Fig. 3e) and ~ 22 GPa for the GaSe bulk (Fig. S3b), are identified as the onset point of high-pressure GaSe 
RS phase29,34. It is noticed that the earlier RS onset point in the SDD-GaSe film could be subject to owning a large 
amount of SDCs in its unique crystalline structure and will be discussed later. Despite that, either the SDD-GaSe 
film or the GaSe bulk exhibits an equivalent end-point of the hex-to-RS structural phase transition (indicated by 
the completely quenching of GaSe XRD peaks) at ~ 25 GPa, which may be concurrent with the semiconducting-
to-metallic electronic phase transition of the material28.

Optical phonon shifting under pressure in SDD‑GaSe film.  In-situ high-pressure Raman scattering 
measurement is also a powerful approach for gaining insight of the structural phase transition of the material via 
determining its phonon vibrational variation during compression31,37. Thus, this characterization was employed 
in this study on both samples. Due to the major ε-phase in the free-standing SDD-GaSe epitaxial film22, its crys-
tal structure belongs to the non-centrosymmetric D1

3h group. Theoretically, it has 24 normal modes at the Γ point 
of the Brillouin zone, which is consisted of 11 non-degenerate Raman active modes, 6 non-degenerate IR active 
modes, and 2 acoustic vibration modes38,39. Figure 4a shows selected Raman spectra of the SDD-GaSe film dur-
ing the experimental pressurization, where four typical phonon vibration modes of ε-GaSe, located at ~ 59.9 cm−1 
(assigned to E1

1g); ~ 133.2 cm−1 ( A1
1g); ~ 206.4 cm−1 ( E2

2g ), and ~ 308.3 cm−1 ( A2
1g ) have been observed at in-cell 

ambient pressure.
As increasing the applied pressure, all of these modes (either IP or OOP vibration modes) gradually shifted 

towards the higher frequencies accompanied with their broadening in linewidth and deteriorating in inten-
sity; and finally, were almost undetectable at ~ 29 GPa. It means that the layered structure of SDD-GaSe film 
was undergoing a great shortening not only in the vdW-interlayer gaps but also in the atomic distances in the 
intralayers, resulting in a visible lattice compression. Qualitatively, this behavior is well-consistent with what 
was observed from pressure-dependent ADXRD data presented above. To have a deeper insight, we plot the 
evolution of phonon vibration modes in the SDD-GaSe film and the bulk versus pressure as shown in Fig. 4b. 
The extracted pressure coefficient (defined by δ = dω/dP) and Grüineisen parameter of each Raman modes are 
also tabulated in Table 2.

There are two noteworthy points from our analyses on SDD-GaSe film. Firstly, the E2
2g mode in the sub-free 

SDD-GaSe film at ambient pressure exposed an obvious redshift of 6.0 cm−1 as compared to that in the GaSe bulk. 
This corresponds to the unintentional appearance of both in-plane and out-of-plane strains induced by SDD-
growth mode22,23. Even that, similar to the GaSe bulk, this vibration mode revealed a unity in pressure coefficient 
(δ ~ 2.4 cm−1/GPa) as the pressure increased up to ~ 16 GPa. This result is well-matched to the equivalency in 
IP incompressibility between SDD-GaSe film and GaSe bulk as extracted from the ADXRD data. Interestingly, 
above 16 GPa, the E2

2g frequency of SDD-GaSe film was getting close to that of GaSe bulk, and then those almost 
coincided with each other at pressures above 20 GPa. Thus, this tends to indicate a similar degree of compression 
in both SDD-GaSe film and GaSe bulk. Secondly, as observing the out-of-plane vibration modes of the SDD-GaSe 
film, i.e., A1

2g and A2
2g modes, their pressure-dependent behaviors could be noticed in two regions (Fig. 4b). In 

the first region (low-pressure range ≤ 5 GPa), both of these modes showed a lower blue-shifted rate than in the 
bulk’s one, corresponding to a smaller SDD-GaSe film’s δ value (Table 1). In other words, the lattice compres-
sion along c-axis at the low-pressure range is less pronounced in the SDD-GaSe film than in the bulk. Again, 
this statement is correlated to the high OOP incompressibility of the GaSe film (Fig. 3d). In the later region (> 5 
GPa), the pressure coefficients of these modes in both GaSe film and bulk were approaching together since the 
lattice is less compressible when it is more and more close-packed.

Table 1.   Incompressibility parameter and bulk modulus of the SDD-GaSe film and GaSe bulk extracted from 
the inverted Birch-Murnaghan EoS.

Sample

In-plane 
incompressibility 
(GPa)

Out-of-plane 
incompressibility 
(GPa)

Bulk modulus 
(GPa)

Investigated pressure rangeK0a K’
0a K0c K’

0c B0 B’
0

GaSe film 186 ± 4 10.8 ± 0.6 164 ± 3 4.2 ± 0.4 60 ± 1 2.6 ± 0.2 0–35 GPa

GaSe bulk 188 ± 6 9.3 ± 1 40.5 ± 0.7 20.6 ± 0.2 35.5 ± 1 5.1 ± 0.2 0–40 GPa

Ref.29 198 ± 10 9 ± 2 44 ± 2 18.7 ± 7 34 ± 2 6.4 ± 5 0–39 GPa
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It is necessary to take into account the simultaneous existence of ε- and γ-phase in the GaSe bulk grown by 
the Bridgman method40, as manifested by the appearance of extra broadband with centers located at ~ 235.1 cm−1 
[ A1(TO) ] and ~ 251.4 cm−1 [could be a LO-mixed mode of A1(LO) at ~ 247 cm−1 and E2

1g (LO) at ~ 253 cm−1] in 
Raman spectrum of the GaSe bulk at ambient pressure (Fig. S4)39. As increasing the applied pressure, the LO-
mixed mode monotonously shifted to the higher frequencies with a smaller pressure coefficient δ as compared to 
that of E2

2g (TO) , then is almost undetectable at ~ 16 GPa. On the other hand, the A1(TO) peak, which is consid-
ered as a signature of γ-GaSe39,41, exhibited an abnormal trend upon compression by nonlinearly shifting to the 
lower frequencies in a wide range of pressure up to ~ 25 GPa, and then disappeared at the end-point of the hex-
to-RS phase transition. The observed negative pressure coefficient of the γ − A1(TO) mode could be explained 
well when the competition between interlayer interaction and Ga-Se chemical bond-tilting effect along with the 
atomic vibration direction of three observed OOP modes (Fig. S4b) are taken into consideration. For the A1

1g 
mode, two Se atoms in an intralayer vibrate out-of-phase to each other, whereas Ga and Se atom vibrations are 

Figure 4.   (a) Selected Raman spectra under 532 nm laser excitation of the sub-free SDD-GaSe film during 
pressurization. (b) Pressure dependence of phonon vibration modes observed from the sub-free SDD-GaSe film 
and the GaSe bulk. STP: standard temperature pressure at ambient. 532 nm excited Raman spectra of (c) the 
sub-free SDD-GaSe film and (d) the GaSe bulk before pressurization and after depressurization.
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in-phase. Thus, this mode is only governed by the strong interlayer interaction since the bond-tilting effect is 
negligible, showing a high positive δ (see bold values in Table 2). Different from A1

1g mode, these effects are visible 
(out-of-phase vibration presented in either Se/Se or Ga/Se pair) and compensate each other in the A2

1g mode, 
leading to a smaller positive δ. On the contrary, the interlayer interaction could be ignored in the γ − A1(TO) 
mode due to the in-phase vibration between Se atoms in each intralayer as well as interlayer, while the Ga/Se 
out-of-phase vibration could strongly promote the bond-tilting effect, resulting in the negative δ of this mode. 
Moreover, the pressure-induced redshift phonon frequency could be a characteristic of the TO-LO splitting due 
to the long-range Coulomb interaction. This behavior was also observed in some Se-based 3D-conventional 
semiconductors such as ZnSe, ZnFeSe, and ZnMnSe42,43.

Unique structural phase reversibility in SDD‑GaSe film.  After compressing the material up to ~ 35 
to 40 GPa, the samples were gradually decompressed back to ambient pressure. The down-stroke Raman spec-
tra of both SDD-GaSe and the bulk samples are shown in Fig. S5. In the case of SDD-GaSe film, it seems likely 
that the non-polar out-of-plane vibration mode-A1

1g was revived at the very early stage of the depressuriza-
tion, then gradually redshifts, and being pronounced at ~ 4.8 GPa along with the appearance of the signal from 
in-plane vibration mode ( E2

2g ). On the other hand, the down-stroke spectra starting from 30 GPa of the bulk 
sample revealed the gentle revitalization of a broadband relating to A1

1g and A1(TO) modes. Interestingly, after 
completely releasing external pressure, the Raman spectrum of SDD-GaSe film exhibited a reversible property, 
where all SDD-GaSe Raman active modes were well-recovered (Fig.  4c). The enhancement of a broad-peak 
located at ~ 155  cm−1 may be due to the laser-induced oxidation after the long time-experiment. Besides, the 
slight redshifts of all Raman features are attributed to the distorted lattice structure after compression. On the 
contrary, the decompressed Raman spectrum of bulk-GaSe is irreversible with the dominance of γ-phase signal 
at the end (Fig. 4d). These results might be due to the differences in the high-pressure structural phase transition 
mechanism between the Bridgman-grown GaSe bulk and the MBE-grown SDD-GaSe film. We claim that the 
bulk sample may undergo the layer-sliding process upon compression, while the SDCs play a major factor in 
promoting the phase transition in SDD-GaSe under high pressure.

Role of screw dislocation cores.  Previous researches have shown that because of the typical LBL-vdW 
structure of most 2D materials, they have possibly experienced the layer sliding under high pressure44,45. In 
agreement with our experimental findings as shown in the ADXRD data, the slope changing (from negative 
to positive) in the GaSe bulk c/a profile (Fig. 3c) at ~ 16 GPa is said to be evidence of pressure-induced layer 
sliding, leading to the alteration in the layer-stacking configuration. As looking back on Fig. 1a, the difference 
in stacking configuration between γ and ε-GaSe phase is only the horizontal translation of the third rigid-layer 
(noted by layer C). Thus, it is a possible occurrence of ε-to-γ phase transition due to the layer-sliding effect 
during pressurization. Indeed, in the LBL-GaSe bulk sample, the LO-mixed mode almost disappeared at ~ 16 
GPa, whereas the A1(TO) mode that belonged to γ-phase could survive up to ~ 25 GPa (Figs. 4b and S4a). This 
means that the high-pressure (HP) phase transition in the case of LBL-GaSe bulk could include a ε-to-γ phase 
transition, followed by the hex-to-RS structural transition. In light of these observations, we suppose that the 
pressure-induced ε-to-γ phase transition via the layer-sliding phenomenon in the LBL-GaSe bulk required a 
large amount of activation energy, which could be the main reason for the phase irreversibility of the LBL-GaSe 
bulk after decompression as mentioned above. On the other hand, the MBE-grown SDD-GaSe film is supposed 
to undergo a distinctive pressure-induced structural phase transition mechanism, where the SDCs play a major 
driving force in the hex-to-RS transformation and vice versa. To describe visibly the scenario, we make a high-
pressure structural phase transition diagram of SDD-GaSe as shown in Fig. 5. Firstly, our previous study has 
demonstrated that the growth of SDD-GaSe is hypothesized to experience an edge climb-up process at SDCs, 

Table 2.   Experimental ambient-pressure frequency (ω0), pressure coefficient (δ), and Grüineisen parameter 
( γ  ) of the Raman active modes observed from the SDD-GaSe film and the GaSe bulk. The bold values indicate 
the highlighted pressure coefficients of out-of-plane Raman active modes in the SDDGaSe film and bulk at a 
low-pressure range (< 5 GPa).

Mode parameter

ω0 (cm−1) δ =
dω
dP

 (cm−1/GPa) γ =
1

ω0

dω
dP

 (× 10–3 GPa−1)

Pressure rangeFilm Bulk Film Bulk Film Bulk

E1
1g 59.9 58.8 0.41 ± 0.02 0.26 ± 0.02 6.8 ± 0.3 4.4 ± 0.4 0–28 GPa

E2
2g (TO) 206.4 212.4

2.51 ± 0.04 2.35 ± 0.07 12.2 ± 0.2 11.1 ± 0.3 0–16 GPa

2.31 ± 0.03 2.04 ± 0.06 11.2 ± 0.2 9.6 ± 0.3 0–28 GPa

E2
1g/A1(LO) 251.4 1.58 ± 0.03 6.3 ± 0.1 0–16 GPa

A1
1g 133.2 133.1

3.26 ± 0.18 4.96 ± 0.18 24.5 ± 1.4 37.3 ± 1.4 0–5 GPa

2.33 ± 0.04 2.41 ± 0.09 17.5 ± 0.3 18.1 ± 0.7 0–28 GPa

A2
1g 308.3 308.1

2.78 ± 0.16 3.85 ± 0.17 9.0 ± 0.5 12.5 ± 0.5 0–5 GPa

2.29 ± 0.03 2.42 ± 0.06 7.4 ± 0.1 7.9 ± 0.2 0–28 GPa

A1(TO) 235.1
− 4.84 ± 0.19 − 20.6 ± 0.8 0–5 GPa

− 2.09 ± 0.14 − 8.9 ± 0.6 0–28 GPa
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where the Se-Se inter-edge dimerization was taking place (Fig. S6), resulting in the discontinuity in the atomic 
chain-layer, and hence, enhancing the interlayer interaction46. As a result, the SDD-GaSe film is more incom-
pressible along the c-axis than that of the LBL-GaSe bulk presented by the four-times larger in the OOP incom-
pressibility and lower pressure coefficient δ of SDD-GaSe. Furthermore, according to the climb-up mechanism 
in the SDD-GaSe film, it is acceptable to assume that the intralayer Ga-Ga bonds located near the SDCs are 
mostly unstable. Secondly, at sufficient applied pressure, the pressure-induced intralayer-to-interlayer charge 
transfer becomes dominant, leading to further weakening of the Ga-Ga bonding strength47. Thus, the SDCs 
could play as the primers to initiate disruption of the neighbored Ga-Ga covalent-bonding chains, followed by 
the rearrangement of free half-rigid layers. Finally, the Ga and Se atoms from adjacent half-rigid layers catch 
each other to form Ga-Se metallic bonds, which is similar to the bonds in the GaSe RS structure. Although the 
SDD-GaSe film is more incompressible, it seems to be more brittle as compared to the GaSe bulk because of pos-
sessing an intensely high-density of SDCs in its lattice structure. The HP phase transition barrier in SDD-GaSe 
could be smaller than that of the LBL-GaSe structure. In other words, SDCs could assist the hex-to-RS transition 
to occur earlier, evidenced from the lower RS onset point of SDD-GaSe film compare to that of the bulk. How-
ever, it is possible that the SDCs were still being memorized in the RS structure of the SDD-GaSe film because 
of the strong coupling between adjacent haft-rigid layers near the SDC sites. Therefore, as entirely releasing the 
sample from the external pressure, these SDCs could now promote the recovery of the original layer-stacking 
configuration as observed from the well-recuperated ε-GaSe Raman modes.

Conclusions
In summary, pressure-induced structural phase transition of the free-standing SDD-GaSe layer grown by MBE 
has been comprehensively investigated for the first time by in-situ ADXRD and Raman spectroscopy. According 
to the results, we found that the physical behaviors under high pressure of SDD-GaSe layer are very distinct from 
the LBL-GaSe bulk form. The SDD-GaSe film exhibited an earlier onset point of hexagonal-to-rock salt transition, 
a 4-times higher value in the incompressibility along c-axis that leading to a 1.7 times higher bulk modulus in 
comparison to the LBL-GaSe bulk. Surprisingly, the pristine ε-phase structure of the SDD-GaSe film was well-
recovered after decompression, whereas the structure of GaSe bulk was irreversible from its high-pressure phase 
and seems to prefer forming γ-phase after depressurization. Thus, we tend toward a statement that these novel 
phenomena are mainly governed by the large-density SDCs existed in the SDD-GaSe film, which makes it more 
incompressible along out-of-plane direction but more transformable as well. This work contributes to insight 
interesting physics of structural phase transition not only in 2D GaSe also other SDD-related 2D materials and 
pave the way for developing future pressure-manipulated electronics or optoelectronics based on 2D materials.

Figure 5.   A summarized evolution of the structural phase transition occurring in a free-standing SDD-GaSe 
film under external pressure.
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Methods
Materials synthesis and high‑pressure preparation.  While the GaSe bulk sample was synthesized by 
the Bridgman method, 200-nm-thick SDD-ε-GaSe thin film was grown on semi-insulating GaAs (001) substrate 
by MBE. The growth conditions of SDD-GaSe film were presented in our previous work22. To prepare the free-
standing SDD-GaSe films, the sample substrate was carefully removed by mechanical polishing, in which the 
large lateral size of the sub-free film can be achieved up to ~ 4.0 mm2 as shown in Fig. 1b. Then, both GaSe bulk 
and SDD-GaSe film were carved up into small pieces of ~ 50 × 50 µm2 in size and loaded separately into two dia-
mond anvil cells (DACs) with 350 µm culet diameters. For all the experiments, Re gaskets were first indented and 
then drilled to perform hole-chambers with diameters of 165 µm and thicknesses of 70 µm, while ruby spheres 
(~ 5 µm in radius) were employed for pressure calibration48. The hydrostatic high-pressure measurements were 
conditioned by using Neon (Ne) gas and a mixture of methanol and ethanol (4:1) as pressure transmitting media 
for ADXRD and Raman measurements, respectively.

In‑situ ADXRD measurements.  In-situ high-pressure ADXRD measurements of the samples were car-
ried out at 13-BMC-GeoCARS beamline of the Advanced Photon Source, Argonne National Laboratory, USA 
with an incident X-ray beam wavelength of 0.434 Å, where membrane pressure-controlled DAC was employed. 
An exposure time of 120 s was synchronized for all experiments. The 2D XRD images were collected by a Pila-
tus1M plate detector and integrated into 1D ASCII files by the Dioptas program49.

In‑situ Raman measurements.  In-situ high-pressure Raman spectra of the samples were conducted at 
room temperature by a HORIBA TRIAX 550 spectrometer in the backscattering geometry with an excitation 
laser wavelength of 532 nm.
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