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Abstract: Multifactorial pathologies, involving one or more aggregated protein(s) and
neuroinflammation are common in major neurodegenerative diseases, such as Alzheimer’s disease
and dementia with Lewy bodies. This complexity of multiple pathogenic drivers is one potential
explanation for the lack of success or, at best, the partial therapeutic effects, respectively, with
approaches that have targeted one specific driver, e.g., amyloid-beta, in Alzheimer’s disease. Since
the endosome-associated protein Rab5 appears to be a convergence point for many, if not all the most
prominent pathogenic drivers, it has emerged as a major therapeutic target for neurodegenerative
disease. Further, since the alpha isoform of p38 mitogen-activated protein kinase (p38α) is a major
regulator of Rab5 activity and its effectors, a biology that is distinct from the classical nuclear targets of
p38 signaling, brain-penetrant selective p38α kinase inhibitors provide the opportunity for significant
therapeutic advances in neurogenerative disease through normalizing dysregulated Rab5 activity.
In this review, we provide a brief summary of the role of Rab5 in the cell and its association with
neurodegenerative disease pathogenesis. We then discuss the connection between Rab5 and p38α and
summarize the evidence that through modulating Rab5 activity there are therapeutic opportunities in
neurodegenerative diseases for p38α kinase inhibitors.
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1. Introduction

Due to the scarcity of effective treatments for neurodegenerative diseases, urgent searches for
candidate cellular and molecular mechanisms to develop therapeutic interventions are underway [1–8].
Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), dementia
with Lewy bodies (DLB), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS),
and Huntington’s disease (HD) are typically defined by aberrant accumulations of one or more
specific protein(s) and by loss of certain neuronal populations resulting in anatomic vulnerability.
However, it is becoming increasingly clear that different neurodegenerative diseases exhibit common,
central processes associated with progressive neuronal dysfunction and death, revealing multifactorial
pathologies, including proteotoxic stress, neuroinflammation, and other abnormalities [3,5,6,9,10].
Even though the species of accumulating proteins are distinct in different neurodegenerative diseases,
increasing evidence indicates that defects in the protein clearance system play a central role in the
gradual accumulation of protein aggregates. Emerging genetic and biological evidence suggests
that the endo-lysosomal protein degradation machinery, which is part of a unified pathway together
with the autophagosomal machinery, is dysfunctional across a broad spectrum of neurodegenerative
diseases, including AD, PD, ALS, HD, and others [1,11–13].

In this review we focus the discussion on the abnormal activity of the Ras-related protein Rab5,
the master regulatory guanosine triphosphatase (GTPase) in early endosomes and highlight its role as
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a mediator of AD and other neurodegenerative diseases. We also discuss the relevance of Rab5 as a
target that is affected by the p38α isoform of p38 mitogen-activated protein kinase (MAPK), hence, can
be modulated by specific p38α inhibitors. The main objectives of this review are as follows: (1) we
briefly review the role of p38α in the cell, including the neuron; (2) we review the role of Rab5 in
the cell and discuss the association of dysregulated Rab5 activity with neurodegenerative disease
pathogenesis; (3) we discuss the connection between Rab5 and p38α; (4) we provide evidence that
through modulating Rab5 activity there are therapeutic opportunities in neurodegenerative diseases
for brain-penetrant, selective p38α kinase inhibitors; and (5) we offer ideas for further investigations
to increase the understanding of the mechanism of action of p38α kinase inhibitors on Rab5 in
neurodegenerative disease.

2. Overview of the p38α Isoform as a Member of the p38 MAPK Family

The p38 MAPK family consists of four members that are encoded by separate genes and are known
as p38α/MAPK14, p38β/MAPK11, p38γ/MAPK12/ERK-6/SAPK3, and p38δ/MAPK13/SAPK4 [14].
These four major isoforms differ in their organ, tissue, or cellular expression patterns, and it is becoming
increasingly clear that they exert distinct biological functions [4,15–23]. Among the p38 MAPK family
members, p38α was discovered first as a stress-activated protein kinase that plays a central role in
inflammation [24,25]. P38α is also the best characterized isoform to date as a central nervous system
drug discovery target [19,26,27].

In the adult mouse, p38α is highly expressed in different brain areas, including the cerebral
cortex, hippocampus, cerebellum, and a few nuclei of the brainstem [28]. Neuronal cells are the
predominant cell type expressing p38α [28]. At the subcellular level, p38α is distributed in dendrites
and in cytoplasmic and nuclear regions of the cell body of neurons [28].

Many studies that have characterized p38α isoform function (frequently together with p38β
function) have shown that it is an intracellular protein kinase involved in transducing intracellular
(e.g., DNA damage) and extracellular (e.g., osmotic stress, infection) signals into a cellular response
(e.g., inflammation or activation of other cellular stress responses) [17,29]. The major signal
transduction pathway for p38α has been extensively studied and involves upstream activators
(e.g., the mitogen-activated protein kinase kinases MKK6, MKK3) and downstream targets
(e.g., mitogen-activated protein kinase activated kinase 2, also known as MAPKAPK2 or MK2) [17,29].
In the classic pathway for activating the proinflammatory response, some studies showed that
inactive p38α (as well as p38β) is sequestered in the cytoplasm through its binding to MK2; upon
activation, p38α phosphorylates MK2, leading to its dissociation [17,29]. Once dissociated, p38α
translocates to the nucleus where it phosphorylates transcriptional machinery targets (e.g., histones,
mitogen- and stress-activated kinases MSK1/2) in the proinflammatory context around nuclear factor
NF-κB-associated targets [17,29]. In terms of therapeutics development, this understanding has led to
a range of efforts to develop p38α kinase inhibitors (many of them primarily inhibiting p38α and p38β
activity) as anti-inflammatory agents for chronic inflammatory disorders, including rheumatoid arthritis
(RA), inflammatory bowel disease (IBD), and chronic obstructive pulmonary disease (COPD) [30,31].

However, p38α signaling has many targets aside from this classical pathway [32] and biologic
effects other than regulation of proinflammatory cytokine production. With regard to neurodegenerative
diseases, a large variety of biological roles have been attributed to p38α in brain pathology which
depend on the type and stage of central nervous system (CNS) disease, brain region, cell type [4,18,19,26].
These roles include modulation of proinflammatory cytokine, e.g., interleukin-1beta (IL-1β) and tumor
necrosis factor alpha (TNFα) production and signaling (e.g., in glia, microglia, astrocytes, neurons),
as well as orchestration of neurotoxicity, neuroinflammation, and/or synaptic dysfunction, among
others [4,18,19,26].

While the first study to characterize the role of p38α in regulating stress-induced endocytosis and
early endosomal biology via modulating the activity of the endosomal protein Rab5 was published
nearly two decades ago [33], this effect has not been a focus of intense follow-up research. Nevertheless,
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this biology, specifically within the neuron, has come to the forefront as potentially the most relevant
for AD and other neurodegenerative disorders as will be discussed in Section 5.

During the last two decades, deregulated p38α has emerged as a leading therapeutic target for AD
and has also been associated with the pathology of other neurodegenerative disorders, including PD,
DLB, or ALS [4,19,34–42]. These therapeutic opportunities for treatment with selective, brain-penetrant
p38α inhibitors will be discussed in more details in Section 6.

3. The Endosome-Associated Protein Rab5

Endocytosis represents the process to internalize diverse cargos (e.g., extracellular macromolecules,
viruses, bacteria, membrane proteins) into cells (including neurons) through vesicles that bud off

from the plasma membrane [43]. After their internalization into the cytosol, the endocytic vesicles
are rapidly targeted to and fused with the early endosome [44–46]. This functions as the primary
sorting organelle from which endocytosed cargo (e.g., select receptors) is either recycled back to the
plasma membrane, or delivered to the lysosome/vacuole for degradation after maturation of the early
endosome into a late endosome [44–46]. Important roles of early endosomes include nutrient uptake,
degradation of metabolic by-products, transport of materials to specific compartments in the cell, and
regulating the cell-surface expression of receptors and transporters [44–46].

3.1. Overview of Rab5 Roles

The Ras-related protein Rab5 is a small GTPase that is a major regulator of early steps of
endocytosis, and subsequent endosomal membrane trafficking, sorting and endosomal fusion [47–49].
Further, through interacting with effector proteins Rab5 has a critical role in regulating the docking and
fusion of endosomal membranes, endosomal mobility and intracellular signal transduction [48,50].
Rab5 effector protein include EEA1 (early endosomal autoantigen 1), APPL (adaptor protein,
phosphotyrosine interacting with pleckstrin homology (PH) domain and leucine zipper 1), PI3K
(phosphatidylinositol-3-kinase), Rabenosyn-5/hVPS45 (human Sec1p-like vacuolar protein sorting),
or Rabaptin-5/Rabex-5, among others. Additionally, a role of Rab5 in regulating the internalization
and trafficking of membrane receptors by regulating vesicle fusion and receptor sorting in the early
endosomes is emerging [49]. Rab5, which actually comprises three different isoforms, is among the
best characterized endosomal markers, in part because of its abundant expression and ubiquitous
tissue distribution, including neurons [51,52].

3.2. Rab5 Importance for Neuronal Function

It is clear that proper Rab GTPase function is critical for normal (wild-type) neuronal function,
including trafficking for pre- and post-synaptic function as well as dendritic trafficking [52,53]. Studies
in Drosophila have demonstrated that Rab5 is required for synaptic endosomal integrity, synaptic vesicle
exo-/endocytosis rates, and neurotransmitter probability [54]. Furthermore, an essential function is
that Rab5-dependent endosomal sorting may regulate the uniformity of synaptic vesicle size [55].

The neuron may be particularly sensitive to dysregulation of Rab5 activity for at least two
main reasons: (1) Endocytosis and subsequent recycling (or not) regulate the concentration
of neurotransmitter receptor density on the cell surface, determining signal strength [53,56,57].
For example, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) endocytosis
in hippocampal neurons leads to long-term depression (LTD), and Rab5 is essential in this
process [56,58,59]; and (2) neurotrophin signaling from synapses is dependent on endocytosis,
retrograde transport of endosomes along axons, and endosomal signaling [1,48,52,60].

3.3. Rab5 Therapeutic Targeting Strategies

The activity of Rab5 is coordinately regulated and, therefore, can be therapeutically targeted
at several levels through modulation of Rab5 regulatory proteins. Firstly, Rab5 is shuttled between
membranes by the general Rab regulator GDP dissociation inhibitor (GDI) [61]. This serves to release
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Rab5 that is bound to GDP, Rab5(GDP), from membranes to maintain Rab5 in the cytoplasm, and
to recycle it back to donor membranes [61]. Thus, factors that increase formation of the Rab5-GDI
complex also increase delivery of Rab5 to the plasma membrane where it can act [61]. Secondly,
at the membrane, the activity of Rab5 is regulated by guanine nucleotide exchange factors (GEFs)
and GTPase-activating proteins (GAPs) that determine the proportion of Rab5 bound to either GDP
(Rab5(GDP); inactive state) or GTP (Rab5(GTP); active state) [62]. Thirdly, Rab5 activity is modulated
by other factors that impact the effectors; for example, the phosphorylation of, and activity of, PI3K or
EEA1 [63–66]. Additionally, the druggability of membrane-bound Rab5 itself, the selective inhibition
of Rab5 GTPase activity, or blocking membrane recruitment through inhibition of Rab5 prenylation, or
targeting Rab5-associated signaling pathways can be explored [67–69].

4. Role of Dysregulated Rab5 in the Pathogenesis of Neurodegenerative Disease

Dysregulated Rab5 activity has been defined as a major pathogenic driver in AD [1,48,70].
Moreover, a pathogenic role of aberrant Rab5 is emerging in many of the same other neurodegenerative
diseases that are being targeted by p38α inhibitor programs, including PD, DLB, ALS, and HD [71–73].
Rab5 is a member of a large family of Rab proteins involved with neuronal function [53,71] and a
number of other Rab proteins have been connected to neurodegenerative disease. However, as will be
discussed in Section 5, Rab5 activity has been robustly connected to p38 MAPK signaling, while no
such connection has been established for the other Rab proteins. Therefore, this review is focused on
Rab5, and the reader is referred to a number of other excellent recent reviews on the broader family of
Rab proteins and their relation to the pathogenesis of neurodegenerative disease [71–73].

4.1. Dysregulated Rab5 as Therapeutic Target in AD

Neuronal endocytic pathway activation is a specific and very early response in AD that precedes
amyloid-beta (Aβ) deposition in sporadic AD, hence, the role of dysregulated Rab5 in AD has been
extensively studied and reviewed elsewhere [1,48,70,71]. It will be discussed briefly here.

In a large series of experiments during more than two decades, Nixon and colleagues have
documented specific impairments of the endosomal-lysosomal system at the earliest stage of AD
and linked the genetic drivers that cause AD directly to functions within endocytic and autophagic
pathways of the lysosomal system. They demonstrated that abnormal Rab5-positive endosome
enlargement is the earliest pathologic event in sporadic AD patients [74,75]. They also showed that
abnormal Rab5-positive endosome enlargement is the earliest pathologic event in Down syndrome (DS)
patients [74,75]. DS patients are individuals with trisomy for all or part of third copy of chromosome
21 (which carries the β-Amyloid Precursor Protein (APP) gene among others), who nearly uniformly
develop progressive AD after age 40 [74,75]. Importantly, Nixon and colleagues also defined the
mechanistic basis of the endosome enlargement induced by APP to be Rab5 hyperactivation [70].
They also linked functional neuronal deficits and, where evident, subsequent neuronal loss in animal
models of AD and DS to Rab5 hyperactivation [70].

Among other lines of evidence, Nixon and colleagues showed that the β-cleaved carboxy-terminal
fragment of APP, termed β-CTF, recruits APPL1 to Rab5 endosomes [76]. There APPL1 stabilizes active
Rab5(GTP), leading to pathologically accelerated endocytosis, endosome swelling and selectively
impaired axonal transport of Rab5 endosomes [76]. Importantly, in DS fibroblasts an APPL1 knockdown
corrected these endosomal anomalies [76]. β-CTF levels were also shown to be elevated in AD brain,
which was accompanied by abnormally high recruitment of APPL1 to Rab5 endosomes, as was
observed in DS fibroblasts [76]. Moreover, in a separate report, Nixon and colleagues [77] showed that
partial reduction of β-APP cleaving enzyme 1 (BACE1) through genetic means in a transgenic mouse
model (Ts2) of DS normalized both APP-β-CTF levels and Rab5 activation. This prevented age-related
development of Rab5-positive endosomal enlargement (which is usually evident at approximately
four months of age in the Ts2 mice) and subsequent loss of cholinergic neurons in the basal forebrain
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(which otherwise follows the Rab5-positive endosomal enlargement within approximately one to two
months in the Ts2 mice) [77].

In complementary work, Xu et al. [78] demonstrated that full-length wild-type APP and β-CTF
both, in vitro in three different relevant cell model systems, induced early endosomes enlargement and
disrupted nerve growth factor (NGF) signaling and axonal trafficking. Moreover, β-CTF alone induced
atrophy of cultured rat basal forebrain cholinergic neurons that was rescued by a dominant-negative
Rab5 mutant [78]. Finally, expression of a dominant negative Rab5 construct markedly reduced
APP-induced axonal blockage in Drosophila [78].

This earlier work indicated that Rab5 was necessary for APP-induced endosomal enlargement
and cholinergic neuronal loss. Recently, Nixon and colleagues demonstrated that abnormal Rab5
activation is sufficient to induce endosomal enlargement and a neurodegenerative phenotype which
mimics that seen with APP overexpression [79]. Specifically, modest neuron-specific transgenic Rab5
(PA-Rab5) expression in mice [79] induced increased Rab5 expression and abnormal activation of Rab5
comparable to that in AD brain [80,81]. PA-Rab5 reproduced AD-like Rab5-endosomal enlargement and
mis-trafficking without impacting APP metabolism (i.e., no increase in Aβ levels) [79]. The PA-Rab5
mice also exhibited hippocampal synaptic plasticity deficits via accelerated AMPAR endocytosis
and dendritic spine loss [79]. Moreover, they showed tau hyperphosphorylation [79]. Importantly,
with further aging the PA-Rab5 mice developed progressive cholinergic neurodegeneration and
impaired hippocampal-dependent memory subsequent to the observed Rab5-mediated endosomal
dysfunction [79].

That Rab5 hyperactivity and endosome enlargement, rather than APP per se, are the critical
factors in inducing degenerative AD-related changes is further supported by the following findings.
Age-dependent Rab5-positive early endosome enlargement and endo-lysosomal dysfunction were
observed in an AD-vulnerable brain region of targeted replacement mice expressing the human
Apolipoprotein E4 (ApoE4) gene, the dominant genetic factor for the development of late-onset
Alzheimer’s disease, under the control of the endogenous murine promoter [82]. Similarly, depletion of
another late onset AD risk gene sortilin-related receptor 1 (SORL1) [83] in human induced pluripotent
stem cell (iPSC)-derived neurons leads to enlargement of early endosomes (i.e., endosomes staining
positive for Rab5 and EEA1). Hence, genetic influences that increase AD risk, such as ApoE4 and
SORL1, may do so by dysregulating the Rab5 impact on endosome dynamics and cell signaling.

A recent study that analyzed a comprehensive panel of iPSC-derived neuronal lines relevant to
familial AD also demonstrated translatability of Rab5-mediated neurodegeneration to human AD [84].
The only consistent, intra-neuronal physiologic defect identified was enlargement of Rab5-positive
early endosomes, mediated by APP-β-CTFs, not Aβ, and associated with endosomal/endocytic
dysfunction [84].

In a very simplified view of many AD research data taken together, the small GTPase Rab5
can be depicted as a convergence point (Figure 1) for multiple established pathogenic drivers of
neurodegeneration in AD (e.g., downstream of APP, APP-β-CTF, β-CTF, Aβ, ApoE4, and others).
Dysregulation of the endo-lysosomal system represents the important early cellular phenotype of
pathogenesis for AD that leads to disrupted AMPAR trafficking, tau pathology, synaptic dysfunction,
and neurodegeneration. Elevated Rab5 activity (hyperactivation or overexpression) plays the key
role in mediating these processes, hence, may promise high potential as a therapeutic target. Since
endosome dysfunction occurs very early in the AD pathogenic process, therapies that turn Rab5 activity
back to normal (e.g., via Rab5 therapeutic targeting strategies already discussed in Section 3.3.) may
help slow or halt AD development before irreversible damage occurs. Additionally, the potential of
p38α inhibition as a therapeutic lever to reduce Rab5 activity will be discussed in Section 6.
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on Rab5-mediated entry into the cell via endocytosis [87,88]. Expression of a GTPase-deficient Rab5a 
protein led to a decrease in the cytotoxicity of α-synuclein through impairing its endocytosis [87]. 
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This impaired retrograde axonal transport of brain-derived neurotrophic factor (BDNF) and led to 
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Figure 1. Simplified scheme representing Rab5 as a therapeutic target through being a convergence
point for multiple pathogenic drivers of neurodegeneration in AD and the potential of p38α inhibition
as a therapeutic lever to reduce Rab5 activity. Note: Aβ and β-CTF are both derived from proteolytic
processing of APP.

4.2. Dysregulated Rab5 Associated with Abnormal α-Synuclein in PD, DLB, and AD

The enlargement of Rab5-positive early endosomes that is seen in AD is not observed during
the development of PD and DLB. Nevertheless, the toxicity of the key pathologic protein associated
with these two neurodegenerative diseases, abnormal α-synuclein (a pre-synaptic protein), has
also been linked to Rab5 [71,85,86]. Specifically, the neurotoxicity of α-synuclein was shown
to be dependent on Rab5-mediated entry into the cell via endocytosis [87,88]. Expression of a
GTPase-deficient Rab5a protein led to a decrease in the cytotoxicity of α-synuclein through impairing
its endocytosis [87]. Rab5 also appears to play a role in intracellular trafficking of α-synuclein [89,90].
Additionally, studying embryonic cortical neurons from a mouse model of Parkinson’s disease,
transgenic overexpression of α-synuclein was observed to increase the levels of activated Rab5 and
Rab7 [91]. This impaired retrograde axonal transport of brain-derived neurotrophic factor (BDNF)
and led to neuronal atrophy [91]. Therefore, the authors suggested that α-synuclein-induced neuronal
dysfunction is a result of impaired endocytosis and endosomal dysfunction associated with aberrant
activation of the two Rab proteins [91].

It is interesting to note that accumulating evidence suggests that the α-synuclein might also
play a role as driver of pathophysiology in AD [92]. Intriguingly, α-synuclein and APP appear to
be interconnected in terms of their activation of Rab5 and neurotoxicity, since genetic reduction of
endogenous α-synuclein in an APP transgenic mouse model normalized Rab5 (and Rab3) activity and
prevented cholinergic neuronal loss [93].

4.3. Dysregulated Rab5 in ALS

Evidence for the pathological role of Rab proteins has also been provided in ALS as another
example of a neurodegenerative disease involving endosomal-lysosomal trafficking and signaling
defects [71].

In the context of ALS, defects in endosomal trafficking have been consistently seen in transgenic
mouse models based on identified human genetic defects [94]. In particular, Alsin, deficiency of which
is associated with an autosomal recessive juvenile form of ALS called ALS 2, is a Rab5 exchange
factor [95–97]. The primary biological effects of Alsin deficiency have been linked to aberrant activation
of Rab5-mediated endosomal trafficking [98]. Rab5 interaction with Alsin has also been suggested
to modulate the signaling of neurotrophic factors [96]. The analysis of Alsin-null mice, an animal
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model of ALS2, revealed that Rab5-dependent endosome fusion activity and endosomal transport of
insulin-like growth factor 1 (IGF1) and BDNF receptors were affected [99]. It was suggested that these
alterations in trophic receptor trafficking in the neurons of the Alsin-null mice may lead to the observed
reduced size of the cortical neurons as well as animal hypoactivity, and that this may translate to the
pathogenesis of ALS2 [99].

Moreover, the protein product of hexanucleotide GGGGCC repeat in the chromosome 9 open
reading frame 72 (C9ORF72), which represents a major genetic cause of familial ALS (33% of familial
cases) and FTD, has been co-localized with Rab5 in endosomes [100,101]. It was described to possess
Rab GEF activity and function as a regulator of endosomal trafficking [100].

4.4. Dysregulated Rab5 in HD

Finally, Rab proteins also have a key role in HD [52,71]. It was reported that the upregulated
Huntingtin (Htt)-associated protein 40 (HAP40) is an effector of Rab5 that mediates the recruitment of
Htt to early endosomes and is affecting early endosomal motility [102]. As Rab5-positive endosomes are
involved in retrograde transport of activated neurotrophin/receptor complexes and due to indication
of altered axonal transport in HD [103,104], it is possible that impaired Rab5-mediated trafficking of
neurotrophins affects neurotrophin signaling and might also contribute to HD pathogenesis [105,106].
Moreover, Rab5 overexpression reduces toxicity of the Htt mutant protein, while inhibition of Rab5
increases toxicity via macroautophagy regulation [107].

Taken together, overactivated Rab5 and subsequent endo-lysosomal dysfunction have emerged as
a major driving force of degenerative and cognitive deficits during the development of AD [1,48,71,79]
and alterations in Rab5 also seem to play an important role in other types of neurodegenerative
diseases [52,71].

5. p38α Is a Major Regulator of Rab5 Activity

It is well-established in the scientific literature that p38α regulates Rab5 activity. This includes the
research in the context of neuronal synaptic plasticity. Most of the findings were published in the early
and mid-2000s. First, p38α was shown to be a regulator of endocytosis through phosphorylating GDI
and stimulating the formation of cytosolic Rab5-GDI complex, thereby increasing the concentration
of Rab5 in the plasma membrane (Figure 1) [33,108]. Moreover, in a genome-wide screen of human
kinase-mediated regulation of endocytosis, ablation of a number of kinases increased endocytosis in
association with increasing phosphorylation of p38 MAPK (i.e., activated p38 MAPK) and recruiting
phospho-p38α to the endosome [109]. These authors also showed by confocal microscopy that the
MAPK14 gene product was observed on endosomal structures [109]. Prior to this, p38 had been
co-localized via a sucrose gradient with the Rab5- and NGF-containing early endosome fraction
prepared from rat dorsal root ganglion (DRG) neurons, and was shown to be part of early endosome
signaling pathways for conveying NGF signals from the target of nociceptive neurons to their cell
bodies [110]. In addition, expression of an activated Rab5 mutant increased µ opioid receptor
endocytosis in wild-type cells but not in p38α -/- cells [111]. In the same report, p38α was also shown
to phosphorylate the Rab5 effectors EEA1 (on Thr-1392) and Rabenosyn-5 (on Ser-215), which led to
increased recruitment of these proteins to membranes; providing a mechanism other than modulating
GDI by which p38α increases Rab5 action. Both in the human kinase screen [109] and the µ opioid
receptor endocytosis studies [111] it is noted that the effects of p38α on endocytosis are evident under
basal (physiologic) conditions, and not just under conditions of cellular stress, whereas the role of
p38α in relation to endocytosis has been suggested to be related to its role in responding to oxidative
stress [112]. Collectively, the studies indicate that p38α regulates levels of both the basal and induced
Rab5 activity, irrespective of other inputs to Rab5 activation state. As such, p38α inhibition provides
an approach to reduce Rab5 activity in a diverse range of disease states that may have different drivers
of Rab5 activation (Figure 1).
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In the context of neuronal function, a critical component of synaptic plasticity is the maintenance
and/or recycling of AMPAR from the surface of synapses, [59] a process in which Rab proteins,
including and particularly Rab5, through increasing endocytosis play a prominent role (Figure 1) [58].
In particular for the aspect of synaptic plasticity termed LTD, p38 MAPK activation facilitating AMPAR
removal through increasing endocytosis via the Rab5-GDI complex has been demonstrated [56].

In other studies, in which Rab5 activation leading to AMPAR removal from the surface was
thought be a critical player in the process of NMDA-triggered LTD induction in the hippocampus, there
was associated phosphorylation of p38 MAPK, i.e., p38 MAPK activation; though there was a temporal
lag, which may reflect different kinetics of p38 MAPK activation at the plasma membrane versus the
cell as a whole [58]. Serotonin-induced LTD has also been shown to be dependent on both p38 MAPK
and Rab5, activation of which together led to enhanced AMPAR internalization via endocytosis during
the process of LTD [113]. In a subsequent report [114] the same group demonstrated low dose serotonin
and norepinephrine reuptake inhibitors (SNRIs), by acting on 5-HT1A and 2-adrenergic receptors,
synergistically reduced AMPAR-mediated excitatory postsynaptic currents and AMPAR surface
expression in prefrontal cortex pyramidal neurons via a mechanism involving Rab5/dynamin-mediated
endocytosis of AMPAR. As this effect of SNRIs was dependent on p38 kinase activity, and their prior
work, they hypothesized that SNRI activation of p38 MAPK accelerates AMPAR endocytosis by
stimulating the formation of Rab5-GDI complex. However, they did not directly demonstrate this.

6. Therapeutic Potential of Dampening Rab5 Activity through Inhibiting p38α Signaling

In parallel with Rab5 emerging as a therapeutic target for neurodegenerative disease, p38α has also
emerged as a promising therapeutic target for AD and other neurodegenerative disorders [4,19,34–42].

6.1. Therapeutic Potential in AD

From a mechanistic perspective, expression of p38α in the neuron is associated with formation of
pathological Aβ-, inflammation- (e.g., IL-1β) and tau-induced impaired synaptic plasticity (Figure 1),
as well dendritic spine loss [115–119]. Furthermore, studies in several distinct animal models driven
by Aβ, inflammation, or tau showed that spatial learning and working memory deficits are reversed
with small molecule inhibitors of p38α kinase activity [120–122], providing direct evidence that
inhibition of p38α activity has therapeutic potential in AD. Specifically, the compound MW150 was
active in APP-transgenic and tau-transgenic mice [121,123], the compounds MW181 and SB2399063 in
aged tauopathy mice [122], and neflamapimod/VX-745 in aged rats [120]. In addition, a very recent
publication demonstrated that oral administration of a selective p38α/β inhibitor, NJK14047, to 9-month
old 5XFAD (APP) transgenic mice reduced levels of amyloid-beta deposits, reduced spatial memory loss
and reduced the number of degenerating neurons labeled with Fluoro-Jade B [41]. Moreover, genetic
reduction of neuronal p38α in APP overexpressing transgenic mice improved synaptic transmission,
decreased memory loss and reduced amyloid pathology [124,125]. P38 MAPK has also been identified
as a therapeutic target for PD and DLB, i.e., α-synuclein mediated neurodegenerative diseases [27,39].

Since none of the published studies assessed Rab5 activity and/or endosomal pathology at present,
the literature does not definitively establish that the aformentioned effects of p38α in animal models of
neurodegenerative disease are via modulating Rab5 activity. However, several arguments suggest that
a major component of the therapeutic effects of p38α is through targeting Rab5. First, in the AD context
AMPAR removal is necessary and sufficient for both impaired synaptic plasticity and dendritic spine
loss [126], the critical first steps in the neurodegenerative process associated with AD; and as discussed
previously, p38α and Rab5 are intimately linked in the process of AMPAR endocytosis and removal
from the cell surface. Second, across the variety of biological effects of modulating either Rab5 or
p38α activity there is a similarity of effects (including directionality) that, given the known connection
between the two, is unlikely to be due to chance. For example, decreasing p38α activity in neurons
reduces Aβ production [125], while Rab5 activation increases Aβ production [127]. That is, aberrant
activation of either p38 MAPK [115,128] or Rab5 [79] are associated with increased Aβ production.
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Further, aberrant activation of Rab5 resulting in a block in endosomal maturation is considered to
underlie impaired autophagy in AD [1], while inhibition of p38α has been identified as an approach to
reversing impaired autophagy in AD [11]. Third, in the Rab5-overexpressing mouse a downstream
biological marker in the neuron of Rab5 activation is tau phosphorylation [79], while p38α inhibitors in
aged tauopathy mice improved working memory and, at same time, reduced tau phosphorylation [122].
As p38α is not a major tau kinase [129], we believe that those results provide indirect evidence that
p38α inhibition reduces Rab5 activity in parallel with improving memory.

Recently [42], the effects of neuronal deficiency of p38α in neurodegenerative disease models were
further evaluated by mating human APP transgenic mice and human P301S Tau-transgenic mice with
mapk14-(gene for p38α)-floxed and neuron-specific Cre-knock-in mice. Deletion of p38α in neurons
through this approach led to improvement of cognition in both the APP transgenic mice and the
P301S Tau transgenic mice, associated with decreased Aβ and phosphorylated tau in the brain of the
respective models. As along with normal Rab5 adequate calcium influx is essential to, and intimately
associated with AMPAR endocytosis [130,131], it is particularly intriguing that neuronal deficiency of
p38α in these models regulated the transcription of calcium homeostasis genes and deletion of p38α
inhibited NMDA-triggered calcium influx in vitro [42].

More direct evidence on the contribution of Rab5 inhibition towards therapeutic effects of
p38α inhibition have been presented at scientific meetings but are not available, yet, as primary
research publications. In those studies [132,133] we and our collaborators showed that blocking Rab5
over-activation with a selective p38α inhibitor [37,134] rescued Rab5-positive-endosomal enlargement
and cholinergic neurodegeneration in a mouse model of DS (Ts2) as effectively as reversing elevated
APP-β-CTF levels [77]. The results directly support the role of p38α in regulating Rab5, as the
compound utilized had previously been shown by an independent academic research group to have
~25-fold selectivity for p38α (Kd = 2.8 nM) versus p38β (Kd = 74 nM), as well as its >300-fold selectivity
versus 445 other kinases (Kd ≥ 1100 nM) [135]. In addition, the compound had been recommended by
yet another research group as the small molecule compound to utilize in experimental studies that
have the objective of understanding the biologic effects of inhibiting p38α kinase activity [136].

6.2. Therapeutic Potential in ALS

In the context of ALS, it should also be noted that overexpression of the Rab5 GEF Alsin suppresses
superoxide dismutase 1 (SOD1) neurotoxicity [137]. The link to p38α was recently established in
studies that showed that p38α kinase inhibitors rescued the axonal transport defects in the SOD1G93A

mouse model of ALS [40]. In those studies, p38 MAPKs were found to enhance axonal transport of
signaling endosomes in a pharmacological screen of a library of small molecule kinase inhibitors that
was designed to identify molecules that would enhance that activity. Moreover, in vitro knockdown
revealed that the alpha isoform (i.e., p38α) was the sole isoform responsible for the SOD1G93A-induced
transport deficits and acute treatment with p38α inhibitors restored the physiological rate of axonal
retrograde transport in vivo in early symptomatic SOD1G93A mice [40].

7. Future Directions for Research and Prospects

From a therapeutics development perspective, the most relevant preclinical mechanistic study to
assess the potential of p38α inhibition as a treatment approach for Rab5-mediated neurodegenerative
disease would be to evaluate the effects of a p38α inhibitor in the Rab5-overexpressing mouse. Such
studies have recently been initiated and the results are anticipated to be published within the next
12 months [138]. From a mechanistic standpoint, a number of open lines of inquiry around the
connection between p38α and Rab5 could be explored. For one, in the AD context, whether APPL1
and p38α may act sequentially or in parallel to increase Rab5 activation has not been defined (Figure 2).
On one hand, APPL1 as a scaffolding protein could stabilize active Rab5 on the endosome, while p38α
activation leading to increased levels of Rab5-GDI complex would deliver Rab5 to the endosome to
associate with APPL1. In this “parallel” construct, APPL1 and p38α could have different upstream
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drivers; for example, p38α being activated upstream by a well-known activator IL-1β, rather than
by β-CTF. However, APPL1 has also been shown to act as a scaffold to the p38MAPK signaling
pathway [139] and so may act also upstream of p38α, i.e., sequentially, rather than in parallel to
activate Rab5. From a therapeutics development model, the two models could impact the context,
e.g., the disease in which p38α inhibitors would be most active.
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Another open question is the specific mechanism by which Rab5 activation leads to defects in
endosomal signaling and trafficking, an effect that is, to a certain extent, paradoxical as increasing
endocytosis and endosome formation would be expected to increase endosomal signaling and
potentially increase the number of endosomes delivered from the synapse back to the nucleus via
axonal transport. While some specific mechanisms have been proposed [1], the more general hypothesis
is that axonal transport and endosomal degradation via lysosomal pathways are rate-limiting and
have to be well-matched to the rate of endocytosis. As a result, aberrantly-increased endocytosis
overwhelms the rate-limiting disposal pathways, leading to a block in trafficking/degradation and
endosomal enlargement. While compelling, this hypothesis has not been definitely established as the
reason for the reduction in axonal transport of endosomes that is seen in AD. Further understanding of
these mechanisms might identify additional therapeutic targets.

More generally, with respect to p38 MAPK signaling, the roles that regulation of endocytosis
and endosomal biology play in the stress response that is otherwise mediated by p38α, or other
p38 MAPK isoforms, remain to be fully defined. With respect to the proinflammatory activity of
p38α, along with increasing cytokine production, activation of p38α increases cytokine signaling.
Classically receptor endocytosis is thought to shut off the signal from the receptor. However, there
are increasing examples, including in the context of cytokine signaling, that receptor endocytosis can
increase signaling [140–142]. Further, in the context of the neuron endosomal signaling after axonal
retrograde signaling, both the signaling pathways distinct from neurotrophins [60] and the cross-talk
on the endosome between kinase pathways [143] are underexplored in terms of understanding their
roles in modulating p38α (or p38 MAPK) signaling.

The ultimate proof of the therapeutic value of targeting Rab5 with p38α will be in the clinic.
Towards that end, results were presented recently [144] from a 24-week 161 patient double-blind,
placebo controlled clinical trial of a p38α inhibitor neflamapimod in early-stage AD (https://clinicaltrials.
gov/ct2/show/NCT03402659). This study demonstrated the effectiveness of p38α inhibition relative to
a placebo in significantly reducing cerebrospinal fluid (CSF) levels of p-tau and tau. Given that as
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discussed previously tau phosphorylation is a downstream marker of Rab5 hyperactivation, the results
provide indirect evidence that p38α inhibition impacts Rab5 activity in humans. The study also showed
plasma concentration-dependent effects on episodic memory function, though the dose level utilized
led to sub-therapeutic levels in the majority of the patients. A higher dose regimen that achieves
the identified therapeutic plasma drug concentration range in ~75% if patients is being utilized in
a 16-week randomized, double-blind, placebo-controlled, clinical study of the same p38α inhibitor
in patients exhibiting dementia with Lewy bodies (https://clinicaltrials.gov/ct2/show/NCT04001517).
The results of this study should further inform on the potential of p38α inhibition as an approach to
treat neurodegenerative disease.
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Abbreviations

Aβ Amyloid-β
AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
AMPAR α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
ApoE Apolipoprotein E
APP β-Amyloid precursor protein
APPL Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1
BACE-1 β-APP-cleaving enzyme 1
BDNF Brain-derived neurotrophic factor
β-CTF Carboxy-terminal APP fragment generated by BACE-1
C9ORF72 Chromosome 9 open reading frame 72
CK Casein kinase
CNS Central nervous system
COPD Chronic obstructive pulmonary disease
CSF Cerebrospinal fluid
DLB Dementia with Lewy bodies
DRG Dorsal root ganglion
DS Down syndrome
EEA Early endosomal autoantigen
ERK Extracellular signal-regulated kinase
FTD Frontotemporal dementia
GAP GTPase activating protein
GDI GDP dissociation inhibitor
GEF Guanine nucleotide exchange factor
GTPase Guanosine triphosphatase
HAP40 Htt-associated protein 40
HD Huntington’s disease
Htt Huntingtin
hVPS45 Human Sec1p-like vacuolar protein sorting
IBD Inflammatory bowel disease
IGF1 Insulin-like growth factor 1
IL-1β Interleukin-1β
iPSC Induced pluripotent stem cell
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LTD Long-term depression
LTP Long-term potentiation
MAPK Mitogen-activated protein kinase
MAPKAPK2 MAPK-activated protein kinase 2
MK2 MAPK-activated protein kinase 2
MKK Mitogen-activated protein kinase kinase
MSK Mitogen and stress-activated kinase
NGF Nerve growth factor
NMDA N-methyl-d-aspartate
PD Parkinson’s disease
PH Pleckstrin homology
PI3K Phosphatidylinositol-3-kinase
RA Rheumatoid arthritis
Rab5 Ras-related protein Rab5
SAPK Stress-activated protein kinase
SNRI Serotonin and norepinephrine reuptake inhibitor
SOD1 Superoxide dismutase 1
SORL1 Sortilin-related receptor 1
TNFα Tumor necrosis factor α
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