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Topologically protected surface states in a
centrosymmetric superconductor b-PdBi2
M. Sakano1, K. Okawa2, M. Kanou2, H. Sanjo1, T. Okuda3, T. Sasagawa2 & K. Ishizaka1

The topological aspects of electrons in solids can emerge in real materials, as represented by

topological insulators. In theory, they show a variety of new magneto-electric phenomena,

and especially the ones hosting superconductivity are strongly desired as candidates for

topological superconductors. While efforts have been made to develop possible topological

superconductors by introducing carriers into topological insulators, those exhibiting

indisputable superconductivity free from inhomogeneity are very few. Here we report on

the observation of topologically protected surface states in a centrosymmetric layered

superconductor, b-PdBi2, by utilizing spin- and angle-resolved photoemission spectroscopy.

Besides the bulk bands, several surface bands are clearly observed with symmetrically

allowed in-plane spin polarizations, some of which crossing the Fermi level. These surface

states are precisely evaluated to be topological, based on the Z2 invariant analysis in analogy

to three-dimensional strong topological insulators. b-PdBi2 may offer a solid stage to

investigate the topological aspect in the superconducting condensate.
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T
opological insulators are characterized by the non-trivial Z2

topological invariant acquired when the conduction and
valence bands are inverted by spin–orbit interaction (SOI),

and the gapless surface state appears1–3. This topologically non-
trivial surface state possesses the helical spin polarization locked to
momentum, and is expected to host various kinds of new
magneto-electric phenomena. Especially, the ones realized with
superconductivity are theoretically investigated as the candidates
for topological superconductor2–4, whose excitation is described as
Majorana Fermions, that is, the hypothetical particles originating
from the field of particle physics5–8. Experimentally, several
superconductors developed by utilizing topological insulators are
reported thus far, such as Cu-intercalated Bi2Se3 (refs 9–12),
In-doped SnTe13 and M2Te3 (M¼Bi, Sb) under pressure14,15.
While the previous studies of point-contact spectroscopy on
CuxBi2Se3 (refs 9,10) and In-SnTe13 suggest the existence of
Andreev bound states thus raising the possibility of topological
superconductivity, the scanning tunnelling microscope/
spectroscopy reports the simple s-wave-like full superconducting
gap16. Theoretically, this contradiction has been discussed in
terms of the possible peculiar bulk odd-parity pairing17, which
awaits experimental verifications by various probes18,19. However,
partly due to the inhomogeneity effect accompanied by doping or
pressurizing, the unambiguous clarification of superconducting
states in doped topological insulators has been hindered until now.
The half-Heusler superconductor RPtBi (R: rare earth) is
another class of material recently reported as a candidate for
topological superconductors20,21. Practically, however, its low
critical temperature (Tc) of Tco2 K and the noncentrosymmetric
crystal structure without a unique cleavage plane may pose some
difficulties for its further investigation.

In this work, we introduce a superconductor b-PdBi2 with a
centrosymmetric tetragonal crystal structure of space group
I4/mmm22–24 as shown in Fig. 1a. It has a much simpler structure
compared with the related noncentrosymmetric superconductor
a-PdBi, recently being discussed as a possible topological
superconductor25,26. Pd atoms, each of them located at the
centre of the square prism of eight Bi atoms, form the layered
body-centred unit cell. PdBi2 layers are stacked in van der Waals
nature, making it a feasible compound for cleaving. We
investigate the electronic structure of b-PdBi2 using (spin-)
angular-resolved photoemission spectroscopy, (S)ARPES. With
the large single crystals of good quality, exhibiting the high
residual resistivity ratio (B14) and a clear superconducting
transition at Tc¼ 5.3 K, several spin-polarized surface states are
clearly observed in addition to the bulk bands. On the basis of the

relativistic first-principles calculation on bulk and the slab
calculation on surface, we find that the observed surface states
can be unambiguously interpreted to be topologically non-trivial.

Results
Bulk and surface band structures. Here we present the ARPES
result obtained using the single-crystalline b-PdBi2. The resistivity
and magnetic susceptibility of the sample as shown in Fig. 1b,c
clearly indicate the sharp superconducting transitions. The band
structure of b-PdBi2 observed by ARPES is shown in Fig. 2b,c.
For simply describing the (S)ARPES results hereafter, we use the
projected two-dimensional (2D) surface Brillouin zone depicted
in Fig. 2a by a green square. The projected high-symmetry points
are �G, �M and �X, and we define kx as the momentum along �G– �M.
The ARPES image in Fig. 2c is recorded along �X–�G and �G– �M,
respectively. Bands crossing the Fermi level (EF) are
predominantly derived from Bi 6p components with large
dispersions from the binding energy (EB) of EBB6 eV to above
EF. On the other hand, bands mainly consisting of Pd 4d orbitals
are located around EB¼ 2.5B5 eV with rather small dispersions.
Near EF, two hole bands (a, b) and one electron band (g) are
observed along �G– �M, whereas for �X–�G, the large ARPES intensity
from another electron band (d) is additionally observed. As we
can see in Fig. 2b, the experimental Fermi surface mapping
mostly well agrees with the 2D projection of the calculated bulk
Fermi surfaces (Fig. 2a).

To compare with ARPES, the calculation of bulk band
dispersions projected into 2D Brillouin zone is shown in
Fig. 2d. Considering that the ARPES intensity includes the
integration of finite kz-dispersions due to the surface sensitivity,
the overall electronic structure is in a good agreement with the
calculation; nevertheless, several differences can be noticed. The
most prominent one appears in the orange rectangles in Fig. 2c,d.
A sharp Dirac-cone-like dispersion is experimentally observed
where the calculated bulk bands show a gap of B0.55 eV around
the �G point. To confirm its origin, we performed a slab
calculation for 11 PdBi2 layers (Fig. 2e). Apparently, a Dirac-
cone-type dispersion appears in the gapped bulk states, showing a
striking similarity to ARPES (Fig. 2c). It clearly presents the
surface origin of this Dirac-cone band.

Now we focus on the observed surface Dirac-cone band. The
close-up of the surface Dirac cone is demonstrated in Fig. 3a,
indicating its crossing point at EB¼ ED¼ 2.41 eV (ED: the energy
of Dirac point where the bands cross each other). Such a clear
Dirac-cone-shaped band strongly reminds us of the helical edge
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Figure 1 | Basic properties of superconductor b-PdBi2. (a) Crystal structure of superconductor b-PdBi2. x, y and z axes are taken along the body-centred

tetragonal crystal orientation. (b) In-plane electrical resistivity (rab) as a function of temperature (T). The inset shows rab near the critical temperature

(5.3 K). (c) Magnetic susceptibility (w) as a function of T, recorded under the field-cool (FC) and zero-field-cool (ZFC) conditions. The magnetic field of

10 Oe was applied along the direction of the c axis.
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states in three-dimensional (3D) strong topological insulators.
We can see the very isotropic character of surface Dirac cone in
its constant-energy cuts (Fig. 3b), appearing as the perfectly
circular-shaped contour even at EB¼ED–0.8 eV with a large
momentum radius of 0.3 Å� 1. It is in contrast to the warping
effect often appearing in trigonal strong topological insual-
tors27,28. The spin polarization of surface Dirac cone is also
directly confirmed by SARPES experiments as depicted in Fig. 3c
(ref. 29). Figure 3e,f shows the results for the y-component
spin, measured along kx (�G– �M). Because of C4v symmetry, x-
and z-components are forbidden (Supplementary Note 1;
Supplementary Fig. 1). The red (blue) curves in Fig. 3f,
indicating the energy distribution curves of spin-up (-down)
components, clearly show the spin-polarized band dispersions. As
easily seen in the SARPES image (Fig. 3e), the spin polarization
with spin-up (spin-down) for negative (positive) dispersion of
surface Dirac cone is confirmed. The observed spin-polarized
surface Dirac cone thus presents a strong resemblance to the
helical surface state in strong topological insulators.

Analysis of the topological invariant. To evaluate whether the
observed surface state is topologically non-trivial, we derive the Z2

invariant n0 for b-PdBi2, in analogy to 3D strong topological
insulators30. For 3D band insulators with inversion symmetry, n0

obtained from the parity eigenvalues of filled valence bands at

eight time-reversal invariant momenta (TRIM) classifies whether
it is a strong topological insulator (n0¼ 1) or not (n0¼ 0). The
bulk b-PdBi2 is apparently a metal; nevertheless, here we define a
gap in which there is no crossing of the bulk band dispersions
through the entire Brillouin zone. By considering this gap, we
discuss its topological aspect by calculating n0. The calculated
bulk bands without and with SOI are shown in Fig. 4a,b,
respectively. The valence bands are identified by numbers (from
1st to 10th) as indicated on the right side of respective graphs.
The bands are numbered by the energy (E) at the Z point. Note
that all bands are doubly spin-degenerate. By comparing Fig. 4a,b,
we notice that many anticrossings are introduced by SOI,
including the B0.55 eV gap opening in the green rectangle
region where the surface Dirac cone appears. Here we focus on
the gap between the 7th and 6th bulk bands, namely gap 7� 6,
shaded by pink in Fig. 4b. The distribution of the direct gap
between the 7th and 6th bands can be evaluated by the joint
density of states as a function of the gap energy Eg, defined as
r Eg
� �

¼ 2
P

kd Eg� E7 kð Þ� E6 kð Þ½ �
� �

. Here, E6(k) and E7(k)
represent the respective eigenenergies of the 6th and 7th bands
at momentum k with k¼ (kx, ky, kz). The result for gap 7� 6 is
shown in Fig. 4e, which guarantees the minimum value of
0.105 eV gap opening between the 7th and 6th bands through the
entire Brillouin zone.

By considering the obtained gap, we discuss its topological
aspect by calculating n0 in analogy to 3D strong topological
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Figure 2 | Electronic structure of b-PdBi2. (a) Calculated Fermi surfaces shown with the first Brillouin zone. kx, ky and kz axes for the crystal momentum

space are depicted. G, Z, N, X and M are the high-symmetry points. The square plane represents the two-dimensional (2D) projected surface Brillouin zone

with 2D high-symmetry points, �G, �M and �X. (b) Four-fold symmetrized Fermi surface recorded by angular-resolved photoemission spectroscopy (ARPES).

The image is obtained by integrating intensities in the energy window of ±8 meV at the Fermi level. The colour scale indicates the intensity. Two electron-

like and two hole-like Fermi surfaces are denoted by a, b and g, d, respectively. (c) ARPES image recorded along �X–�G and �G– �M cuts, shown as the light-blue

and -green broken lines in b, respectively. The colour scale indicates the intensity. (d) Calculated bulk band dispersions projected onto 2D surface Brillouin

zone. Blue (red) curves correspond to kz¼0 (2p/c). (e) Surface band dispersions obtained by slab calculation of 11 PdBi2 layers. Orange rectangles

in c–e indicate the region where the surface Dirac cone appears.
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insulators. As shown in Fig. 4g, the eight TRIM in the Brillouin
zone of b-PdBi2 with I4/mmm symmetry are G, Z, two X and four
N points. Considering these TRIM, Z2 invariant for the gap
between the (Nþ 1)-th and N-th bulk bands, n0(N), can be
calculated by ð� 1Þn0ðNÞ ¼

Q8
i¼1

QN
m¼1 xm Gið Þ, where xm Gið Þ

represents the parity eigenvalue (±1) of the m-th band at i-th
TRIM. Note that since there are even numbers of X and N points,
only Gi¼G and Z contribute to the calculation of n0(N), that is,
ð� 1Þn0ðNÞ ¼

QN
m¼1 xmðGÞxmðZÞ. Thus, n0 can be calculated by

considering solely G and Z points, whose symmetries of
wavefunctions are listed in Fig. 4d for respective bands. Those
indicated by red (black) is of odd (even) parity. We find that gap
7� 6 is characterized by n0(6)¼ 1, indicating its analogy to 3D
strong topological insulators. This requires an odd number of
surface states connecting the 7th and 6th bands, to topologically
link the bulk b-PdBi2 and a vacuum. The observation of spin-
helical surface Dirac cone in gap 7� 6 clearly represents the
characters of such topologically protected surface states.

Topological surface state crossing EF. By further looking at the
list of n0 in Fig. 4d, we notice n0(8)¼ 1 for gap 9� 8 shaded by
blue in Fig. 4b, which has a minimum gap of 0.127 eV as con-
firmed by the calculation (Fig. 4f). It suggests that the topological
surface states connecting the 9th and 8th bands must exist, where
we may observe the effect of superconductivity if located close
enough to EF. To clarify this possibility, the close-up of ARPES

image near EF is shown with the calculation in Fig. 5b,c. The
green curves in Fig. 5c indicate the calculated surface states
crossing EF separately from the 2D projected bulk bands shaded
by grey. They appear at the smaller-kx side of b (8th) and g (9th)
bands. Experimentally, the sharp peaks indicative of 2D surface
states are observed in momentum distribution curve at EF, as
denoted by S1 and S2 in Fig. 5a. As can be seen in the list of n0 in
Fig. 4d, S2 should be the topological surface state connecting the
9th and 8th bands, whereas S1 appearing in gap 8� 7 must be
trivial.

The spin polarization of the topological surface state S2 as well
as the trivial surface state S1 is also confirmed experimentally. As
shown in Fig. 5d, the y-oriented spin polarizations of S1 (#2–5)
and S2 (#7–10) along kx (�G– �M) are clearly observed in the spin-
resolved spectra. Here, the peak positions for S1 and S2 (bulk b)
bands are depicted by green circles (black squares). We can see
that S1 and S2 are both spin-polarized with spin-up for kx40,
whereas they get inverted for kxo0 (Fig. 5e,f) as required by
the time-reversal symmetry. These clearly indicate that both
topological and trivial surface states crossing EF possess the
in-plane spin polarizations.

Discussion
The Z2 analysis shows that odd number of gapless surface states
in gap 9� 8, connecting the 9th and 8th bands, must exist
between �G and �M. To confirm whether the experimentally
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observed S2 indeed corresponds to this topological surface
state, we need to carefully look at the slab calculation since S2
crosses EF and extends to the unoccupied state. By tracking the
calculated data from �M towards �G (Fig. 6a), we first notice that S2
is derived from the local minimum of the 9th (g) band. S2 then
crosses EF and reaches up to E–EF¼ 2 eV without merging into
the bulk states. At �G, although it gets overlapped with 2D
projected bulk bands, we can distinguish S2 forming a Rashba-
like crossing point at E–EF¼ 2.4 eV. After the crossing, S2 band
eventually gets merged into the 8th (b) band. It thus shows that
S2 indeed connects the 9th and 8th bands. The crossing of S2
surface band at �G is more clearly seen, by comparing the 2D
projected bulk (Fig. 6b) and the slab (Fig. 6c) calculations
magnified near the crossing point. The crossing of the S2
surface band at �G is distinguished in Fig. 6c, by following the
eigenenergies highlighted with the red markers. Note that no such
crossing exists for the calculation of bulk in Fig. 6b. S2 thus
possesses a similarity to the Dirac cone that connects the gap with
the crossing at �G, and is indeed a topologically protected surface
state.

Here we note that the spin-polarized topological S2 and the
surface Dirac cone are both derived as a consequence of SOI, but
in different processes. For the case of S2 in gap 9� 8, we see that
n0 changes to 1 by including the SOI. It thus indicates the band
inversion associated with the 8th, 9th and 10th bands occurring at
G (see Fig. 4c,d) induced by the SOI. This situation is fairly
similar to the topological phase transition being discussed in 3D
strong topological insulators31. For the surface Dirac cone in gap
7� 6, on the other hand, n0¼ 1 is realized already in the non-
relativistic case (Fig. 4c), due to the inversion of A1g and A2u

bands introduced by Bi6p–Pd4d mixing. This non-relativistic
situation should be rather similar to the 3D Dirac semimetals32,33,
as represented by the bulk Dirac points appearing along Z–M and
Z–X (Fig. 4a), which may accompany the spin-degenerate surface
states (Fermi arcs). The role of the SOI in this case is the gap
opening at these bulk Dirac points, giving rise to the spin-
polarized surface Dirac cone connecting the gap edges.

The next future step for b-PdBi2 should be the direct
elucidation of the superconducting state. Low-temperature ultra-
high-resolution ARPES will surely be a strong candidate for such
investigation34,35. There may be a chance to observe non-trivial
superconducting excitations, by selectively focusing on the surface
and bulk band dispersions as experimentally presented in Bi2Se3/
NbSe2 thin film34. Scanning tunnelling microscope/spectroscopy,
on the other hand, can locally probe the superconducting state
around the vortex cores. As theoretically suggested, it may capture
the direct evidence of Majorana mode4,11,36,37. We should note
that b-PdBi2 will also provide a solid platform for bulk

measurements such as thermal conductivity and nuclear
magnetic resonance, which are expected to give some
information on the odd-parity superconductivity18,19. It may
thus contribute to making the realm of superconducting
topological materials, and pave the way to various new findings
such as the direct observation of Majorana fermions dispersion
and/or surface Andreev bound states36,37, clarification of its
relation to the possible odd-parity superconductivity11,17 and
bulk-surface mixing effect36,38.

Methods
Crystal growth. Single crystals of b-PdBi2 were grown by a melt growth method.
Pd and Bi at a molar ratio of 1:2 were sealed in an evacuated quartz tube,
pre-reacted at high temperature until it completely melted and mixed. Then, it was
again heated up to 900 �C, kept for 20 h, cooled down at a rate of 3 �C h� 1 down to
500 �C and rapidly quenched into cold water. The obtained single crystals had
good cleavage, producing flat surfaces as large as B1� 1 cm2. The resistivity
shown in Fig. 1b and the magnetic susceptibility shown in Fig. 1c exhibit the clear
superconducting transition at Tc¼ 5.3 K.

Angular-resolved photoemission spectroscopy (ARPES). ARPES measurement
with the HeIa light source (21.2 eV) were made at the Department of Applied
Physics, The University of Tokyo, using a VUV5000 He-discharge lamp and an
R4000 hemispherical electron analyzer (VG-Scienta). The total energy resolution
was set to 10 meV. Samples were cleaved in situ at around room temperature and
measured at 20 K.

Spin- and angular-resolved photoemission spectroscopy (SARPES). SARPES
with the HeIa light source (21.2 eV) was performed at the Efficient SPin REsolved
SpectroScOpy (ESPRESSO) end station attached to the APPLE-II-type variable
polarization undulator beamline (BL-9B) at the Hiroshima Synchrotron Radiation
Center (HSRC)29. The analyzer of this system consists of two sets of very-low-
energy electron diffraction spin detectors, thus enabling the detection of the
electron spin orientation in three dimension39. The angular resolution was set to
±1.5� and the total energy resolution was set to 35 meV. Samples were cleaved
in situ at around room temperature and measured at 20 K.

Band calculations. First-principles electronic structure calculations within the
framework of the density functional theory were performed using the full-potential
linearized augmented plane-wave method as implemented in the WIEN2k code40,
with the generalized gradient approximation of Perdew, Burke and Ernzerhof
exchange-correlation function41. SOI was included as a second variational step
with a basis of scalar-relativistic eigenfunctions.

The experimental crystal data (a¼ 3.362 Å, c¼ 12.983 Å, z(Bi)¼ 0.363) were
used for the bulk calculations. The (001) surface was simulated by a slab model; a
stacking of 11 PdBi2-triple layers along the c axis with a 15 Å of vacuum layer,
forming a tetragonal crystal structure of space group P4/mmm with the lattice
constants of a¼ 3.362 Å and c¼ 83.423 Å.

The plane-wave cutoff energy was set to RMTKmax¼ 9, where the muffin tin
radii are RMT¼ 2.5 a.u. for both Bi and Pd. The Brillouin zone was sampled with
the Monkhorst-Pack scheme42 with momentum grids finer than Dk¼ 0.02 Å� 1

(for example, a G-centred 38� 38� 38 k-point mesh was used for the Fermi
surface visualization, corresponding to Dk¼ 0.009 Å� 1).
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