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School environment associates 
with lung function and autonomic 
nervous system activity in children: 
a cross-sectional study
Inês Paciência1,2,3*, João Cavaleiro Rufo1,2,3, Diana Silva   1, Carla Martins1,  
Francisca Mendes   1, Tiago Rama1, Ana Rodolfo1, Joana Madureira2, Luís Delgado   1, 
Eduardo de Oliveira Fernandes2, Patrícia Padrão   3,4, Pedro Moreira3,4, Milton Severo3,5, 
Maria Fátima Pina6,7,8, João Paulo Teixeira3,9, Henrique Barros3,5, Lasse Ruokolainen   10, 
Tari Haahtela11 & André Moreira1,3,4

Children are in contact with local environments, which may affect respiratory symptoms and allergic 
sensitization. We aimed to assess the effect of the environment and the walkability surrounding schools 
on lung function, airway inflammation and autonomic nervous system activity. Data on 701 children 
from 20 primary schools were analysed. Lung function, airway inflammation and pH from exhaled 
breath condensate were measured. Pupillometry was performed to evaluate autonomic activity. Land 
use composition and walkability index were quantified within a 500 m buffer zone around schools. The 
proportion of effects explained by the school environment was measured by mixed-effect models. 
We found that green school areas tended to be associated with higher lung volumes (FVC, FEV1 and 
FEF25–75%) compared with built areas. FVC was significantly lower in-built than in green areas. After 
adjustment, the school environment explained 23%, 34% and 99.9% of the school effect on FVC, FEV1, 
and FEF25–75%, respectively. The walkability of school neighbourhoods was negatively associated with 
both pupil constriction amplitude and redilatation time, explaining −16% to 18% of parasympathetic 
and 8% to 29% of sympathetic activity. Our findings suggest that the environment surrounding 
schools has an effect on the lung function of its students. This effect may be partially mediated by the 
autonomic nervous system.

Urbanization is one of the leading global trends of the 21st century, with significant changes in living standards, 
lifestyles, social behaviour, and health. Steady urbanization has increased the relevance of understanding the rela-
tionships between the environment and human health and wellbeing. While an increased standard of living offers 
many opportunities, unhealthy diets, physical inactivity, and exposure to urban air pollution are unfortunate side 
effects of urbanization1.

Over the past decades, urbanization and the Western lifestyle have been linked to the rising prevalence of 
inflammatory disorders, including asthma and allergic diseases. Epidemiological studies have demonstrated 
that several urban factors, such as traffic-related air pollution, residential proximity to roads and heavy traffic, 
and household characteristics, are associated with reduced lung function2,3 and increased risk of asthma-related 
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symptoms4,5. However, the pathways whereby they influence lung function and the development of asthma are 
complex and interactive. One of the possible mechanisms is the induction of a persistent inflammatory state 
mediated by the immune system6. Airway inflammation is an important factor in the pathogenesis and patho-
physiology of asthma. The dysregulation of endogenous immune processes, particularly by the autonomic nerv-
ous system, are, in part, responsible for the development and chronicity of asthma7.

The human airways are innervated by efferent and afferent autonomic nerves, which regulate many aspects of 
airway physiology, including airway smooth muscle tone, mucus secretion, microvascular permeability, and the 
recruitment and activation of inflammatory cells8,9. The parasympathetic nervous system is the dominant neu-
ronal pathway in the control of smooth muscle tone and secretion in airways8. In asthmatics patients, increased 
basal parasympathetic tone is observed10,11. This results in constricted airways and an enhanced bronchocon-
striction response to different inhaled agents that are known to stimulate airway C-fibre sensory nerves12,13. In 
turn, their activation due to environmental exposure may lead to the release of neuropeptides locally by transient 
receptor potential (TRP) cation channels, resulting in cough, airway irritation, mucous secretion, and bronchoc-
onstriction mediated by the efferent pathways of the autonomic nervous system14,15. Nevertheless, these mecha-
nisms are associated not only with urban factors but also with individual determinants and behaviours, such as 
physical activity, diet, and obesity16,17.

The complexity of the interactions among urbanization, environmental change and human health and wellbe-
ing requires an integrated approach. Therefore, to be effective in promoting health and healthy behaviour, public 
health interventions should address not only individual characteristics but also the physical and social environ-
ment1. A few studies have focused on the relationship between the surrounding greenness levels in children’s 
living environment and their health18–20. However, since children spend a large proportion of their time at school, 
the school environment has recently garnered attention as a potential contributor to child health21. Thus, the aim 
of the present study was to evaluate the effect of school neighbourhoods and their walkability on lung function, 
airway inflammation and autonomic nervous system activity in children.

Results
An increased proportion of built areas in the school neighbourhood was associated with significantly lower values 
of FVC (model 0: β = −5.13, 95% CI −9.36, −0.91; model 2: β = −4.98, 95% CI −10.3, −0.35), while green areas 
showed a tendency to be associated with higher values of FVC, FEV1 and FEF25–75% (Supplementary Table S1). The 
highest ICCs were observed for FEV1 and FVC (0.40% and 0.04%, respectively), indicating that approximately 1% 
of the total variation in these parameters was found between schools. After adjustment for age, sex, asthma, WHO 
z-score for BMI and family history of asthma or allergy, the neighbouring environment explained 98%, 96%, 
and >99.9% of the effect of school on FVC, FEV1, and FEF25–75%, respectively (model 5, Table 1; Supplementary 
Fig. S1). No associations were observed between school neighbourhood and EBC pH (Supplementary Fig. S2) or 
exhaled NO (Supplementary Fig. S3).

No significant associations were observed between green or built areas and pupillometry parameters. Still, 
a positive trend was found between built areas and pupillometry parasympathetic parameters (ACV, MCV and 
constriction amplitude; Supplementary Fig. S4a). After adjustment, estimates of ICCs for pupillometry suggested 
that between 0% and 22% of the total variance was at the school level. The neighbouring environment explained 
6% of the effect of school on MCV, 8% of its effect on ADV, 11% of its effect on constriction amplitude and 13% of 
its effect on T75 (model 5, Table 1; Supplementary Fig. S4b).

Neighbourhood walkability explained >99.9% of the school effect on FVC, FEV1 and FEF25–75%. Regarding 
autonomic nervous system response, neighbourhood walkability explained 11% and 18% of the parasympathetic 
outcomes (constriction amplitude and MCV, respectively) and 7% and 29% of the pupillometry sympathetic 
parameters (ADV and T75, respectively) (Table 2; Supplementary Table S2). Lung function and exhaled NO 
decreased nonsignificantly with neighbourhood walkability (Supplementary Figs S5 and S7), while a positive 
association was observed for exhaled breath condensate pH level (Fig. S6). After adjustment for age, sex, asthma 
and WHO z-score for BMI, a significant negative association between walkability around schools and constric-
tion amplitude (β = −1.62, 95% CI –2.87, −0.37) and T75 (β = −0.19, 95% CI –0.36, −0.02) was observed. 
Additionally, walkability showed a tendency to be associated with lower values of ACV, MCV and baseline pupil 
diameter (Supplementary Fig. S8a,b).

Discussion
We report for the first time an association among school neighbourhood environments, lung function, and auto-
nomic function in children. Built areas around schools were inversely associated with children’s lung function, 
specifically forced vital capacity, in both crude and adjusted mixed-effect models. Moreover, a non-significant 
relationship between schools surrounding greenness and lung function parameters was observed. On the basis of 
our results, it is plausible that effects of environment on lung function may be partly neurogenically mediated, as 
schools’ neighbourhood walkability explained up to 14% and 30% of the effect of school on parasympathetic and 
sympathetic activity, respectively.

Our study has a few limitations. The cross-sectional design does not allow the establishment of causal relations 
or the analysis of cumulative exposure to different neighbourhoods. Furthermore, no on-site monitoring data 
regarding air pollution levels were measured, and we did not address the quality of green spaces, vegetation types 
or biodiversity. Nevertheless, several studies on urban environmental effects reported that land use could be used 
as an indicator of urban-related air pollution, such as traffic, without outdoor air monitoring22,23. Additionally, 
the use of an exposure metric based on urban land use thereby incorporates traffic-related emissions, but also 
includes other urban factors22,23. Rosenlund, et al.24 also found a reasonable agreement between land-use and 
traffic emissions. Nevertheless, neighbourhood land use patterns and walkability around schools were quantified 
numerically, avoiding bias related to participants’ perception of their neighbourhoods. Walkability is an objective 

https://doi.org/10.1038/s41598-019-51659-y


3Scientific Reports |         (2019) 9:15156  | https://doi.org/10.1038/s41598-019-51659-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Outcome

β (95% CI) School

ICC Variance Explained variation*PC1 PC2

FVC

Model 0 2.17 (−1.98; 6.33) −5.13 (−9.36; 
−0.91) — — —

Model 1 — — 1.78% 4.48 Reference

Model 5a 3.66 (−3.01; 10.3) −1.33 (−7.87; 5.02) 0.04% 0.08 98.2%

FEV1

Model 0 2.78 (−1.07; 6.63) −3.11 (−7.02; 0.81) — — —

Model 1 — — 2.13% 4.53 Reference

Model 5a 1.54 (−4.58; 7.65) 1.07 (−4.93; 7.07) 0.40% 0.16 96.5%

FEF25%–75%

Model 0 5.05 (−1.27; 11.4) −0.50 (−6.94; 5.93) — — —

Model 1 — — 0.37% 2.14 Reference

Model 5a −5.19 (−16.2; 5.77) 4.86 (−5.89; 15.6) 7.10E-7% 3.71E-6 >99.9%

EBC pH

Model 0 0.02 (−0.20; 0.24) −0.05 (−0.17; 0.17) — — —

Model 1 — — 2.04% 4.33 Reference

Model 5a 0.12 (−0.53; 0.77) −0.002 (−0.65; 
0.64) 9.32% 0.09 97.8%

Exhaled NO

Model 0 0.20 (−0.02; 0.41) −0.14 (−0.35; 0.07) — — —

Model 1 — — 3.98% 0.03 Reference

Model 5b −0.12 (−0.68; 0.44) −0.37 (−0.93; 0.18) 6.76% 0.05 −54.6%

Baseline pupil diameter

Model 0 −0.09 (−0.32; 0.14) −0.03 (−0.26; 0.19) — — —

Model 1 — — 20.3% 0.158 Reference

Model 5c −0.12 (−0.84; 0.60) 0.02 (−0.70; 0.75) 22.1% 0.178 −12.5%

Final pupil diameter

Model 0 −0.08 (−0.24; 0.08) −0.10 (−0.26; 0.06) — — —

Model 1 — — 14.1% 0.053 Reference

Model 5c −0.10 (−0.51; 0.31) −0.07 (−0.48; 0.35) 15.1% 0.059 −10.3%

ACV

Model 0 −0.11 (−0.29; 0.07) 0.17 (−0.01; 0.35) — — —

Model 1 — — 15.7% 0.075 Reference

Model 5c −0.05 (−0.56; 0.45) 0.23 (−0.28; 0.74) 16.7% 0.081 −8.24%

MCV

Model 0 −0.06 (−0.32; 0.19) 0.26 (0.01; 0.51) — — —

Model 1 — — 12.1% 0.122 Reference

Model 5c 0.03 (−0.61; 0.68) 0.26 (−0.39; 0.91) 12.7% 0.118 −6.12%

Constriction amplitude

Model 0 −0.25 (−1.56; 1.04) 1.17 (−0.12; 2.45) — — —

Model 1 — — 8.38% 2.07 Reference

Model 5c −0.07 (−2.80; 2.65) 1.50 (−1.26; 4.27) 7.52% 1.85 10.9%

ADV

Model 0 −0.02 (−0.10; 0.07) 0.06 (−0.03; 0.14) — — —

Model 1 — — 8.57E-8% 8.10E-11 Reference

Model 5c −0.02 (−0.13; 0.09) 0.06 (−0.05; 0.17) 7.82E-8% 7.48E-11 7.60%

T75

Model 0 0.21 (0.01; 0.42) −0.13 (−0.33; 0.06) — — —

Model 1 — — 4.53% 0.023 Reference

Model 5c 0.31 (−5.07E-4; 0.63) −0.10 (−0.42; 0.22) 3.89% 0.020 13.0%

Table 1.  Multilevel model analysis of the association between individual and neighbouring environment 
and lung function, pH, exhaled NO and pupillometry parameters explained by school. *corresponds to the 
proportion of between-schools variance that could be explained by exposure and individual characteristics; 
PC1: discontinuous dense urban fabric, discontinuous medium density urban land, green urban areas, and 
water bodies; PC2: construction sites, land without current use, and railways; 95% CI: 95% confidence interval; 
ICC: intra-class correlation coefficient; FVC: forced vital capacity; FEV1: forced expiratory volume in the first 
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measure of built environments and represents how friendly a neighbourhood area is to walking and bicycling; 
this measure is shaped by different urban-design features such as residential density, pedestrian-friendly design, 
street connectivity and diversity of neighbourhood land use25. Living in neighbourhoods characterized by higher 
walkability was found to be associated with more walking and cycling for transport and leisure and with moderate 
to vigorous physical activity26 and reduced obesity and overweight27. Walkable urban areas may offer health bene-
fits, but may also come with health costs when exposure to air pollution is considered28. Our study considers only 
the walkability around schools, however, several studies have reported the impact of walkability around schools 
in planning school neighbourhoods (accessible schools with low traffic, sidewalks), in decisions that support the 
active commuting to school29, and also in the decrease of automobile dependence in childhood that carries over 
into adolescence and adulthood29. In addition, assessing the walkability around individual’s home may not neces-
sarily reflect the facilities that they use or environments in which they are active30. Moreover, indicators of asthma 
severity, such as number of asthma attacks, attendance in emergency service and hospitalization due to asthma 
in the last 12 months, and asthma medication use were not considered. However, time-dependent exposure to 
the effect of school neighbourhoods is expected to be associated with severe exacerbation of asthma in asthmatic 
children. Nevertheless, it will be important to assess the effect of long-term exposure to school neighbourhoods to 
understand the extent of health effects. The potential selection bias is also a limitation; however, no significant dif-
ferences were found between the children not included in the study and those included, being expected that our 
associations were most likely not biased. Additionally, we measured the effect of schools’ neighbourhoods using 
a robust statistical tool that allowed a multilevel approach, considering the complex relationship among the dif-
ferent levels of variables. Our results are also limited by low intraclass correlation coefficients (ICCs) to estimate 
the percent of total variance in outcomes between neighbourhoods generated by the variables of the multilevel 
analysis. However, even low ICCs may coexist with important fixed effects of contextual variables. Public health 
is full of examples of risk factors that explain very little inter-individual variance but are considered important 
predictors of health outcomes. Thus, as Duncan and colleagues31 have stated, even variables with low ICCs are 
considered important predictors of health outcomes and are compatible with important policy effects of neigh-
bourhood characteristics on health. Since ICCs represent the proportion of the variance at the school level rather 
than individual, they may indicate to what extent school interventions and policies influence outcome-relevant 
individual predictors32. Our results suggest that the school neighbourhood explains an important portion of the 
variance for all outcomes suggesting that school-level changes may have an important impact on children health 
outcomes. Furthermore, higher ICCs suggest that the effect on lung function and autonomic nervous system 
activity in children may be predicted by school neighbourhood as well as characteristics of the children.

Our study has also important strengths. To our knowledge, this is the first community-based study evaluating 
the effect of schools’ neighbourhoods on lung function, airway reversibility and inflammation, and autonomic 
nervous system activity. Additionally, we performed a comprehensive clinical assessment with a large number of 
participants, including an assessment of autonomic status that allowed us to assess the children’s ability to respond 
to stress. Different studies have demonstrated that subjects with increased bronchial hyperresponsiveness have 
higher vagal tone, proposing that increased parasympathetic activity could predispose individuals to increased 
bronchomotor tone33,34. However, according to the European Respiratory Society (ERS) and American Thoracic 
Society (ATS) guidelines, bronchial responsiveness tests are suitable for adults and older children. Young children 
have a short concentration span and relatively poor cooperation on these pulmonary function tests35. Although 
this study assessed the effect of schools’ neighbourhoods on lung function, asthma is characterized by airflow 
obstruction36 with changes in lung function parameters37. Regular assessment of lung function, namely FEV1, 
might help to identify children at risk for developing a progressive decline in airflow38. Furthermore, airway 
obstruction in children is often triggered by environmental factors. Previous studies have reported associations 
between exposure to urban areas and adverse respiratory health effects, especially in children, with the ESCAPE 
meta-analysis of data for 5921 children from five European birth cohorts reporting that annual exposures to NO2, 
NOx, PM10, and PM2.5 were associated with reduced lung function2. The negative impact of exposure to urban 
environment has also been further reinforced by Mudway, et al.3, in which exposure to urban air, particularly 
to NOx and NO2, was inversely associated with lung function, and by Gauderman, et al.39, which showed that 
reductions in pollution delivered significant improvements in FEV1 and FVC. Taken together, our findings may 
contribute support for plans of action aiming to improve urbanization plans in cities and thereby improve res-
piratory health in children. This study assessed the effects of green and built areas within an urban context, while 
most previous studies of environmental impacts on asthma and allergies have reported differences between urban 
and rural environments. Our results suggested that the presence of urban green areas has a positive effect on 
lung function. Our findings suggest that autonomic nervous system may play a role in mediating the interaction 
between the environment and the individual (Fig. 1).

Several studies have addressed the use of pupillometry to measure autonomic nervous system activity, using 
different indices from the constriction (parasympathetic) and dilation (sympathetic) phases in response to 
light40,41. Autonomic balance can change with an increase in vagal activity by the simple act of viewing natural 

second of FVC; FEF25–75: forced expiratory flow in the middle portion of FVC; EBC: Exhaled breath condensate; 
ACV: Average constriction velocity; MCV: Maximum constriction velocity; ADV: Average dilation velocity; 
T75: the total time taken by the pupil to recover 75% of its initial resting diameter after it reached the peak of 
constriction. Model 0 only included the PC1 and PC2 score; aModel 1 is null model, baseline model without 
any exposure variable; Model 5a is additionally adjusted for age, sex, asthma, WHO z-score for BMI and family 
history of asthma or allergy; Model 5b is additionally adjusted for age, sex, asthma, atopy, WHO z-score for BMI 
and family history of asthma or allergy; Model 5c is additionally adjusted for age, sex, asthma, and WHO z-score 
for BMI.
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Outcome Walkabilityβ (95% CI)
School
ICC Variance Explained variation*

FVC
Model 0 −0.58 (−2.79; 1.63) — — —
Model 1 — 1.78% 4.48 Reference
Model 5a −2.62 (−6.00; 0.77) 1.32E-6% 2.51E-6 >99.9%
FEV1

Model 0 −1.02 (−3.07; 1.02) — — —
Model 1 — 2.09% 4.53 Reference
Model 5a −2.63 (−5.71; 0.46) 4.47E-7% 7.09E-7 >99.9%
FEF25%-75%

Model 0 −1.27 (−4.74; 1.98) — — —
Model 1 — 0.37% 2.14 Reference
Model 5a −0.72 (−6.33; 4.89) 5.27E-7 2.77E-6 >99.9%
EBC pH
Model 0 0.09 (−0.03; 0.21) — — —
Model 1 — 3.48% 0.03 Reference
Model 5a −0.004 (−0.34; 0.33) 8.52% 0.08 >−99.9%
Exhaled NO
Model 0 −0.05 (−0.17; 0.07) — — —
Model 1 — 3.98% 0.03 Reference
Model 5b −0.07 (−0.38; 0.23) 8.07% 0.06 −90.6%
Baseline pupil diameter
Model 0 −0.22 (−0.34; −0.09) — — —
Model 1 — 20.4% 0.158 Reference
Model 5c −0.18 (−0.54; 0.17) 22.1% 0.178 −12.5%
Final pupil diameter
Model 0 −0.04 (−0.13; 0.05) — — —
Model 1 — 14.1% 0.053 Reference
Model 5c −0.05 (−0.26; 0.16) 15.1% 0.059 −10.3%
ACV
Model 0 −0.22 (−0.32; −0.12) — — —
Model 1 — 14.7% 0.070 Reference
Model 5c −0.21 (−0.46; 0.03) 16.7% 0.081 −16.4%
MCV
Model 0 −0.31 (−0.45; −0.17) — — —
Model 1 — 12.3% 0.112 Reference
Model 5c −0.29 (−0.60; 0.02) 10.1% 0.091 18.0%
Constriction amplitude
Model 0 −1.94 (−2.65; −1.23) — — —
Model 1 — 8.38% 2.073 Reference
Model 5c −1.62 (−2.87; −0.37) 7.52% 1.847 10.9%
ADV
Model 0 0.01 (−0.04; 0.06) — — —
Model 1 — 8.57E-8% 8.10E-11 Reference
Model 5c 0.005 (−0.06; 0.07) 7.82E-8% 7.48E-11 7.60%
T75
Model 0 −0.17 (−0.29; −0.06) — — —
Model 1 — 4.53% 0.023 Reference
Model 5c −0.19 (−0.36; −0.02) 3.19% 0.016 29.3%

Table 2.  Multilevel model analysis of the association between individual and walkability and lung function, pH, 
exhaled NO and pupillometry parameters explained by school. *corresponds to the proportion of between-schools 
variance that could be explained by exposure and individual characteristics; 95% CI: 95% confidence interval; ICC: 
intra-class correlation coefficient; FVC: forced vital capacity; FEV1: forced expiratory volume in the first second 
of FVC; FEF25–75: forced expiratory flow in the middle portion of FVC; EBC: Exhaled breath condensate; ACV: 
Average constriction velocity; MCV: Maximum constriction velocity; ADV: Average dilation velocity; T75: the 
total time taken by the pupil to recover 75% of its initial resting diameter after it reached the peak of constriction. 
Model 0 only included the PC1 and PC2 score; a Model 1 is null model, baseline model without any exposure 
variable; Model 5a is additionally adjusted for age, sex, asthma, WHO z-score for BMI and family history of asthma 
or allergy; Model 5a is additionally adjusted for age, sex, asthma, atopy, WHO z-score for BMI and family history of 
asthma or allergy; Model 5c is additionally adjusted for age, sex, asthma, and WHO z-score for BMI.
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scenes, as has been recently shown by Gladwell and colleagues42. In their study, a slideshow containing natural 
scenes, compared with another that incorporated built or urban scenes lacking green space, induced changes in 
autonomic control via increases in vagal modulation42. Additionally, a review of field experiments conducted 
in 24 forests across Japan on the effects of shinrin-yoku (taking in the forest atmosphere, or “forest bathing”) 
showed that forest environments could lower concentrations of cortisol, decrease heart rate and blood pressure, 
increase parasympathetic nerve activity, and lower sympathetic activity compared with city settings43. However, 
comparisons of our findings with those of other studies are limited by the different methodologies used to assess 
autonomic nervous system activity and environmental exposure. The differences found in autonomic nervous 
system response may be related to the effects of the type of natural settings (parks, gardens, sports fields, forests, 
tree corridors, or other green space types) and the time spent in each area44. In this study, we assess the effect of 
green areas in an urban environment, where green areas may be smaller and where children are expected to spend 
less time, as opposed to previous studies in Japan that reported the effect of green areas outside the city, specifi-
cally, in forest areas43. Thus, urban green areas may have a different effect on autonomic nervous system activity. 
In addition, several animal studies also highlight the role of autonomic nervous system balance in the interaction 
between the environment and the individual45,46.

In our study, built areas around schools adversely affect lung function but not eosinophilic airway inflamma-
tion. While the effect of outdoor air pollution on asthma and related symptoms is already recognized, the under-
lying mechanisms remain unclear47. Air pollutants, such as particulate matter, ozone, and nitrogen dioxide, can 
activate the transient receptor potential (TRP) cation channels on airway C-fibre sensory nerves, namely, TRP 
vanilloid type 1 (TRPV1) and ankyrin (TRPA1), and cause several responses, such as bronchoconstriction, mucus 
secretion, airway irritation, and cough, mediated by the efferent pathways of the autonomic nervous system15. 
Akopian et al. and Geppetti et al. described the association between environmental pollutants and the expression 
of TRP channels in pulmonary disease, providing evidence for the role of autonomic nervous system activity in 
the regulation of airway function15,48. Therefore, exposure to air pollution is expected to be higher in built areas 
around schools’ neighbourhood than in green areas and may be associated with an activation and/or increased 
expression of TRPV1 and TRPA1. This may, in turn, result in increased parasympathetic activity with subsequent 
decreased lung function.

Figure 1.  Environment-lung function interaction: a hypothesis focused on autonomic nervous system activity.
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Recent studies have shown evidence of beneficial associations between greenness and health outcomes. Urban 
green spaces not only provide balance for ecosystems but also promote physical activity, psychological well-being, 
and public health in urban populations49. Greenness may influence health by promoting physical activity and 
opportunities for social interactions, decreasing the risk of many chronic diseases and psychophysiological stress 
and reducing air pollution levels, noise, and heat exposure50. In children, exposure to green areas has been asso-
ciated with reduced obesity and sedentary behaviours50,51. Ruokolainen and colleagues have shown the amount 
of forest and agricultural land around homes to be inversely associated with the risk of atopy in children52. 
These findings provide support for a role of natural environmental on the regulation of the TH1, TH2 immune 
response mediated by the children commensal microbiota52,53. Furthermore, in children living in greener areas of 
Vancouver, as measured by the normalized differential vegetation index, had a slightly reduced risk of incidence 
of asthma (aOR = 0.96; 95% CI 0.93–0.99)54. Similarly, lower asthma prevalence in areas with greater tree density 
in New York City has been reported55. Nevertheless, no individual-level studies are available to compare with 
our findings; however, these associations are similar to the reported results of previous studies on the association 
between greenness and asthma. Although several studies reported the role of greenness as a buffer against expo-
sure to air pollution and the positive effect of greenspaces in urban context50,56, air pollution can also affect plant 
health and functions and limit pollutant dispersion and thus increase local pollutant concentration57,58.

Exploring the effects of schools’ neighbourhoods is crucial for planning, defining guidelines, and making 
recommendations to cities planners and decision makers in order to create healthier and sustainable urban envi-
ronments, with potential to protect citizens against the development of asthma and allergic diseases. Thus, our 
results meet the goals of the WHO European Healthy Cities Network, demonstrating the importance of policies 
and scientific evidence for health development, public health and urban regeneration to promote and protect 
human health. Furthermore, this study may contribute to changes in urban environments, such as introducing 
or improving existing green spaces (parks, green corridors, urban gardens or green exercise programmes), which 
would provide opportunities for health improvement and social interactions, thus adding to the additional bene-
fits of green urban areas to the local economies, sustainability and self-sufficiency of cities.

The present study demonstrates that the neighbourhoods around schools may have an effect on child health, 
specifically on lung function and on autonomic nervous system activity. The effects on lung function may be 
potentially mediated by an increase in parasympathetic activity. These results also underline the positive health 
effects of green areas in school neighbourhoods, contributing to the implementation of urban planning policies 
and practices that may promote a healthy lifestyle and reconnection with nature.

Methods
The present study included participants from a cross-sectional study assembled in Porto, Portugal. The 20 schools 
with the highest number of students were selected from a total of 53 primary schools, corresponding to a total 
of 71 assessed classrooms (see the methods section in the Online Repository). The evaluations included a ques-
tionnaire and a physical and clinical assessment of children. The University Health Ethics Committee approved 
the study, and informed consent was obtained from the children’s legal guardians. All research was performed in 
accordance with the Declaration of Helsinki.

Questionnaire.  The evaluation included a self-administered ISAAC-based questionnaire filled out by par-
ents, covering information on social, demographic and behavioural characteristics and questions regarding the 
respiratory/allergic health of the children (ever had and over the past 12 months) (see the methods section in the 
Online Repository).

Physical and clinical assessment.  A physical and clinical assessment was also performed at each primary 
school by a trained health professional. Spirometry with bronchodilation, exhaled level of nitric oxide, exhaled 
breath condensate (EBC), pupillometry, skin prick test (SPT), weight, and height were measured for all partici-
pants (physical and clinical assessment methods are detailed in the Supplementary Material).

Pupillary measurements were taken with a portable infrared PLR-200 pupillometer (NeurOptics PLR-200™ 
Pupillometer, NeurOptics Inc., CA). Children spent at least 15 min in a semi-dark and quiet room to allow pupil-
lary adjustment to the low level of light, after which they were instructed to focus with the eye that was not being 
tested on a small object three metres away, keeping their head straight and eyes wide open during targeting and 
measurement. Light-emitting diodes briefly illuminated the eye once with a peak wavelength of 180 nm. One 
pupil light response curve for each eye was recorded for each child. Data on the diameter (millimetres) of the 
pupil before the light stimulus (initial) and at constriction peak (minimal), relative constriction amplitude (%), 
maximum constriction velocity (MCV), average constriction (ACV) and dilation (ADV) velocities (mm/s), and 
total time (seconds) taken by the pupil to recover 75% of its initial resting diameter after it reached the peak of 
constriction (T75) were recorded for each child. Pupillometry is a simple, noninvasive technique that can provide 
valuable data concerning the functioning of both branches of the autonomic nervous system. Pupil diameter, 
ACV, MCV, and constriction amplitude are related to parasympathetic activity, while ADV and T75 are measures 
of sympathetic activity59 (Supplementary Material).

Urban land use.  The land use near each school was calculated on the basis of the European Urban Atlas using 
a geographical information system (GIS). The Urban Atlas (https://www.eea.europa.eu/data-and-maps/data/
copernicus-land-monitoring-service-urban-atlas) city information is currently the most up-to-date, harmonized 
database for the European Union countries, offering a high-resolution land-use map of cities (population ≥ 100,000), 
mapped using a total of 20 land use classes (Supplementary Table S3)60. A circular buffer of 500 metres around each 
participant’s primary school address was created (Fig. 2). This buffer was based on reasonable walking distances 
described by Browson and colleagues61, corresponding to approximately 6 minutes’ walking distance for children.

https://doi.org/10.1038/s41598-019-51659-y
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-urban-atlas
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Walkability.  The term walkability has been used to conceptualise a combination of built environment factors 
such as street connectivity, residential density, net area retail and land use mix, that are conducive to walking (i.e. 
walking to destinations, including work, school, shopping)25. Walkability is an indicator of how user-friendly a 
neighbourhood area is for walking and biking25.

The walkability index was calculated on the basis street connectivity, residential density, and land use mix 
(expressed as an index of entropy), within the 500-metre buffer. This calculation has been previously described 
and determined across Porto neighbourhoods by Ribeiro and colleagues62. Briefly, the street connectivity was 
calculated from the density of street junctions within the primary school’s neighbourhood. Residential density 
in each neighbourhood was obtained by calculating the density (number/area) of households. Land use mix 
expresses the diversity of land-use types in each neighbourhood (commercial, residential, recreational/leisure, 
business/industrial, educational and others).

After these three components were calculated for each neighbourhood (connectivity, residential density, and 
land use mix), the raw values were normalized using z-scores. The walkability index was calculated according to 
the following formula:

= + +⁎ – – –Walkability (2 z connectivity) (z residential density) (z land use mix)

This formula is an adapted version of the formula of Frank and colleagues25. Next, the values were normalized 
between zero (least walkable) and one (most walkable). Primary schools’ neighbourhoods were characterized 
according to tertiles (from low to high) of neighbourhood walkability (Fig. 3).

Participants.  In total, 1602 children (7–12 years old), all in the 3rd and/or 4th grades, were invited to participate. 
Among them, 686 did not return the signed informed consent form and 58 refused to undergo clinical tests. Among 
the remaining 858 children, 146 were excluded owing to poor-quality data. Thus, this study was based on data from 701 
children (50.9% girls). Of those, almost 9.4% reported wheezing symptoms, and 12% reported cough symptoms. The 
prevalence of asthma, rhinitis, current rhinitis, and atopy were 10.7%, 13.0%, 30.4%, and 35.5%, respectively (Table 3).

Data analysis.  The Kolmogorov-Smirnov test was used to check continuous variables for normality. The 
Mann-Whitney test was used to compare variables between girls and boys. Significant differences were defined 
according to an α-value of 5% (p < 0.05).

Principal component analysis (PCA) was used to identify major neighbourhood patterns based on 20 land 
use classes. Varimax rotation was performed to simplify the interpretation of the factor loading structure. A fixed 
number of factors were extracted, and two principal components were selected on that basis. The PCA divided 
neighbourhood land use around schools into two principal components (PC1, PC2) (Supplementary Table S4). 
Between the two factors, PC1 had higher absolute correlation with discontinuous dense urban fabric, discontinuous 
medium-density urban land, green urban areas, and water bodies while PC2 had higher absolute correlation with 

Figure 2.  Neighbourhood land use around the 20 evaluated primary schools in Porto. Each school was 
represented by a point and a circular buffer of 500 metres. For this assessment, we used the ArcGIS 10.4 
Network Analyst tool (Environmental Systems Research Institute, ESRI, Redlands, CA, USA).

https://doi.org/10.1038/s41598-019-51659-y
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Figure 3.  Neighbourhood walkability index around each primary school. Each school, represented by 
a number and a circular buffer of 500 metres, was characterized according to tertiles of neighbourhood 
walkability. For this assessment, we used the ArcGIS 10.4 Network Analyst tool (Environmental Systems 
Research Institute, ESRI, Redlands, CA, USA).

Characteristics Total n = 701 Girls n = 357 Boys n = 344 p value*
Age [years (mean ± SD)] 9 ± 0.8 9 ± 0.8 9 ± 0.8 0.574

Wheezing symptoms [n (%)] 66 (9.4) 34 (9.5) 32 (9.3) 0.920

Cough symptoms [n (%)] 82 (11.7) 45 (12.6) 37 (10.8) 0.446

Asthma [n (%)]** 75 (10.7) 47 (13.2) 28 (8.1) 0.037

Rhinitis [n (%)] 81 (13.0) 36 (11.3) 45 (14.8) 0.233

Current rhinitis [n (%)] 69 (30.4) 32 (26.8) 37 (34.3) 0.611

Atopy [n (%)] 245 (355) 128 (36.4) 117 (34.5) 0.580

BMI [n (%)] 0.978

   Underweight 33 (4.7) 17 (4.8) 16 (4.7)

   Normal weight 478 (68.2) 242 (67.8) 236 (68.6)

   Overweight 108 (15.4) 57 (16.0) 51 (14.8)

   Obese 82 (11.7) 41 (11.5) 41 (11.9)

EBC pH 6.9 (0.9) 6.8 (0.9) 6.9 (0.9) 0.105

Exhaled NO (ppb) 17.1 (20.1) 14.6 (15.5) 19.6 (23.7) 0.010

Lung function

   FVC (%) 106.8 (15.7) 113.4 (14.9) 99.7 (13.2)  < 0.0001

   FEV1 (%) 102.8 (14.6) 109.3 (13.8) 95.8 (11.8)  < 0.0001

   FEF25–75 (%) 98.1 (24.3) 98.6 (24.3) 97.6 (24.2) 0.486

Pupillometry

   Baseline pupil diameter (mm) 5.3 (0.9) 5.2 (0.9) 5.3 (0.9) 0.137

   Final pupil diameter (mm) 3.4 (0.6) 3.4 (0.6) 3.4 (0.6) 0.745

   ACV (mm/s) −3.9 0.7) −3.9 (0.7) −4.0 (0.7) 0.096

   MCV (mm/s) −5.2 (1.0) −5.1 (1.0) −5.4 (1.0) 0.021

   Constriction amplitude (%) 35.1 (4.8) 34.5 (4.8) 35.6 (4.7) 0.017

   ADV (mm/s) 1.1 (0.3) 1.2 (0.3) 1.1 (0.3) 0.750

   T75 (s) 1.7 (0.7) 1.7 (0.7) 1.8 (0.7) 0.203

Table 3.  Characteristics of the participants. Data reported as median (interquartile range) unless otherwise 
stated. BMI: body mass index; FVC: forced vital capacity; FEV1: forced expiratory volume in the first second 
of FVC; FEF25–75: forced expiratory flow in the middle portion of FVC; EBC: Exhaled breath condensate; ACV: 
Average constriction velocity; MCV: Maximum constriction velocity; ADV: Average dilation velocity; T75: the 
total time taken by the pupil to recover 75 of its initial resting diameter after it reached the peak of constriction.

https://doi.org/10.1038/s41598-019-51659-y
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construction sites, land without current use, and railways. PC1 was characterized as green urban areas, and PC2 as 
built areas. Afterwards, the PC1 and PC2 scores were ranked from 1 to 20, and the rank numbers were divided by 20.

Mixed-effect models with a random effect of school were used to measure the effect of schools on lung function, 
airway inflammation and autonomic nervous system in children. The intraclass correlation coefficient (ICC) and the 
proportion of explained variation were used to quantify the effect of schools and to quantify the effect of individual, 
neighbouring environment, and walkability on the school effect. The effect of schools’ neighbourhoods on children 
health were analysed using a multilevel with individual-level and neighbourhood-level factors. All individual- and 
neighbourhood-level (as median values) factors were used in the multilevel analysis as independent variables. Five 
models were considered for the analysis: crude model (model 0 and 1), neighbourhood-level model (model 2), and 
an individual-neighbourhood level model (mixed effects model, models 3–5). Model 0, only included the PC1 and 
PC2 score or walkability; Model 1, the null model, baseline model without any exposure variable; Model 2 is adjusted 
for PC 1 and PC2 score or walkability; Model 3 is additionally adjusted for age, sex and asthma and atopy for exhaled 
NO; Model 4 is additionally adjusted for WHO z-score for BMI; and Model 5 is additionally adjusted for parental 
education level and family history of asthma or allergy for lung function parameters, exhaled NO and EBC pH. To 
minimize errors due to multiple comparisons, the Bonferroni correction was used to assess statistical significance. 
PCA, mixed-effect models and ICC were computed using the software RStudio, version 1.0.
Received: 11 December 2018; Accepted: 4 July 2019;
Published: xx xx xxxx
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