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A B S T R A C T

In order to aid imaging physicians to effectively screen chest radiography medical images for presence of
Coronavirus Disease 2019 (COVID-19), a novel computer aided diagnosis technology for automatic processing
of COVID-19 images is proposed based on two-dimensional variational mode decomposition (2D-VMD) and
locally linear embedding (LLE). 2D-VMD algorithm is used to decompose normal and COVID-19 images,
and then feature extraction of intrinsic mode functions (IMFs) using Gabor filter. To better extract low-
dimensional parameters which are useful for COVID-19 diagnosis, the performance of two dimensionality
reduction techniques of principal component analysis (PCA) and LLE are compared, and the LLE is shown
to offer satisfactory effect of dimension reduction. Thereafter, the particle swarm optimization-support vector
machine (PSO-SVM) algorithm is used to classify. The simulation results show that the proposed technology
has achieved accuracy of 99.33%, precision of 100%, recall of 98.63% and F-Measure of 99.31%. Hence,
the developed diagnosis technology can be used as an important auxiliary tool to assist diagnosis of imaging
physicians.
1. Introduction

The year 2019 saw outbreak of Coronavirus Disease 2019 (COVID-
19), the acute respiratory infectious disease caused by a virus that
attacks lungs (among other organs). It is reported that the number
of confirmed COVID-19 cases has exceeded 250 million all over the
world by November 2021. The outbreak of COVID-19 not only has
brought huge threat to life in many countries and regions, but also has
seriously hindered development of the world economy [1–4]. Control of
the epidemics is hugely dependent on early diagnosis, timely isolation
and treatment.

In clinical practice, medical imaging technologies such as chest
radiography (chest X-ray) [1,5], magnetic resonance imaging (MRI) [6,
7] and computed tomography (CT) [8] can provide tremendous help
in screening of COVID-19. In clinics, most of the chest X-ray images
of the COVID-19 patients are abnormal. Therefore, it is necessary to
employ imaging techniques as an important auxiliary tool in COVID-19
screening. However, the application of imaging techniques is hampered
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by shortage of physicians and advanced methods for image analysis.
Furthermore, if patient’s condition changes rapidly in a short period,
it would bring severe challenges for imaging physicians to make diag-
noses based on multiple images. Therefore, developing computer-aided
diagnosis (CAD) technology would help physicians make judgments
through automatic detection and screening, and thus improve diagnosis
efficiency and accuracy [9].

It is worth mentioning that excellent performance of CAD in the
screening of medical images has received great attention in research
community. Both discrete wavelet transform (DWT) and principal com-
ponent analysis (PCA) have been applied to obtain optimized feature
vectors, and then feed-forward back propagation artificial neural net-
work (ANN) and k-nearest neighbor (k-NN) have been utilized for
classification of MRI [10]. A classification algorithm has been designed
using a combination of DWT and support vector machine (SVM) [6].
In order to improve the accuracy of classification, stationary wavelet
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Fig. 1. Examples of the normal images.
Fig. 2. Examples of the COVID-19 images.
transform (SWT) has been used in combination with PCA to get sensi-
tive characteristic vectors, which then used as input into SVM [11].
Autoregressive (AR) Burg method has been employed in extracting
feature vectors and different classifiers (e.g., k-NN, SVM and decision
tree) have been used to test the accuracy of classification [12]. Two-
dimensional discrete wavelet transform (2D-DWT) has been utilized
in feature extraction of MRI, then both PCA and linear discriminate
analysis (LDA) have been utilized to reduce feature dimension, and
subsequently classification is implemented via SVM and k-NN [13].
A classification algorithm has been designed using kernel principal
component analysis (KPCA) and SVM, and it is used to distinguish two
classes of medical images [14].

In view of this, an automatic diagnosis technology of medical image
has been recently paid some initial attention based on a combination
of SVM and two-dimensional variational mode decomposition (2D-
VMD) [15,16]. The 2D-VMD method was developed based on the
variational mode decomposition (VMD) [17], which has been widely
used in the field of image processing. Many scholars have managed
to combine 2D-VMD method with SVM in the diagnosis of patholog-
ical images. The 2D-VMD method has been used to decompose MRI
images, and then SVM has been used for classification with accuracy
of 90.68%, sensitivity of 99.43% and specificity of 87.95% [18]. Both
2D-VMD method and least squares support vector machine (LS-SVM)
have been employed to achieve automated detection of glaucoma, and
have achieved better classification effect [19]. The 2D-VMD method
has been used to decompose images, and SVM has been employed to
automated screening of congestive heart failure [20].

Condition of COVID-19 patients can change rapidly, and as the
result, it would bring the need to interpret a large number of images
resulting in a heavy workload for imaging physicians. At the same time,
more accurate methods to interpret images of COVID-19 patients are
needed to reduce the incidence of misdiagnosis. To accomplish these
tasks, one would need to address the following questions. First, how
to better extract features from an image? Second, how to reduce re-
dundant features of same performance or similarity? And third, how to
automatically diagnose COVID-19 images in a more accurate way? Mo-
tivated by the above challenges, in this paper, we propose an automatic
2

screening method to detect COVID-19. The main contributions of the
paper can be summarized as: (1) LLE algorithm is employed to reduce
the data dimensions of redundant feature parameters which come from
decomposed IMFs by 2D-VMD algorithm and (2) the developed novel
automated method is applied to screen normal and COVID-19 images,
which shows pleasing diagnostic effect.

The rest of this article is organized as follows. The image dataset
preprocessing and 2D-VMD method are given in Section 2. The main
design for automated screening of COVID-19 (i.e., feature extraction,
feature dimension reduction and classification) is presented in Sec-
tion 3. The example verification and analysis results are given in
Section 4. Finally, the conclusion is drawn in Section 5.

Notation The notation used throughout this paper is fairly standard.
𝑛 represents the iteration number. ∇ is the second derivative. 𝜏 denotes
the time step. ‖⋅‖ represents the Euclidean distance. ⟨⋅⟩ represents the
dot product. ‖⋅‖2 is the 2-norm and �̂� is the Fourier transform.

2. Methodologies

2.1. Dataset acquisition and preprocessing

The COVID-19 medical radiography images were obtained from the
COVID-19 dataset curated by Dr. Joseph Cohen [21]. The normal chest
radiography medical images of pneumonia were obtained from the
Kaggle dataset [22]. In this study, we have used 60 (30 normal and
30 COVID-19) images. Three normal and three COVID-19 images are
shown in Figs. 1 and 2.

Image preprocessing plays an important role in obtaining an accu-
rate classification result. First, in order to enhance the image contrast,
the image dataset is processed by adaptive histogram homogeniza-
tion [23]. At the same time, the bilinear interpolation algorithm is
adopted to maintain uniformity. Then, the preprocessed images are
resized to 48*48 pixels.
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Fig. 3. The decomposed results of a normal image via 2D-VMD method.
2.2. The 2D-VMD method

The 2D-VMD method, as a non-recursive and adaptive decomposi-
tion method, is used to decompose images with minimal parameters.
The 2D-VMD method is similar to VMD method in terms of the de-
composition process [15,17,24]. The constrained variational equation
is given by:

min
𝑢𝑘 ,𝑤𝑘

{
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where, 𝑢𝐴𝑆,𝑘 (𝑥) is mode. 𝑘 = 1,… , 𝐾 is the number of decomposed
IMFs. 𝑤𝑘 is central frequency of each IMF. 𝑓 (𝑥) is image signal and 𝛼𝑘
represents the penalty factor.

Eq. (1) can be expressed by using quadratic penalty factor and
Lagrange multiplier. Then, it can be rewritten as follows:
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where, 𝜆 is the Lagrange multiplier and 𝛼 is the quadratic penalty
factor.

Further, 𝑢𝑘𝑛+1, 𝑤𝑘𝑛+1 and 𝜆𝑘𝑛+1 are updated until the termina-
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decomposition process was given in [15].
The 2D-VMD algorithm requires assigning values to certain param-

eters, for example, decomposition scale 𝐾 and penalty factor 𝛼𝑘 set in
this work to 5 and 5000 respectively based on previous studies [16,20].
The decomposed IMFs of normal and COVID-19 radiography medical
images by 2D-VMD method exhibit different texture patterns as shown
in Figs. 3 and 4, respectively.

3. Feature optimization and selection

In this section, an automated method is presented to help imaging
physicians to screen massive images for presence of COVID-19. Gabor
filter is used to extract features of decomposed IMFs by 2D-VMD algo-
rithm, and then a dimension reduction algorithm based on LLE is used
in this paper when dimension reduction effect of which is compared
with PCA. Subsequently, the parameters of SVM are optimized via PSO.
Finally, the sensitive feature parameters are used as input into SVM for
model training.
3

3.1. The feature extraction based on Gabor filter

In digital image processing, Gabor filter is a common feature ex-
traction method. The expression of frequency and direction of Gabor
filter is similar to that of the human visual system, also, it possesses
good advantages in image texture representation. Therefore, up to
now, Gabor wavelet has a good track record of application in the
pattern recognition field [25–27]. In space domain, the expression of
two-dimensional Gabor wavelet is described as follows:

Plural form:

𝑔 (𝑥, 𝑦, 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) = exp
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−
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2𝜎2
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+ 𝜓
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(3)

Real component:
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)

(4)

Imaginary part:

𝑔 (𝑥, 𝑦, 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) = exp

(

−
𝑥′2 + 𝛾2𝑦′2

2𝜎2

)
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(

2𝜋 𝑥
′

𝜆
+ 𝜓

)

(5)

where, 𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 and 𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃. 𝜆 represents
the wavelength of the sine function. 𝜃 is the direction of the kernel
function. 𝜓 is the phase shift. 𝜎 is the Gaussian standard deviation. 𝛾 is
the ellipticity of the Gabor function. 𝑥 and 𝑦 represent the coordinate
positions of the pixel.

Typically, Gabor filter with different wavelengths and different
directions is used to extract image features. In this article, Gabor filter
has been selected with 5 scales and 8 directions. When an image passes
through Gabor filter, it can be divided into 5 × 8 = 40 sub-images with
different scales and directions. Simultaneously, the bilinear interpola-
tion is used to carry out down-sampling operation. Hence, extraction
of an image by Gabor filters results in 5 × 8 × 36 = 1440 features. Here,
decomposed IMF1 of a normal and a COVID-19 radiography medical
images in Figs. 3 and 4 with Gabor filter resulted in 5 × 8 = 40 sub-
images with different scales and orientations respectively as shown in
Fig. 5.

Extraction of image features via Gabor filter results in high dimen-
sionality, and a large number of redundant feature parameters with
same or similar performance which could affect the accuracy of the
COVID-19 diagnosis. As such, it is necessary to reduce the dimensions
of extracted features to extract low-dimensional parameters useful for
COVID-19 diagnosis. Here, this task would be achieved by application
of LLE algorithm.
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Fig. 4. The decomposed results of a COVID-19 image via 2D-VMD method.
Fig. 5. The image processing effect via Gabor filter.
3.2. The feature optimization based on LLE algorithm

LLE algorithm, published in 2000 [28], is a nonlinear dimension
reduction method based on manifold learning. The dimension reduction
principle of LLE algorithm is to map the high-dimensional data to the
low-dimensional space and to keep the original topology structure of
the data after the dimension reduction. It not only has the advan-
tages of a linear method but also has characteristics of a nonlinear
algorithm [29,30]. The specific calculation process of LLE algorithm
is described as follows:

Assume that the input data of LLE is 𝑋 =
[

𝑥1, 𝑥2,… , 𝑥𝑁
]

, in which
𝑥𝑖 ∈ 𝑅𝐷. The obtained output data of dimension reduction via the LLE
algorithm is 𝑌 =

[

𝑦1, 𝑦2,… , 𝑦𝑁
]

, 𝑦𝑖 ∈ 𝑅𝑑 and 𝑑 << 𝐷.

(1) Selection of adjacent points: the Euclidean distance between
each sample point 𝑋𝑖 (𝑖 = 1, 2,… , 𝑁) and other 𝑁 − 1 sample points is
calculated as follows:

𝑑𝑖𝑗 =

[ 𝐷
∑

𝑘=1

|

|

|

𝑥𝑖𝑘 − 𝑥𝑗𝑘
|

|

|

𝑝
]

1
𝑝

(6)

where, 𝑑𝑖𝑗 is the distance between the sample 𝑥𝑖 and the sample 𝑥𝑗 . If
and only if 𝑝 = 2, 𝑑𝑖𝑗 represents the Euclidean distance between two
points.
4

(2) Calculation of local reconstruction weight matrix 𝑊 : the error
function can be expressed as:

𝜀 (𝑊 ) =
𝑁
∑

𝑖=1

‖

‖

‖

‖

‖

‖

𝑥𝑖 −
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‖
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‖

‖

‖

‖

2

2

(7)

where, 𝑥𝑖𝑗 (𝑗 = 1, 2,… , 𝑘) is the 𝑘th adjacent point of 𝑥𝑖. 𝑤𝑖𝑗 represents
the weight coefficient between the sample point 𝑥𝑖 and its adjacent
point 𝑥𝑖𝑗 . Under the condition of Formula (7) with ∑𝑘

𝑗=1𝑤𝑖𝑗 = 1.
When the value of error function is smaller, the reconstruction of

local weight matrix is better. Also, when the error function is expressed
as a matrix, the 𝑊 can be obtained by using Lagrange multiplier
method.

(3) Mapping of low-dimensional space: the 𝑑-dimensional embed-
ding 𝑌 =

[

𝑦1, 𝑦2,… , 𝑦𝑁
]

, 𝑦𝑖 ∈ 𝑅𝑑 can be calculated by applying the
weight matrix 𝑊 . 𝑌 should satisfy the following conditions:

min𝜙 (𝑌 ) =
𝑁
∑

𝑖=1
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‖

‖

‖
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‖

𝑦𝑖 −
𝑘
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‖

‖

‖

‖

‖

‖

2

2

(8)

where, 𝜙 (𝑌 ) is the loss function. 𝑦𝑖𝑗 (𝑗 = 1, 2,… , 𝑘) is the 𝑘 adjacent
points of 𝑦𝑖. Simultaneously, it satisfies the following two conditions:
𝑁
∑

𝑖=1
𝑦𝑖 = 0 (9)

1
𝑁
∑

𝑦𝑖𝑦
𝑇
𝑖 = 𝐼 (10)
𝑁 𝑖=1
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Fig. 6. The results of dimension reduction via LLE and PCA.
where, 𝐼 represents the identity matrix.
Lagrange multiplier method is used to minimize loss function, from

which it can be obtained 𝑀𝑌 𝑇 = −𝜆𝑌 𝑇 . Here, the eigenvectors
corresponding to the minimum 𝑑 eigenvalues of matrix 𝑀 are taken
as the low-dimensional embedding result 𝑌 .

One example of experimental verification is shown to illustrate the
dimension reduction effect of LLE and PCA. The starting number of
normal and COVID-19 images is 30 each. Subsequently, features of
the decomposed IMFs are extracted by Gabor filter, and then high-
dimension features are reduced by LLE and PCA to get informative
features. The results of dimension reduction are shown in Fig. 6, where
red ‘+’ represents normal and blue ‘𝛥’ represents COVID-19. It can be
seen that LLE clusters same type images quite well resulting in almost
complete separation of two different type images, thus signifying the
diagnostic value of this approach. On the other hand, PCA results in a
more interspersed pattern where the two types of image data could not
be separated well. Therefore, in this paper, LLE algorithm is utilized to
reduce the dimensions of redundant features parameters.

3.3. SVM classifier

SVM is a machine learning method that works well with small
sample numbers and in cases when nonlinear pattern recognition is
required, and therefore is widely used in classification algorithms [31,
32]. The SVM algorithm maps nonlinear transformation to a high-
dimensional space via kernel function, where it constructs linear dis-
criminant function and seeks to establish an optimal classification
hyper plane. Based on the above-mentioned procedures, it has an ability
to solve the nonlinear problem. In this paper, the SVM model is based
on the following Radial Basis Function (RBF) kernel:

𝐾
(

𝑥𝑖, 𝑥𝑗
)

= 𝑒−
‖
𝑥𝑖−𝑥𝑗‖

2

2𝜎2 (11)

where,
(

𝑥𝑖, 𝑥𝑗
)

is data sample, 𝜎 is used to dominate radial range of
function.

In SVM classification process, it is difficult for one evaluation
method to correctly evaluate classification effect. In general, a com-
bination of multiple evaluation indicators is used to evaluate classifi-
cation effect of an SVM classifier. In this paper, different evaluation
indicators e.g., accuracy, precision, recall and F-Measure, are used to
evaluate the performance of the classification model. Confusion matrix
is a common indicator to evaluate the effectiveness of algorithms and
includes true positive (TP), false positive (FP), true negative (TN) and
false negative (FN).

Accuracy = TP + TN (12)
5

TP + TN + FP + FN
Fig. 7. The flowchart of the COVID-19 diagnosis technology.

Accuracy is the most common index in a classification model, and
it can directly give the accuracy of a classification model. The value
range of accuracy is [0, 1], and perfect classification equals 1.

Precision = TP
TP + FP

(13)

The value range of precision is [0, 1], and perfect classification
equals 1.

Recall = TP (14)

TP + FN
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Fig. 8. The particle swarm fitness curves.
The recall represents the proportion of identified positive cases
mong all actual positive cases.

−Measure = 2 ⋅ Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ Re𝑐𝑎𝑙𝑙
Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(15)

The main function of F-Measure is to balance accuracy and recall.

3.4. PSO parameter optimization

PSO algorithm is an optimization algorithm based on swarm in-
telligence. Also, it utilizes iterative method to find the optimal solu-
tion. In the optimization process, PSO algorithm mainly involves three
variables, i.e., speed, position and fitness function. Both individual
optimization and global optimization are applied via the particle to con-
tinuously update its speed and position in each iteration process [33,
34].

Suppose that there is a 𝐷-dimensional search space in which 𝑁
articles constitute a population. In the search space, the position and
he flight speed of 𝑖th particle are represented by 𝑋𝑖 =

(

𝑥𝑖1, 𝑥𝑖2,… 𝑥𝑖𝐷
)

and 𝑉𝑖 =
(

𝑣𝑖1, 𝑣𝑖2,… 𝑣𝑖𝐷
)

, respectively. The current optimal search
osition of 𝑖th particle and entire population can be represented by 𝑝𝑖 =

(

𝑝𝑖1, 𝑝𝑖2,… , 𝑝𝑖𝐷
)

and 𝑝𝑔 =
(

𝑝𝑔1, 𝑝𝑔2,… , 𝑝𝑔𝐷
)

, respectively. In the process
f optimization, particles update position and velocity according to the
ollowing two formulas:

𝑙+1
𝑖𝑑 = 𝑤 ∗ 𝑣𝑙𝑖𝑑 + 𝑐1 ∗ 𝑟1 ∗

(

𝑝𝑙𝑖𝑑 − 𝑥
𝑙
𝑖𝑑
)

+ 𝑐2 ∗ 𝑟2
(

𝑝𝑙𝑔𝑑 − 𝑥
𝑙
𝑖𝑑

)

(16)

𝑥𝑙+1𝑖𝑑 = 𝑣𝑙+1𝑖𝑑 + 𝑥𝑙𝑖𝑑 (17)

where, 𝑤 is the weight of inertia. 𝑐1 and 𝑐2 are the learning factors.
𝑟1 and 𝑟2 are the random numbers in [0, 1]. 𝑙 is the current number
of iterations. 𝑥𝑙𝑖𝑑 is the 𝑑-dimensional position of 𝑖th particle in the 𝑙th
iteration. 𝑣𝑙+1𝑖𝑑 is the 𝑑-dimensional velocity of 𝑖th particle in the (𝑙+1)th
iteration.

3.5. Combination of PSO and SVM

SVM algorithm has two very important parameters, i.e., penalty
factor 𝑐 and kernel parameter 𝑔, which can affect the accuracy of
COVID-19 diagnosis. In this paper, PSO algorithm is adopted to opti-
mize SVM to find the optimal parameters of 𝑐 and 𝑔. Here, the accuracy
of classification is used as fitness function. Initially, the position and
velocity of the particle swarm need to be initialized. Then, both the
optimum of the individual particle and the global optimum of the
population are calculated. Finally, the velocity and position of the
particle are constantly updated until the stop condition is satisfied, from
6

which we can obtain the optimal parameters of 𝑐 and 𝑔[35].
Table 1
Parameters used in PSO.

Parameters of PSO Values

𝑐1 1.5
𝑐2 1.7
Maximum population 20
Maximum number of evolution 200

Next, the flowchart of the COVID-19 diagnosis method in the paper
is shown in Fig. 7, the specific steps are as follows:

(1) the normal and COVID-19 datasets are decomposed by the
2D-VMD algorithm, and several IMFs are obtained.

(2) based on a combination of Gabor and LLE, feature extraction
and selection of decomposed IMFs are performed.

(3) sensitive features are identified by the combination of PSO and
SVM for the COVID-19 diagnosis.

4. Example verification and analysis

In this section, the normal and COVID-19 images are applied to
verify validity of the designed diagnosis technology. Subsequently, in
view of practical application that the graphical user interface (GUI) in
Matlab software is used to design a more intuitive COVID-19 image
diagnosis system interface, which can directly present the diagnosis
results to facilitate diagnosis and treatment for imaging physicians.

4.1. Example verification

For used normal and COVID-19 images, each image is decomposed
by 2D-VMD to five IMFs, and as a result, both the number of normal
and COVID-19 images are extended to 5 × 30 = 150, respectively. The
image features are extracted by Gabor filter resulting in 5 × 8 × 36 =
1440 features per image. The redundant features are diminished by
LLE algorithm, followed by classification using SVM classifier with RBF
kernel. In the experiment, PSO is used to optimize SVM to find the
optimal parameters of 𝑐 and 𝑔. Initial parameters for PSO are set as
follows (see Table 1).

The experiment has randomly utilized 150 samples for training
and the remaining 150 samples for testing. The particle swarm fitness
curves are plotted in Fig. 8. From Fig. 8, it can be clearly seen that
𝑐 = 77.3696 and 𝑔 = 19.0573 under the feature dimension reduction via
LLE, also, 𝑐 = 60.3532 and 𝑔 = 0.037532 under the feature dimension
reduction via PCA.

The parameters obtained by PSO optimization have been used to
establish the SVM classification models (LLE-PSO-SVM model and PCA-
PSO-SVM model), and the classification results are shown in Fig. 9.
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Fig. 9. The recognition effects based on the LLE-PSO-SVM model and the PCA-PSO-SVM model.
Fig. 10. The performance measures of three methods.

ig. 9 clearly shows that the LLE-PSO-SVM model has better recognition
ffect compared with the PCA-PSO-SVM model.

To verify the effectiveness of the proposed automated method for
creening of normal and COVID-19 images, the different evaluation
ndicators e.g., accuracy, precision, recall and F-Measure, are used to
valuate performance of diagnosis methods. Fig. 10 shows the perfor-
ance measures of three methods, from which, it can be seen that the
roposed diagnosis method has the satisfactory performance compared
ith the other two methods. The proposed method has achieved accu-

acy of 99.33%, precision of 100%, recall of 98.63% and F-Measure of
9.31%.

Additionally, to further illustrate the validity of the proposed novel
ethod, we vary the number of samples. Here, we increase the amount

f data, by using 90 normal and 90 COVID-19 images. Each image will
e decomposed by 2D-VMD method to five IMFs, and as a result, both
he number of normal and the number of COVID-19 images can be
xtended to 5×90 = 450, respectively. Similarly, the different evaluation
ndicators (i.e., accuracy, precision, recall and F-Measure) are used
o evaluate the performance of the developed diagnosis method. The
erformance measures of three methods are shown in Fig. 11.

As can be seen in Fig. 11, LLE-PSO-SVM method has consistently
etter diagnosis performance compared with PCA-SVM method and
7

PCA-PSO-SVM method based on better values of the evaluation indica-
tors. Across different numbers of samples, thus further confirming the
effectiveness of the novel diagnosis technology proposed in this paper.

4.2. GUI design

The GUI is presented based on the design diagnosis method so that
imaging physicians can repeat the analysis and use the interface in
their day-to-day multi-block data analysis tasks. There are image pre-
processing, image feature extraction, image diagnostic model building
and verification in interface. The diagnosis interface is shown in Fig. 12.

The image data obtained from Dr. Joseph Cohen and Kaggle dataset
is used to establish diagnostic model. After image preprocessing, the
data is ready for multi-block image analysis. Once the image data is
loaded, the figure will be updated in the GUI. When the COVID-19
image diagnostic model has established in interface, an example is used
to verify the effectiveness of the established diagnostics model.

We use clinical images to test the designed diagnostic system of
COVID-19 image. When a COVID-19 image is input to the established
diagnostic model, subsequently, GUI outputs ‘‘This image is a COVID-19
image!’’. The interface of image diagnosis result is shown in Fig. 13.

We have randomly used 20 images (17 normal and 3 COVID-19) to
test, and then the predicted result is in good agreement with the actual
type. Also, the designed GUI can perform well and all the options are
fully functional. It is noteworthy that there is a main advantage based
on COVID-19 image diagnostic system of GUI, namely, it can be easily
used to facilitate diagnosis and treatment for imaging physicians, and
therefore it makes practical sense to research into the issue based on
COVID-19 image diagnostic system of GUI.

5. Conclusions

In this article, we have proposed a novel computer aided diag-
nosis for automatic processing of normal and COVID-19 images. The
effectiveness of the proposed method has been validated on specific ex-
amples. From the obtained results, we can conclude that a combination
of 2D-VMD algorithm and LLE algorithm is useful to get informative
features which are beneficial for classification. On the other hand, it
has been concluded that the proposed diagnosis method has achieved
satisfactory performance characteristics, and it could therefore be use-
ful in COVID-19 diagnostics. In future, we intend to develop a CAD
tool for other diseases (e.g., glaucoma diagnosis [36], multi-class brain
abnormalities [18] and congenital heart disease [20]). Also, we intend
to improve the diagnosis performance using deep learning method.
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Fig. 11. The performance measures of three methods based on different samples.
Fig. 12. The interface of COVID-19 image diagnostic system.
Fig. 13. The interface of image diagnosis result.
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