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Abstract 

Purpose:  Most randomized controlled trials (RCTs) in patients with acute respiratory distress syndrome (ARDS) 
revealed indeterminate or conflicting study results. We aimed to systematically evaluate between-trial heterogeneity 
in reporting standards and trial outcome.

Methods:  A systematic review of RCTs published between 2000 and 2019 was performed including adult ARDS 
patients receiving lung-protective ventilation. A random-effects meta-regression model was applied to quantify het-
erogeneity (non-random variability) and to evaluate trial and patient characteristics as sources of heterogeneity.

Results:  In total, 67 RCTs were included. The 28-day control-group mortality rate ranged from 10 to 67% with large 
non-random heterogeneity (I2 = 88%, p < 0.0001). Reported baseline patient characteristics explained some of the 
outcome heterogeneity, but only six trials (9%) reported all four independently predictive variables (mean age, mean 
lung injury score, mean plateau pressure and mean arterial pH). The 28-day control group mortality adjusted for 
patient characteristics (i.e. the residual heterogeneity) ranged from 18 to 45%. Trials with significant benefit in the pri-
mary outcome reported a higher control group mortality than trials with an indeterminate outcome or harm (mean 
28-day control group mortality: 44% vs. 28%; p = 0.001).

Conclusion:  Among ARDS RCTs in the lung-protective ventilation era, there was large variability in the description of 
baseline characteristics and significant unexplainable heterogeneity in 28-day control group mortality. These findings 
signify problems with the generalizability of ARDS research and underline the urgent need for standardized reporting 
of trial and baseline characteristics.
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Introduction
The Acute Respiratory Distress Syndrome (ARDS) is a 
clinically and biologically heterogeneous syndrome that 
contributes significantly to morbidity and mortality in 
critically ill patients [1–3]. ARDS has long been a focal 
point of critical care research, but hundreds of rand-
omized controlled trials (RCTs) have led to merely two 

guideline recommendations supported by high-level evi-
dence: low tidal volume ventilation and prone position-
ing in patients with severe ARDS [4, 5].

The paucity of high-level evidence is due to indeter-
minate and conflicting trial results. Many RCTs in the 
ARDS population report an indeterminate outcome—
detecting neither significant benefit nor harm of investi-
gated therapeutic strategies [6]. Several other large RCTs 
demonstrated contradictory results, with seemingly ben-
eficial therapies being found ineffective in subsequent tri-
als [7, 8].

It has become clear that treatment effects of interven-
tions in ARDS are highly dependent on the details of the 
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intervention, as small variations of the same treatment 
have led to disparate results. For example, different defi-
nitions of ‘low’ and ‘high’ tidal volumes [9–13] or differ-
ences in neuromuscular blockade and sedation [7, 8, 14] 
have led to different trial outcomes. On the other hand, 
it is much less clear how differences between methodo-
logical trial characteristics and patient characteristics 
affect study outcomes. Between-trial heterogeneity refers 
to the non-random variation in treatment effect of an 
intervention due to methodological or clinical differences 
between patient populations. Unmeasured or unexplain-
able heterogeneity—both among patients in a single trial 
and between trial populations—may adversely affect the 
validity and generalizability of study results (see: ‘Panel: 
A practical example of the problem with unexplainable 
between-trial heterogeneity’) [15, 16].

In this study, we set out to quantify the consistency 
of reporting baseline characteristics and to measure 
between-trial heterogeneity in 28-day control group 
mortality among all ARDS RCTs in the lung-protective 
ventilation era. Our aim was to determine to which 
extent between-trial differences in control group mortal-
ity could be explained by differences in trial and patient 
characteristics. We hypothesized that between-trial het-
erogeneity would be large and trial populations often 
poorly characterized, leading to a discrepancy between 
inclusion criteria and patient characteristics on the one 
hand, and control group outcomes on the other hand.

Panel: A practical example of the problem 
with unexplainable between‑trial heterogeneity
We note two high-profile trials published in the same 
journal issue [17, 18]. Both trials investigated high-fre-
quency oscillatory ventilation in the same target popu-
lation of moderate to severe ARDS patients, but they 
reported a different effect on mortality. Judging by the 
control group patient characteristics, there were clini-
cally meaningful differences between the trial popula-
tions: there was a 32% relative difference in baseline 
Acute Physiology and Chronic Health Evaluation 
(APACHE II) scores (22 vs. 29 points) and there was a 
41% relative difference in control group mortality (41% 
vs 29% at 30 days). But, paradoxically, the trial with the 
lowest baseline mean APACHE II score had the highest 
control group mortality. This makes the interpretation of 
the conflicting trial results exceedingly difficult. One trial 
demonstrated significant harm from the intervention 
while the other trial found no effect. Was the difference 
in treatment effect due to subtle unreported differences 
in the intervention, due to unreported differences in the 
patient populations, or due to differences in the standard 
of care? Were the patients more severely ill at baseline 
in the trial with the highest APACHE II score or in the 

trial with the highest control group mortality rate? It is 
clear that unexplainable outcome heterogeneity reduces 
the generalizability of intervention effects to the global 
ARDS population [19].

Methods
This systematic review follows the Preferred Report-
ing Items for Systematic Reviews and Meta-analyses 
(PRISMA). The study protocol and statistical analysis 
plan were registered online at the International Prospec-
tive Register of Systematic Reviews (PROSPERO, regis-
tration number: CRD42020161809).

Systematic search
A comprehensive search was conducted in MEDLINE, 
Embase and Scopus for randomized clinical trials includ-
ing adult ARDS patients published from January 1st, 2000 
until January 31st, 2020. Eligible studies included a) adult 
ARDS patients diagnosed according to the AECC guide-
lines from 1994 [20] or the Berlin definition from 2012 
[21], subjected to b) invasive lung-protective mechani-
cal ventilation according to the ARDSnet protocol [11], 
or reporting a tidal volume of ≤ 8 ml/kg. Included studies 
were c) randomized clinical trials reporting on d) 28-day, 
hospital, intensive care unit (ICU) or 60-day mortality. 
There were no restrictions with regards to the interven-
tion or phase of the study. More details about the review 
process are provided in the supplementary appendix, 
Sect. 1.1 and 1.2.

Outcome measures
For each study, we recorded trial characteristics, inter-
vention, inclusion and exclusion criteria, mean patient 
baseline characteristics and mortality outcomes.

Primary outcome was the between-trial heterogene-
ity based on the 28-day control group mortality rate (I2). 
The 28-day control group mortality rate reflects the base-
line risk of death of a patient population of an individual 
trial. Secondary outcomes included associations between 
28-day control group mortality and characteristics of trial 
design and outcome, inclusion- and exclusion criteria, as 
well as baseline characteristics.

Estimation of 28‑day control group and intervention group 
mortality
All analyses investigating heterogeneity were conducted 
using the 28-day control group mortality rate. For trials 
reporting solely on the hospital, ICU or 60-day mortal-
ity, 28-day control group mortality was estimated with 
linear regression using data from trials reporting on both, 
28-day mortality and any of the other mortality outcomes 
[22]. 28-day intervention group mortality was estimated 
in the same manner for analyses investigating differences 
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between control and intervention group mortality. A 
sensitivity analysis was conducted, using only the trials 
reporting 28-day control group mortality.

Estimation and quantification of between‑trial 
heterogeneity
The 28-day control group mortality rates across studies 
were analyzed using a random-effects meta-regression 
model with the log odds of mortality as the dependent 
variable. Each individual trial was weighted by the inverse 
of the sampling variance of the mortality rates. A maxi-
mum likelihood estimator was applied to estimate the 
mean mortality (random-effects pooled estimate), the 
between-study standard deviation due to heterogene-
ity (τ), and heterogeneity (the percentage of variation in 
control group mortality due to heterogeneity rather than 
chance, I2). To make heterogeneity interpretable in a 
clinically meaningful manner, we calculated the 95% pre-
diction interval. The prediction interval represents the 
distribution of estimated underlying mortality after cor-
rection for random chance and predictive covariates [for 
further details see method section reference [22]]. This 
model and its corresponding outcomes were used to pre-
sent the distribution of 28-day control group mortality 
between all trials, and to investigate differences between 
individual trial characteristics.

Associations between patient characteristics and mortality 
rates
The associations between 28-day control group mortal-
ity and reported patient characteristics were estimated 
by adding each individual covariate separately to the 
random-effect model as moderators in univariate analy-
sis. The goodness-of-fit of the log-linear, quadratic and 
power models were compared, and the model with the 
lowest Akaike information criterion (AIC) was selected 
[23]. For each model, the regression coefficient (b) and 
unadjusted R2 were reported. R2 represents the propor-
tion of between-trial heterogeneity in 28-day control 
group mortality explained by the individual baseline 
characteristic—for the n trials reporting the covariate.

Prediction of control group mortality based on significant 
patient characteristics
To predict between-trial differences in mortality based 
on patient characteristics, a comprehensive multivari-
ate logistic regression model was constructed. Missing 
observations were imputed using multiple imputation 
generating 20 datasets with predictive mean matching. 
For a detailed description of the process, we refer to the 
supplementary appendix, Sect.  2.5. Significant base-
line characteristics reported in at least 25% of all trials 

with a univariate regression R2 ≥ 0.10 were eligible for 
the model. The threshold R2 of 0.10 was a compromise 
between the number of variables and the limited num-
ber of observations, as described before [22]. A stepwise 
backward selection procedure was applied removing 
regressors if p ≥ 0.05 for the final model. To facilitate 
comparisons between the individual covariates the stand-
ardized regression coefficient (β) and the standardized 
standard error (SSE) were reported in the supplementary 
appendix, Sect. 2.5.

Control group mortality differences between trials 
demonstrating benefit vs. no benefit
A trial demonstrating significant benefit was defined as 
a reported p value of < 0.05 for the primary endpoint (as 
defined by authors) in favor for the intervention group. 
Comparisons between trials demonstrating significant 
benefit and trials with an indeterminate outcome or 
harm were performed using the Mann–Whitney U test. 
Linear mixed-effects and regression models were applied 
to estimate the probability of a significant trial outcome 
based on the observed control group mortality and inter-
vention group mortality, respectively.

Statistical analyses
A p-value of < 0.05 was considered statistically significant.

Statistical analyses were performed with R Studio 
interface (Version 1.1.447. R core team. R: A Language 
and Environment for Statistical Computing. 2013. http://
www.r–project.org/) using the packages ‘tidyverse, ‘dplyr’, 
‘metafor’, ‘mice’, ‘Hmisc’, ‘wCorr’, ‘data.table’, ‘MASS’ and 
‘ggplot2’.

Results
Systematic search
The literature search yielded 3479 results. A total of 67 
RCTs met all inclusion and exclusion criteria and were 
included in the analyses (eFigure  1) [7, 8, 17, 18, 24–
86]. Table  1 provides an overview of the included trial 
characteristics.

Estimation of 28‑day control group and intervention group 
mortality
The 28-day control group mortality was reported in 45 
trials. For trials reporting  another mortality timeframe, 
28-day mortality could be reliably estimated (adjusted 
R2 ≥ 0.98 for all estimation models). Linear equations and 
corresponding regression plots are shown in eTable 1 and 
eFigure 2. For the sensitivity analysis for trials reporting 
solely on 28-day mortality we refer to the supplementary 
appendix, Sect. 2.3.
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Estimation and quantification of between‑trial 
heterogeneity
The 28-day control group mortality ranged from 9.7 
to 66.7% with a weighted mean mortality rate of 30.9%. 

Between-trial heterogeneity was large with 87.5% of the 
differences between control group mortality rates not 
explained by chance (I2 = 87.5%, τ = 0.509, p < 0.0001). 
The 95% prediction interval (the estimated range of mor-
tality rates, corrected for small trials and random error) 
was 14 to 55%. The mean mortality and the magnitude of 
heterogeneity were similar for all subgroups of trial char-
acteristics (Fig. 1). The exclusion criteria were too mani-
fold for valid analyses. However, the number of reported 
exclusion criteria was associated with a lower 28-day 
control group mortality (p = 0.04, eFigure 3).

Associations between patient characteristics and mortality 
rates
Table  2 presents the most-reported baseline character-
istics and their associations with 28-day control group 
mortality. For the goodness-of-fit statistics of the indi-
vidual associations, we refer to eTable  2 in the supple-
mentary appendix. Figure  2 provides an overview of 
between-trial differences in control group mortality 
and patient characteristics. We observed an association 
between 28-day control group mortality and the follow-
ing patient characteristics in univariate analyses: mean 
age; mean body mass index; mean APACHE II score; 
the proportion of patients treated with vasopressors; the 
proportion of patients presenting with shock at baseline; 
mean lung injury score; mean oxygenation index; mean 
plateau pressure; mean PaO2/FiO2 ratio and mean arterial 
pH. Individual regression plots are shown in eFigure 3.

Prediction of control group mortality based on significant 
patient characteristics
A detailed description of variable selection and con-
struction of the multivariate logistic regression model is 
available in the supplementary appendix, Sect.  2.5. Sig-
nificant variables for the final logistic regression model 
were: mean age (p < 0.0001), mean LIS (p = 0.0099), 
mean plateau pressure (p = 0.0078) and mean arterial 
pH (p = 0.0119). The residual 95% prediction interval 
adjusted for the significant predictors was 18 to 45%. Six 
trials reported all four variables in the final model.

Control group mortality differences between trials 
demonstrating benefit vs. no benefit
As shown in Fig.  3a, trials demonstrating significant 
benefit reported a higher 28-day control group mortal-
ity compared to trials with an indeterminate outcome or 
harm (mean 28-day control group mortality rate: 0.275 
vs. 0.439; p = 0.001). Figure  3b demonstrates that trials 
with higher control group mortality were more likely to 
demonstrate significant benefit. Conversely, Fig. 3c shows 
that intervention group mortality did not differ between 
trials demonstrating significant benefit and compared 

Table 1  Characteristics of included randomized clinical tri-
als

Data are presented as numbers and percentages (%) or median and interquartile 
range (IQR) according to the type of variable. Legend: *: more than one option 
possible. **: p < 0.05 for the primary outcome (as defined and reported by 
authors) for the intervention group. ***: p > 0.05 for the primary outcome (as 
defined and reported by authors). ****: p < 0.05 for the primary outcome (as 
defined and reported by authors) for the control group. ECMO extracorporeal 
membrane oxygenation

Number (%) 
or median 
(IQR)

Number of included trials 67

Control group sample size 55 (26 – 169)

Multicenter trials 41 (61)

Trial site*:

 Europe 30 (45)

 North America 23 (34)

 Middle- and South America 2 (3)

 Asia 22 (33)

 Australia / New Zealand 6 (9)

Language:

 English 63 (94)

 Chinese 4 (6)

Intervention:

 Ventilation strategy 23 (34)

 Drug 21 (31)

 Prone positioning 4 (9)

 Neuromuscular blockage 5 (7)

 Nutrition 5 (7)

 ECMO 1 (1)

 Others 8 (11)

Explicitly stated primary endpoint: 59 (88)

 Mortality 23 (34)

 Ventilator-free days at day 28 10 (15)

 PaO2/FiO2 ratio 9 (13)

 Others 18 (26)

Power analysis performed 50 (75)

Early termination of trial 19 (28)

Trials demonstrating significant benefit** 11 (16)

Trials with an indeterminate outcome*** 40 (54)

Trials demonstrating significant harm**** 4 (6)

Jadad score 2 (1–4)

 Composites of the Jadad score:

 Randomization 67 (100)

 Randomization adequate 60 (93)

 Blinding 28 (42)

 Blinding adequate 23 (34)

 Description of withdrawals and lost to follow-up 36 (54)
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to trials with an indeterminate outcome or harm (mean 
28-day intervention group mortality rate: 0.271 vs. 0.301; 
p = 0.697). Figure 3d demonstrates that trials with higher 

or lower intervention group mortality rates were not 
more or less likely to demonstrate significant benefit.

Fig. 1  28-day control group mortality for individual trial characteristics. The diamond represents the mean mortality rate (peak) with the corre-
sponding 95% confidence interval (length of diamond). The black line denotes the 95% prediction interval, which is the estimated between-trial 
variability in mortality rates after adjusting for random chance and sample size, i.e. the between-trial heterogeneity. I2 represents the proportion of 
between-trial variability that cannot be explained by chance.
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Discussion
This systematic analysis of 67 ARDS RCTs in the lung-
protective ventilation era revealed a statistically sig-
nificant and clinically relevant amount of between-trial 
heterogeneity in reporting and outcome.

The description of patient characteristics was variable 
and often incomplete. Basic ventilation characteristics 

such as mean respiratory rate, FiO2, pH and PaCO2 
were reported in a minority of trials.

The estimated range of 28-day control group mor-
tality corrected for small trials and random error was 
14 to 55%. This between-trial heterogeneity in con-
trol  group outcomes could not be explained by differ-
ences in trial characteristics. Reported baseline patient 

Table 2  Univariate associations between 28-day control group mortality and commonly reported mean baseline patient 
characteristics

Associations were estimated using a weighted random-effects model with mortality on the log-odds scale. Some baseline characteristics were reported by a minority 
of trials, which resulted in low power to detect significant associations. R2 can be interpreted as the proportion of heterogeneity that is explained by the population 
characteristic for the n trials reporting that characteristic

APACHE Acute Physiology and Chronic Health Evaluation, BMI body mass index, FiO2 fraction of inspired oxygen, PaCO2 partial pressure of carbon dioxide in arterial 
blood, PaO2 partial pressure of oxygen in arterial blood,  SAPS Simplified Acute Physiology Score, SD standard deviation,  SOFA Sequential Organ Failure Assessment 
Score, PEEP positive end-expiratory pressure

Covariate Number of trials reporting 
on variable (%)

Mean (SD) Regression coef‑
ficient

R2 p-value

Publication (year) 67 (100) 2012 (4.6) − 0.01 0.00 0.429

Age (years) 65 (97) 54.9 (4.3) 0.00 0.16 0.011*

Male gender (%) 60 (90) 59.7 (7.5) 0.76 0.04 0.320

BMI 13 (19) 28.5 (2.3) − 0.00 0.51 0.004**

Illness severity scores:

 APACHE II 37 (55) 22.6 (3.6) 0.05 0.036*

 APACHE III 10 (15) 95 (8.9) 0.01 0.398

 APACHE IV 1 (2) – – 0.13 –

 SAPS II 16 (24) 48.5 (3.3) 0.01 0.14 0.894

 SAPS III 1 (2) – – 0.00 –

 SOFA 24 (36) 9.5 (1.2) 0.07 0.08 0.351

 Use of vasopressors (%) 11 (16) 51.1 (17) 0.02 0.058 0.003**

 Shock at baseline (%) 4 (6) 56.0 (9.8) 0.00 0.74 0.036*

Risk factors for ARDS (%):

 Pneumonia 44 (66) 51.6 (11.7) 0.01 0.00 0.990

 Aspiration 34 (51) 13.1 (5.5) -0.74 0.00 0.634

 Sepsis 31 (46) 31.4 (16.7) 0.13 0.00 0.827

 Trauma 24 (37) 6.9 (7.9) -0.41 0.00 0.746

 Transfusion 15 (22) 3.4 (2.9) 6.02 0.08 0.154

 Pancreatitis 11 (16) 5.3 (3.2) 0.68 0.00 0.680

Pulmonary severity scores:

 Lung injury score (LIS) 22 (33) 2.7 (0.3) 1.23 0.31 0.023*

 Oxygenation index 14 (21) 13.8 (3.2) 0.00 0.35 0.044*

Mechanical ventilation:

 Tidal volume (ml/kg) 50 (75) 7.1 (0.9) − 0.11 0.05 0.250

 Plateau pressure (cmH2O) 45 (67) 25.8 (2.4) 0.09 0.27 0.001**

 Minute ventilation (L/min) 21 (31) 10.5 (1.1) − 0.11 0.10 0.355

 Driving pressure (cmH2O) 9 (13) 13.6 (1.9) 0.08 0.16 0.240

 PEEP (cm H2O) 51 (76) 10.8 (1.8) 0.04 0.04 0.364

 FiO2 (%) 21 (31) 0.72 (0.1) 1.95 0.15 0.109

 Respiratory rate (/min) 27 (40) 24.6 (2.6) 0.05 0.11 0.120

PaO2/FiO2 ratio 60 (90) 134.2 (29.7) 0.00 0.21 0.011*

Arterial pH 26 (39) 7.33 (0.04) − 5.67 0.50 0.003**

PaCO2 (mmHg) 26 (39) 44.9 (4.3) − 0.00 0.08 0.097
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characteristics explained some of the outcome hetero-
geneity, but the residual (unexplainable) range in con-
trol group mortality was still 18 to 45% after adjusting 
for the most predictive baseline characteristics. There 
was no secular trend in mortality outcomes over the 
period 2000–2019.

Notably, trials with higher control group mortality 
were more likely to report a significant benefit, also 
after adjustment for baseline mean severity of illness.

Relevance for clinicians
To assess the applicability of a trial’s result to individ-
ual patients, clinicians need a clear description of the 
study population and concomitant treatment from trial 
reports. In the present study, we identified important 
problems in this respect.

The variation in reporting of baseline variables was 
considerable, with ≥ 90% of all studies reporting on age 
and gender, but only 75% describing observed tidal vol-
umes and PEEP, down to only a third of all trials report-
ing on lung injury scores or results from blood gas 
analyses.

After adjustment for significant baseline characteris-
tics (mean age, mean LIS, mean plateau pressure, mean 
arterial pH), the residual (unexplainable) range in con-
trol group mortality was 18 to 45%. In other words, 
among trials with comparable inclusion criteria and 
comparable baseline patient characteristics, there were 
inexplicable 2.5-fold mortality differences (45%/18%). 
This indicates that there are very important yet unre-
ported differences in ARDS populations, and possibly 
also differences in co-interventions and standard care.

This silent heterogeneity between trials makes it nearly 
impossible to evaluate whether RCT results are valid out-
side of the immediate trial context (i.e., the exact popu-
lation in the actual participating centers). At its most 
extreme, this can be thought of as a generalizability crisis 
in ARDS research: we cannot know which trial results are 
transportable to which patients outside the trial [87, 88]. 
The generalizability crisis comes into clear focus when 
different RCTs show conflicting and statistically mutu-
ally exclusive results (benefit vs. no benefit or harm) of 
the same intervention. Conflicting study results are often 
ascribed to subtle differences in the intervention, while, 
in fact, it may be important yet unreported differences in 

the population or standard of care that are driving con-
flicting outcomes.

The finding that the number of exclusion criteria is 
inversely associated with the control group mortality rate 
only exacerbates the generalizability problem. It means 
that trial populations, especially those with a large num-
ber of exclusion criteria, likely differ from the intended 
(broader) target population.

Clinicians trying to gauge the applicability of a trial’s 
result should carefully review not only inclusion criteria 
and baseline characteristics, but also whether the control 
group mortality fits the apparent patient characteristics.

Relevance for ARDS researchers
What could account for the large unexplainable heteroge-
neity? Possible factors may be found in biology, standards 
of care and co-interventions, or measurement variability.

Statistical cluster analyses of various biological and 
clinical characteristics led to the identification of distinct 
ARDS subphenotypes, each associated with a different 
mortality risk, a different biochemical inflammatory pro-
file and importantly, differential responses to treatments 
such as PEEP, fluids, low-dose macrolide therapy or simv-
astatin [89–94]. We are only just beginning to appreciate 
the extraordinary biological heterogeneity of ARDS [95], 
which is undoubtedly one of the causes of between-trial 
variability in outcomes. It is currently not clear whether 
larger more pragmatic trials or smaller high-adherence 
trials in more selected populations will provide more use-
ful clinical information in the future.

Variability in standards of care and co-interventions 
may be another likely cause of between-trial heteroge-
neity. The LUNG-SAFE study revealed that many ARDS 
patients are undertreated or not treated according to 
the current best practices [1]. We cannot know the 
implications for interpreting RCTs, because standard 
care and co-interventions are almost never described 
in trial papers. Historically, this was due to restrictions 
in space and words allotted by scientific journals. How-
ever, there is an urgent need for future studies to report 
these details, nowadays enabled by the use of supple-
mentary materials and public data repositories.

A final likely cause of between-trial heterogeneity 
may be measurement variability of baseline characteris-
tics and clinical outcomes. Severity of illness scores, for 

(See figure on next page.)
Fig. 2  Heatmap of control group outcomes and baseline characteristics. On the y-axis, all included trials are ordered from highest to lowest (esti-
mated) 28-day mortality rate. The color of a tile represents whether, for a specific trial, a reported variable was lowest (blue) or highest (red) among 
all trials that reported the variable. A white tile represents a variable not reported by a specific trial. The X-axis depicts the most reported baseline 
characteristics. Some show a concordant pattern (e.g. age) with 28-day mortality while others do not (e.g. SAPS II score, SOFA score). Most impor-
tantly, the distribution of white tiles demonstrates the large variability in the reporting of baseline characteristics.
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example, are notoriously dependent on small variations 
in measurement definitions [96, 97]. The call for stand-
ardization of baseline and outcome measures in ARDS 
trials is not new, but the current study underlines its 
urgency and importance [98, 99].

Consequently, comprehensive reporting in a stand-
ardized manner on patient characteristics, standard 
care and concomitant treatments may be one step 
towards solving the generalizability crisis in ARDS 
research. Clearly, heterogeneity is not the only cause 
of a large number of indeterminate and conflicting trial 
results. Statistical shortcomings, such as underpowered 
studies [100] or overestimations of effect size [101], 
equally contribute to indeterminate trial outcomes. 
Moreover, qualifying studies as ‘indeterminate’ is the 
consequence of the frequentist statistical paradigm, 
while Bayesian analyses offer another perspective pro-
viding often useful information about trial results [102].

Because we were limited to trial-level data in this 
study, we should be careful to avoid the ‘ecological fal-
lacy’: individual-level relationships cannot be inferred 
from group-level data. This important limitation of 
the present study is also an important message: we will 

continue to fail to understand outcome heterogeneity 
between ARDS trials as long as we must rely on aggre-
gated study-level data. Sharing (anonymized) indi-
vidual patient data is likely to provide a path forward 
and provides an immense opportunity to stratify and 
subphenotype patients, to detect treatment benefit and 
harm for specific patient groups, and to find valuable 
therapeutic strategies in an inherently heterogeneous 
syndrome.

Complete standardization of reporting is unwar-
ranted and can even be detrimental. Reported char-
acteristics and outcomes should be tailored to the 
research question at hand. But the results in this study 
indicate that different trials lack sufficient common 
ground to validly compare trial populations. Creating 
this common ground for between-trial comparisons 
requires the reporting of a ‘core baseline set’: a com-
monly agreed-upon minimum set of descriptors to 
characterize the patient population of a trial (includ-
ing standards of care and co-interventions). Develop-
ing this core population characteristics set requires 
meta-epidemiological data (which this study provides) 
and clinical domain expertise from a diverse sample of 
ARDS researchers.

Fig. 3  Differences in 28-day control group and intervention group mortality between significant and indeterminate trials, and the corresponding 
probability of a significant treatment effect. a Mean 28-day control group mortality was 43.9% in trials with a beneficial outcome versus 27.5% in 
trials with an indeterminate outcome or significant harm (p = 0.001). b The higher control group mortality, the higher the probability to obtain a 
beneficial trial outcome for the intervention group (p = 0.012). c Mean 28-day intervention group mortality does not differ between trials with sig-
nificant benefit and trials with the indeterminate outcome or significant harm. (27.1% vs. 30.1%; p = 0.697). d The probability to obtain a beneficial 
trial outcome was not affected by intervention group mortality (p = 0.410)
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Conclusion
Randomized controlled ARDS trials in the lung-protec-
tive ventilation era present a statistically significant and 
clinically relevant amount of heterogeneity in reporting 
and mortality outcomes. Differences in baseline char-
acteristics partly explained the variability in outcome, 
but large unexplainable heterogeneity remained after 
extensive statistical adjustments. This study underlines 
the urgent need for standardized and comprehensive 
reporting of trial and baseline characteristics to dimin-
ish between-trial heterogeneity and to support the trans-
portability of study results across populations.
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