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Abstract

Motivation: In recent years, multiple circular RNAs (circRNA) biogenesis mechanisms have been discovered.
Although each reported mechanism has been experimentally verified in different circRNAs, no single biogenesis
mechanism has been proposed that can universally explain the biogenesis of all tens of thousands of discovered
circRNAs. Under the hypothesis that human circRNAs can be categorized according to different biogenesis mecha-
nisms, we designed a contextual regression model trained to predict the formation of circular RNA from a random
genomic locus on human genome, with potential biogenesis factors of circular RNA as the features of the training
data.

Results: After achieving high prediction accuracy, we found through the feature extraction technique that the exam-
ined human circRNAs can be categorized into seven subgroups, according to the presence of the following se-
quence features: RNA editing sites, simple repeat sequences, self-chains, RNA binding protein binding sites and
CpG islands within the flanking regions of the circular RNA back-spliced junction sites. These results support all of
the previously reported biogenesis mechanisms of circRNA and solidify the idea that multiple biogenesis mecha-
nisms co-exist for different subset of human circRNAs. Furthermore, we uncover a potential new links between
circRNA biogenesis and flanking CpG island. We have also identified RNA binding proteins putatively correlated
with circRNA biogenesis.
Availability and implementation: Scripts and tutorial are available at http://wanglab.ucsd.edu/star/circRNA. This
program is under GNU General Public License v3.0.
Contact: wei-wang@ucsd.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Circular RNAs (circRNAs) represent an emerging type of regulatory
RNA with 3’ and 5’ ends covalently join together as ‘back-spliced
junctions’. circ RNAs have been reported to have multiple functions.
Beside serving as miRNA sponges, many circRNAs are important
for brain function, synaptic plasticity (Westholm et al., 2014;
Rybak-Wolf et al., 2015; You et al., 2015) and fetal development
(Szabo et al., 2015). Cell free circRNAs are found stable in saliva
(Bahn et al., 2015) as well as exosomes (Li et al., 2015), which

makes circRNA a promising diagnosis biomarker. Most circRNAs
are originated from circularization of coding gene exons, which
leads to the hypothesis that circRNA biogenesis competes with pre-
mRNA splicing (Ashwal-Fluss et al., 2014). Literature evidences
suggest that the biogenesis of each circRNA subset may likely be
regulated by different mechanisms (Chen and Yang, 2015; Conn
et al., 2015; Ivanov et al., 2015; Jeck et al., 2013; Li et al., 2017;
Liang and Wilusz, 2014; Zhang et al., 2013, 2014, 2016), which
supports the existence of multiple subclasses of circRNAs and each
with specific roles.
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In this study, we aim to decipher the relationship between the se-
quence features and circRNA subclasses. To this end, we have devel-
oped a computational model to predict whether a genomic locus
would generate circRNA based on the presence of the following se-
quence features within the flanking regions of the circular RNA
back-spliced junction sites: CpG islands, enhancers, RNA binding
protein (RBP) binding sites, simple repeats, RNA editing sites and
DNA self-chains. These features were selected based on the hypothe-
sized circRNA biogenesis mechanisms (Conn et al., 2015; Ivanov
et al., 2015; Jeck et al., 2013; Li et al., 2017; Liang and Wilusz,
2014; Zhang et al., 2013, 2014, 2016) as well as sequence features
that can potentially participate in biogenesis of non-coding RNAs
including CpG islands (Lai and Shiekhattar, 2014) and enhancers
regions (Chen et al., 2017; Lam et al., 2014). We have designed a
contextual regression model (Liu and Wang, 2017) that successfully
distinguish the circRNA back-spliced junction sites defined by tran-
scriptome sequencing from randomly selected human genome loci in
an averagely 72.6% accuracy. Using the feature extraction tech-
nique in the contextual regression model (Khalid et al., 2014), we
found that the examined 21 427 circRNAs can be categorized into 7
groups based on the biogenesis contributing factors. Our analysis
supports that multiple biogenesis mechanisms co-exist for different
subset of human circRNAs. In particular, we found 79 RBPs were
identified to be significantly correlated to circRNA biogenesis.
Interestingly, we uncovered a potential new link between circRNA
biogenesis and flanking CpG islands, which suggests the potential
correlation between DNA methylation and circRNA biogenesis.

2 Materials and methods

The data analysis process of this research is summarized in
Supplementary Figure S1. First, 55 689 human circRNAs back-
spliced junction sites were collected from the database CircNet (Liu
et al., 2016) as positive training data, and equal amount of random-
ly selected locus on HG19 human genome as negative training data.
These junction sites and randomly selected locus were then divided
into training and testing sets (in a ratio of 7:3) for the contextual re-
gression network model designed to predict whether a randomly
selected locus from human genome would generate circRNA. The
features of the training set include whether CpG islands, enhancer
regions, RBP binding sites, simple repeats, A-to-I RNA editing sites
(RNA editing sites for short in the later text) and DNA self-chains
present in the upstream and downstream region of the selected
locus. After reaching optimum average accuracy, through the appli-
cation of feature extraction techniques (Khalid et al., 2014), we suc-
cessfully found that the examined 21 427 circRNAs can be
categorized into 7 groups based on the presumed biogenesis contri-
buting factors.

The back-spliced junction sites in the positive training set were
selected from the database CircNet (Liu et al., 2016). The data in-
clude reported human back-spliced junction sites were collected
from 22 recent studies (Alhasan et al., 2016; Bachmayr-Heyda et al.,
2015; Bahn et al., 2015; Boeckel et al., 2015; Cheng et al., 2016;
Conn et al., 2015; Dang et al., 2016; Gao et al., 2015; Guo et al.,
2014; Jeck et al., 2013; Kelly et al., 2015; Memczak et al., 2013;
Rybak-Wolf et al., 2015; Salzman et al., 2012, 2013; Song
et al., 2016; Zhang et al., 2013, 2014, 2016; Zheng et al., 2016) and
465 human transcriptome sequencing datasets were collected from
NCBI Sequence Read Archive (Leinonen et al., 2011). The back-
spliced junction sites in each RNA-seq sample were identified using
a circRNA discovery pipeline referred as find_circ (Gla�zar et al.,
2014; Hansen et al., 2016; Memczak et al., 2013). The criteria
defined in the pipeline hence the detected junction sites met same
standards as those in the previous reports, as described in the
Memczak et al.’s (2013) study was applied. Adhering to the sugges-
tion of recent year comparison study (Hansen et al., 2016), we
selected the back-spliced junction sites based on the number of pre-
vious peer review reports in which the back-spliced junction sites
were reported and the number of samples among the 465 collected
samples in which the back-spliced junction sites were found meeting
the criteria defined in find_circ (Gla�zar et al., 2014; Hansen et al.,

2016; Memczak et al., 2015). Only the circRNAs with the sum of
these two numbers > 3 were considered as positive training data in
this study. Locus of the CpG islands, enhancer regions, simple
repeats, RNA editing sites and DNA self-chains on HG19 human
genome was collected from UCSC Genome Browser (Casper et al.,
2017). Although the locus of the RBP binding sites was collected
from the Ray et al. (2013) study.

3 Results

Using the feature extraction technique in the contextual regression
model (Liu and Wang, 2017), we found that the examined 21 427
circRNAs can be categorized into seven groups based on the biogen-
esis contributing factors. Our analysis supports that multiple biogen-
esis mechanisms co-exist for different subset of human circRNAs. In
particular, we found 79 RBPs were identified to be significantly cor-
related to circRNA biogenesis. Interestingly, we uncovered a poten-
tial new link between circRNA biogenesis and flanking CpG islands,
which suggests the potential correlation between DNA methylation
and circRNA biogenesis.

3.1 An interpretable neural network model to predict

circRNAs
We implemented a contextual regression model to predict circRNA
using these features. Instead of letting the neural network learn a
function that maps features to target values, our method let the
neural network learn a function that maps features to local linear
models that best predict the target value from the features, thus gen-
erating a model that can both achieve state-of-the-art accuracy like a
deep neural network while giving human interpretable quantifica-
tion of feature contribution (Fig. 1A). As summarized in
Supplementary Figure S1C, in this contextual regression model, we
used a residual neural network (He et al., 2016) that is composed of
three layers of FNN (feed forward neural network, Fig. 1B) as the
embedding function to generate the linear models. Batch normaliza-
tion (Ioffe and Szegedy, 2015) is applied in the input layer to reduce
the variance between input batches and make the training process
more stable. The output of the embedding function is then dot-
producted with the features and fed into a logistic function to output
the prediction result. The FNN model is implemented as an oper-
ation that maps a vector x to s(Axþb) where A is an matrix, b is an
vector and s is the activation function. Both A and b are first initial-
ized and then trained with tensorflow AdamOptimizer (Kingma and
Ba, 2014). As for the parameter setting, all three layers of the FNN
have 10 hidden units and tanh as their activation function, batch
size is set to 50, max gradient norm to 10, learning rate to 0.0001.
The weight matrix of each neural network is initialized with the ten-
sorflow tf.truncated_normal function with standard deviation of
0.05 to prevent vanishing gradient problem. The bias term in each
layer is initialized all to value 0. We used cross-entropy as the loss
function during training. To make the feature contribution easily in-
terpretable, we applied a Lasso penalty in the form of L1 regulariza-
tion on the context weight with penalty coefficient 0.0001.

3.2 Prediction and the feature selection results
As summarized in Supplementary Table S1, the designed contextual
regression model successfully distinguish circRNA back-spliced
junction sites defined by transcriptome sequencing data from ran-
domly selected human genome loci, in an average 72.6% accuracy
and the area under curve of ROC curve 0.801 (Supplementary Fig.
S2).

To extract the informative features, we selected the run with the
highest accuracy (Run no. 5) from 10 runs. The difference between
the accuracy on the training and testing sets were negligible (72.5
versus 72.8%), which suggested no overfitting. Therefore, we
pooled together the training and testing sets in the feature analysis.
We selected the most confidently predicted 21 427 circRNAs that
have confident scores > 0.7 to evaluate the contribution of each fea-
ture. The weighted feature contribution (WFC) was then obtained
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from the model output. The features for each circRNA genesis
mechanism (except ‘flanking short ALU repeats’ (both_have_Alu)
and ‘binding sites of single RBP’ (if_same_RBP) since they only have
1 value for the whole region) were pooled into short (within 1000
bp radius from the circRNA) and long range (1000–2000 bp from
the circRNA) by summing the WFC in each category for better data
visualization. This resulted in 14 total feature contributions for each
circular RNA data point (CpG short range, CpG long range, enhan-
cer short range, enhancer long range, RBP short range, RBP long
range, repeats short range, repeats long range, RNA editing short
range, RNA editing long range, self-chain short range, self-chain
long range, if head and tail both have Alu, if head and tail have the
same RBP) that could be treated as a vector with 14 elements. Then,
each of these vectors was normalized to the unit length and PCA
was applied to the whole data point collection. The top 10 principal
components were extracted which explained 98.9% of the total
variance. Then a K-mean clustering was applied to separate the
processed data into subclasses. Multiple values of k were experi-
mented and k ¼ 7 was chosen for being the largest k that ensured all
cosine similarities between cluster centers are < 0.5. The significant-
ly contributing features were plotted in the heat map format and
confirmed in the original feature data.

As a result, we found that these circRNAs could be clustered
into seven different categories according to their biogenesis factors
(Fig. 2A). To validate that the features with high contribution scores
are enriched in each cluster, we calculated the percent enrichment of
each feature in each cluster (Fig. 2B). The enrichment plot supported
our clustering result.

In Cluster 0, RNA editing sites occurrence within 1000 nucleo-
tide upstream or downstream of the circRNA locus was considered
to be the most important factor for the biogenesis of 4576
circRNAs. For the other 4585 circRNAs in Cluster 1, appearance of
RNA editing site within range of 1000–2000 nucleotides upstream
or downstream of circRNA was considered as the most important
biogenesis factor. Similarly, in Cluster 2, existence of RBP binding
sites within short, which means within 1000 nucleotides upstream
or downstream of the circRNA locus, was considered as the most
important biogenesis factor for the 7503 circRNAs. For the 2342
circRNAs in the Cluster 4, occurrence in the long range, which

means within range of 1000–2000 nucleotides upstream or down-
stream of the circRNA locus, of RBP binding sites was suggested as
the main biogenesis factor. Short repeat sequence flanking circRNA
locus was clustered as the main factor for the 1344 circRNAs in
Cluster 3. Biogenesis of 620 circRNAs was linked to flanking CpG
islands, whereas 457 circRNAs’ biogenesis mechanism appeared to
relate to the flanking DNA self-chains. The amount of these seven
clusters is summarized in Supplementary Figure S3, while a complete
list of the circRNAs is available in Supplementary Additional File
S1. Through examining the input data that forms Clusters 2 and 4,
which were associated with RBP, we identified 79 RBPs presumably
participate in the biogenesis of these 9845 circRNAs. A complete list
of the circRNA locus and associated RBP is available in
Supplementary Additional File S2. These 79 RBPs (available in
Supplementary Additional File S4) appear both in the short range
(within 1000 nucleotides) in Cluster 2 and long range (from 1000
nucleotides to 2000 nucleotides) in Cluster 4 consistently. Among
these RBPs, binding motifs of SRSF1, PUM1, SF3B4, ELAVL1,
HNRNPA1, CSDA, SNRPA, RBFOX1 and PABPC1 were found ap-
pear in upstream or downstream of thousands of circRNAs in both
clusters, as summarized in Supplementary Table S2.

Hence based on the result of this study, circRNAs can be catego-
rized into multiple different subclasses, each with specific different
function and biogenesis mechanism. Result of this research support
all of previous discoveries and solidify the idea that multiple

Fig. 1. Illustration of contextual regression. (A) Graphic illustration of the mechan-

ism of contextual regression: the features are inputted into a neural network that

generates a contextual weight for each feature which represents the importance of

the features. Then, the features are then weighted by the corresponding weights to

makes an easier separation of samples. In classification or regression tasks, the

weighted features are then summed to yield the prediction. (B) A graphic demon-

stration of the FNN parts in the contextual regression model

Fig. 2. Prediction and feature collection result. The result of the feature collection is

summarized in this figure. (A) Through the result we found that these circRNAs can

be into seven different categories according to their biogenesis factors. The long

range features are marked with ‘_l’ and the short range ones are marked with ‘_s’.

(B) Percentage of members in each cluster that contains each of the features
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biogenesis mechanisms co-exist for different subset of human
circRNAs. Result of this study can also contribute to the advance of
circRNA detection algorithm. Current mainstream research meth-
ods adopted to discover circRNAs are based on detection of back-
spliced junction sites spanning reads within transcriptome sequenc-
ing data. However, this kind of approaches tends to have high false
positive rate. Sensitivity of the junction site detection is also limited
by sequencing depth. Had a clear concept of circRNA biogenesis
mechanism is available, improved algorithm ruling out sequence
base false positive might be able to be developed.
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