
ORIGINAL RESEARCH
published: 13 March 2019

doi: 10.3389/fonc.2019.00130

Frontiers in Oncology | www.frontiersin.org 1 March 2019 | Volume 9 | Article 130

Edited by:

Issam El Naqa,

University of Michigan, United States

Reviewed by:

Marianne Aznar,

University of Manchester,

United Kingdom

Marco Durante,

Istituto Nazionale di Fisica Nucleare,

Italy

*Correspondence:

Giuseppe Palma

giuseppe.palma@ibb.cnr.it

Specialty section:

This article was submitted to

Radiation Oncology,

a section of the journal

Frontiers in Oncology

Received: 15 October 2018

Accepted: 13 February 2019

Published: 13 March 2019

Citation:

Palma G, Monti S, Buonanno A,

Pacelli R and Cella L (2019) PACE: A

Probabilistic Atlas for Normal Tissue

Complication Estimation in Radiation

Oncology. Front. Oncol. 9:130.

doi: 10.3389/fonc.2019.00130

PACE: A Probabilistic Atlas for
Normal Tissue Complication
Estimation in Radiation Oncology

Giuseppe Palma 1*, Serena Monti 2, Amedeo Buonanno 3, Roberto Pacelli 4 and Laura Cella 1

1 Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy, 2 IRCCS SDN, Naples, Italy,
3Department of Engineering, University of Campania Luigi Vanvitelli, Aversa, Italy, 4Department of Advanced Biomedical

Sciences, Federico II University School of Medicine, Naples, Italy

In radiation oncology, the need for a modern Normal Tissue Complication Probability

(NTCP) philosophy to include voxel-based evidence on organ radio-sensitivity (RS)

has been acknowledged. Here a new formalism (Probabilistic Atlas for Complication

Estimation, PACE) to predict radiation-inducedmorbidity (RIM) is presented. The adopted

strategy basically consists in keeping the structure of a classical, phenomenological

NTCP model, such as the Lyman-Kutcher-Burman (LKB), and replacing the dose

distribution with a collection of RIM odds, including also significant non-dosimetric

covariates, as input of the model framework. The theory was first demonstrated

in silico on synthetic dose maps, classified according to synthetic outcomes. PACE

was then applied to a clinical dataset of thoracic cancer patients classified for lung

fibrosis. LKB models were trained for comparison. Overall, the obtained learning

curves showed that the PACE model outperformed the LKB and predicted synthetic

outcomes with an accuracy >0.8. On the real patients, PACE performance, evaluated

by both discrimination and calibration, was significantly higher than LKB. This trend was

confirmed by cross-validation. Furthermore, the capability to infer the spatial pattern of

underlying RS map for the analyzed RIM was successfully demonstrated, thus paving

the way to new perspectives of NTCP models as learning tools.

Keywords: normal tissue complication probability, voxel-based analysis, radiation-induced morbidity,

radio-sensitivity, radiation therapy

INTRODUCTION

Early cancer detection and cancer treatment advances have contributed to improve local tumor
control and overall survival. By January 1, 2024, it is estimated that in the USA the population of
cancer survivors will increase to nearly 19 million individuals (1). This estimate supports research
studies aimed at investigating the quality of life of these patients after the active phase of treatments,
and the long-term effects of therapy.

Radiation induced damage to normal tissues is, indeed, the renowned Achille’s heel of radiation
treatment of cancer. The risk of normal tissue complications associated with radiation therapy may
even overshadow the benefits provided in terms of tumor control, and many cancer survivors
must cope with long-term effects of radiation treatments that negatively affect their quality of
life. Therefore, the development of mathematical models for the estimation of Normal Tissue
Complication Probability (NTCP) has long been an active field of research in order to predict the
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FIGURE 1 | Flowchart of the PACE model. The model is first trained on a cohort of N patients, whose spatially-normalized dose maps are defined on a grid of M

voxels. The training phase results in a set of M Generalized Linear Models (GLMs) and in the Maximum Likelihood Estimation (MLE) of the parameters ν, µ, and Tp50.

The application of PACE on a spatially-normalized test dose map exploit the M GLMs to derive a collection of global RIM predictions (P map) and weights (W map)

that are finally combined according to the estimated parameters ν, µ, and Tp50.

risk of radiation-induced morbidity (RIM) from the dose
distribution released to critical organs (2, 3).

A major simplification traditionally applied for model-
building was the introduction of the Dose-Volume Histograms
(DVH) of organs at risk, designed to condense the full
information of 3D dose distribution into an easy-to-handle
mathematical tool, and exploited by the Lyman-Kutcher-Burman
(LKB) (4) or Relative Seriality (5) models.

However, an increasing awareness has been triggered in the
scientific community as to the value of including the spatial
information of dose distributions within the analysis of RIM.
The take-home messages of the studies that in the last 5 years
have pioneered the voxel-based approach in RIM analysis fall
into two categories. On the one hand, several studies highlighted
an inhomogeneous radio-sensitivity of a specific organ related
to the development of a given RIM (6–10); alternatively, a
different application of regional analysis was proposed by (11)
to allow a multi-organ study of dysphagia in head-and-neck
cancer patients.

Overall, the statistical inference on spatial signature of RIM
allowed to identify regions in which significant correlations
exist between a global clinical outcome and the local dose
release. While recognizing the urgency of including the regional
inference in a planning optimization perspective, the above
studies eventually resulted in identifying the mean dose to
significant regions at an arbitrary α level as a RIM predictor.

Relying on such predictors might be quite unsafe, and the
definition of an avoidance region based on the significant clusters
of the correlation p-maps seems at least as simplistic as setting a
single constraint on the DVH of an organ at risk. In this context,
a comprehensive NTCP model able to include full spatial info on
dose distribution has not yet been achieved.

The purpose of this study is to propose a new formalism
to fill this gap of knowledge and to develop a Probabilistic
Atlas for normal tissue Complication Estimation in radiation
therapy (PACE) in order to address the need for a modern
NTCP philosophy that could fit the recent voxel-based evidences
on organ radiobiology. The adopted strategy basically consists
in keeping the general structure of a classical NTCP model
approach, such as the LKB model, and replacing the dose
distribution with a collection of RIM odds as input of the model
framework. The theoretical structure was first demonstrated
in silico and then applied to a clinical dataset of thoracic
cancer patients.

MATERIALS AND METHODS

Model Design
The proposed model (Figure 1) assumes the availability of a
set of N 3D dose distributions relative to as many patients
classified according to a binary global outcome associated to
the considered RIM. Each dose map Di (i=1, . . . , N) has to
be spatially normalized to a common anatomical reference in
a common coordinate system. In addition, a list of possible
significant non-dosimetric variables {V} could be available, such
as global covariates {Vi,k} (index k spans the non-dosimetric
covariates like gender, age, medication, radiological features, etc.)
or spatially normalized maps {Vi,k(xj)} (CT, MRI, PET, etc.)
defined on each voxel xj.

For each voxel, a logistic regression of the N outcomes is
performed based on the N values of local dose {Di(xj)|i=1, . . . ,
N} (Figure 2) and of each covariate {Vi,k(xj)|i=1, . . . , N}.

The computation of PACE prediction on a test patient with
a dose map D0 is then obtained as follows (Figure 3). For each
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FIGURE 2 | Schematic representation of model backbone: for each voxel, the N patients’ outcomes are tied to the local dose through a logistic regression. The PACE

structure relies on as many logistic regression models as the number of voxels.

FIGURE 3 | Computation of PACE prediction on a test patient with dose map D0: for each voxel, the regression model collected in the model backbone (Figure 2) is

exploited to guess a RIM risk and the associated confidence interval. Thus, a collection of global RIM predictions (P map) and weights (W map) are populated

voxelwise. These are properly merged to produce the actual PACE probability.

voxel, the corresponding regression value P(xj) and the associated
95% confidence interval CI(xj) are evaluated based on the local
D0(xj) and V0,k(xj). Thus, a collection of global RIM predictions

P(xj) is populated voxelwise, along with the associated reliability
scores given byW(xj)=1/CI(xj), where the odds ratio for the dose
is <1 (i.e., dose appears to be protective), W(xj)=0. The overall
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FIGURE 4 | Examples of 2D synthetic dose maps (on the left) and corresponding Dose-Volume Histograms (DVHs–on the right): upper row refers to dose

distributions generated as the sum of a random number (from 1 to 4) of Gaussian peaks whose standard deviation ranges from 10 to 30% of the size of the region of

interest and whose height ranges from 0.5 to 1.5 in arbitrary units (AU); lower row refers to the same dose maps transformed in order to provide the same DVH for all

the dose distributions.

PACE prediction is then summed up in a LKB fashion as

PACE =
1+ erf t√

2

2
, (1)

where

t =
gEUp− Tp50

µ · Tp50
(2)

and gEUp (generalized equivalent uniform probability) is
defined as

gEUp =





∑

j P
1
ν

(

xj
)

W
(

xj
)

∑

jW
(

xj
)





ν

. (3)

The model contains three free parameters–namely ν (equivalent
to the volume effect parameter n), µ (controlling the slope of

the response sigmoid curve) and the tolerance probability Tp50–
whose values can be customarily derived for a particular RIM
by maximizing the likelihood function of the PACE model (12)
[the related confidence interval are estimated according toWilks’
theorem for nested models (13)].

In silico Validation
PACE model has been first demonstrated on two classes of sets
(of increasing cardinality N) of 2D synthetic dose maps defined
on a square region of interest.

The dose distributions Di(xj) of the first class of sets were
generated as the sum of a random number (from 1 to 4) of
Gaussian peaks whose standard deviation ranges from 10 to 30%
of the size of the region of interest and whose height ranges from
0.5 to 1.5 in arbitrary units (Figure 4, upper row).

The second class was obtained from the first one by
transforming the original dose maps as Ei(xj) = gi[Di(xj)],
where each gi is defined in order to provide the same constant
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FIGURE 5 | Radio-sensitivity (RS) map inference: (A) RS ground truth; (B) RS estimation in arbitrary units from different synthetic radiobiologies obtained for

increasing volume effect parameter n. Each RS estimate is supported by the plot of the match metric (DIV ).

FIGURE 6 | Learning curves for PACE and LKB models on sum of two shifted Gaussian radio-sensitivity distribution for increasing volume effect parameter n.
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differential DVH on a compact support for all the Ei (Figure 4,
lower row).

To classify the dose maps according to a realistic synthetic
outcome, a new summary statistic, derived from the generalized
Equivalent Uniform Dose (14), was designed for a given dose
distribution D(xj) as

g2EUD =





∑

j D
1
n
(

xj
)

RS
(

xj
)

∑

j RS
(

xj
)





n

(4)

in order to account for possible inhomogeneities in organ radio-
sensitivity (RS), besides the usual volume effect parametrized by
the organ dose-volume effect parameter n (2). For each class of
dose maps, two RS maps were considered: a homogeneous one
and one given by the sum of two shifted Gaussian distributions
(S2G–Figure 5A). The g2EUDs were then compared to a
threshold value Dth, thus deriving a synthetic RIM outcome as
Oi = [g2EUDi>Dth]. Of note, the second class of dose sets was

not evaluated according to a homogeneous RS, since the maps
would have been indistinguishable.

Each set of classified dose distributions was then split in a
training and a validation set, and the learning curves (15) of
PACE and LKB (2) models were finally compared.

Application to Clinical Data
The PACE model was applied to a cohort of N = 98 thoracic
cancer patients classified for lung fibrosis of any grade according
to RTOG late pulmonary toxicity scoring system (18 events)
(16). The age was the only non-dosimetric variable significantly
correlated (p = 0.019) with the considered RIM (17). All
participants gave their written informed consent and patient
data were analyzed anonymously. This retrospective study was
approved by the local Ethics Committee (Comitato Etico per le
Attività Biomediche, Università “Federico II,” Napoli, n. 222–
10). All experimental protocols and procedures were performed
in accordance with the guidelines of the Università “Federico
II,” Napoli.

To satisfy PACE assumptions, each dose map was normalized
to a common anatomical reference via a log-diffeomorphic

FIGURE 7 | Learning curves for PACE and LKB models on homogeneous radio-sensitivity distribution for increasing volume effect parameter n.
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demons registration tool, as described in Palma et al. (8) and
Monti et al. (17).

The full PACE model including dose maps and age, the
purely dosimetric PACE (18) and the LKB models were trained
for comparison.

Model performances were evaluated by the Area Under
the Receiver Operating Characteristic (ROC) Curves (AUCs)
and via the calibration plots. ROC-AUCs were compared by a
Z-test according to the standard error estimates provided by
(19). A Leave-One-Out (LOO) cross validation of the models
was performed. The accuracy (i.e., [True Positive + True
Negative]/[ Positive + Negative]), the balanced accuracy (i.e.,
[True Positive/Positive+ True Negative/Negative]/2) and the F1
score (i.e., 2∗True Positive/[2∗True Positive + False Positive +
False Negative]) of predictions were computed.

Radio-Sensitivity Mapping
A spinoff application of the proposed approach was evaluated.
Such application can lead beyond the strict sense of NTCP and
potentially discloses new insights on RS maps. In particular,

once a PACE model has been trained on a given dataset, the
level sets of the RS map can be inferred by computing PACE
predictions on new purposely generated probe-set of synthetic
dose distributions. The latter are designed with a single, narrow
hot spot, whose position shifts along the set to span the entire
region of interest. The PACE probability obtained for a given dose
distribution of the probe-set can be then related to the position
of the associated hot spot, thus getting a voxelwise measure of the
underlying RS map.

The RS map inference was therefore evaluated on four PACE
models; each model was trained on a dataset of 1,000 dose
maps classified according to Equation 4 with a different value
of the volume effect parameter n and using the same S2G as RS
map (Figure 5).

In order to quantify the match between the RS ground truth
(A) and each a posteriori estimate (B), the following metrics is
defined as the Dice Index (DI) (20) between the superlevel sets of
A (SV [A]) and B (SV [B]) with same size V (17):

DIV (A,B) = DI (SV [A] , SV [B]) (5)

FIGURE 8 | Learning curves for PACE and LKB models on sum of two shifted Gaussian radio-sensitivity distribution for increasing volume effect parameter n; dose

distributions have identical Dose-Volume Histogram.
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TABLE 1 | Training and validation of PACE, PACENoAge, and LKB models on clinical data: Parameters and performance scores.

PACE PACENoAge LKB

Parameters (95% CI) ν 0.05 ([0.01–0.10]) ν 0.12 ([0.01–0.25]) n 0.06 ([0.01–1])

µ 0.39 ([0.29–0.55]) µ 0.34 ([0.20–0.54]) m 0.25 ([0.13–0.98])

Tp50 0.55 ([0.42–0.76]) Tp50 0.38 ([0.25–0.75]) TD50 36 ([18–300]) Gy

Discrimination value 0.37 0.10 0.20

Performance

AUC (95% CI) 0.85 ([0.76–0.91]) 0.79 ([0.70–0.87]) 0.66 ([0.56–0.76])

Calibration slope ± SE 1.06 ± 0.13 0.92 ± 0.14 0.76 ± 0.39

Calibration intercept ± SE −0.010 ± 0.037 −0.012 ± 0.039 0.012 ± 0.078

Calibration R2 0.93 0.90 0.50

LOO Accuracy 0.74 0.82 0.70

LOO Balanced accuracy 0.67 0.65 0.62

LOO F1 0.44 0.44 0.38

LOO AUC (95% CI) 0.75 ([0.65–0.83]) 0.67 ([0.57–0.76]) 0.59 ([0.48–0.68])

LOO Calibration slope ± SE 0.56 ± 0.11 0.55 ± 0.14 0.29 ± 0.24

LOO Calibration intercept ± SE 0.063 ± 0.036 −0.061 ± 0.045 0.103 ± 0.047

LOO Calibration R2 0.83 0.77 0.43

CI, confidence interval; AUC, Area Under the ROC Curve; SE, Standard Error; LOO, Leave One Out.

The NTCP models as well as the evaluation steps were
implemented in house in Matlab (MATLAB R© Release 2016b,
The MathWorks, Inc., Natick, MA, USA).

RESULTS

In silico Performances
The learning curves obtained on the first class of datasets
classified according to a S2G RS map show that the PACE
model outperforms the LKB model (Figure 6), with a slightly
increasing model bias at lower n values. When the same class
of datasets is ranked according to a homogeneous RS map,
by construction, the LKB model turns out to be, the perfect
classifier (Equation 4 coincides with standard gEUD definition).
Nonetheless, PACE proves still able to provide an accuracy
around the 0.8 level (Figure 7).

In the second class of datasets, all dose maps are summarized
by the same DVH. Therefore, the LKB model turns out
to be a random classifier (expected accuracy = 0.5),
while the PACE model still predicts the outcome with an
accuracy >0.8 (Figure 8).

Clinical Data Demonstration
The training process of the considered models on the real
patients’ data was summarized in Table 1.

The models consistently highlighted a similar volume effect
for the organ response to irradiation (see ν and n parameters);
however, the confidence intervals of the three free parameters
estimated for PACE models were systematically smaller than the
LKB ones.

On the training set, both PACE models outperformed the
LKB model in terms of discrimination (Figure 9A): at a pairwise
comparison with the LKB ROC curve, the full PACE model
showed an AUC significantly higher (p = 0.018), while a trend

was found for the purely dosimetric PACE model (p = 0.054).
The calibration curves of both PACE models show higher R2

compared to LKB, with calibration-in-the-large a and calibration
slope b close to the ideal (i.e., a = 0 and b = 1), in contrast
to LKB (Figures 9B–D).

A LOO cross validation confirmed the better performances of
PACE models compared to LKB model (Figure 10A), as shown
by the accuracy and balanced accuracy of outcome predictions.
Furthermore, the above described patterns of discrimination and
calibration survived at validation (Figures 10B–D).

Radio-Sensitivity Inference
The RS maps probed with the PACE models trained on the
synthetic datasets suggest a trend in the spatial pattern for
increasing n. Nonetheless, the AUC of DIV between inferred and
ground truth RS maps (overall close to 0.9) reveals that the shape
of the level sets is only mildly dependent on n (Figure 5).

DISCUSSION

We devised a mathematical solution for the statistical modeling
of NTCP that allows to deal with inhomogeneous organ
susceptibility to radiation exposure. This was solicited by the
recent evidences from voxel-based analyses and by two-decade
studies about non-local dose effects on tissue damages (21).

In the last ten years several attempts have been made
to include heterogeneous dose-response relationships into
NTCP models.

Some studies highlighted a spatially dependent point-to-point
correlation between dose and induced damage, which, in the
context of lung toxicity, could be indexed by the variation
of CT density (accounting for fibrosis) (22, 23) or of SPECT
activity (measuring the perfusion) (24). Despite the value of such
findings, the above studies were not suggesting an actual NTCP
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FIGURE 9 | (A) Receiver Operating Characteristic (ROC) curves and (B–D) Calibration curves for the three trained models (full PACE, purely dosimetric PACE, and

Lyman-Kutcher-Burman–LKB) on the clinical dataset.

model, since no global outcome was related to the predicted local
radiological variations.

Differently, Dean and coworkers (25, 26) included spatial dose
metrics (3D moment invariants) of the oral mucosa within their
multivariable analysis of severe acute mucositis, thus accounting
for possible regional variations in RS through some summary
parameters. In a following study on dysphagia resulting from
head-and-neck radiation therapy (27), they found that such
approach did not add any significant predictive power to the
DVH analysis, possibly due to the high correlation between
such spatial metrics and the ordinary DVH metrics. Limited
to the prediction of rectal bleeding following prostate cancer
radiation therapy, an ensemble of neural networks was trained

in (28) to find the relevant features in a 2D dose-surface
map of the rectum. Similarly, in (29) it is shown that the
predictability of gastro-intestinal toxicity increases using spatial
metrics compared to DVH metrics. Furthermore, some studies
on dose map population comparison highlighted a somehow
strong correlation between the RIM outcome and the mean dose
to a sublevel set of the significance p-map (7, 8, 11). However,
such statistics could be barely robust predictors of toxicity since
they are intrinsically unable to account for differently significant
spatial dose signature of RIM.

The proposed model falls within the large framework
of the phenomenological models, which, in opposition to
mechanisticmodels (30), aim at a substantial consistency with the
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FIGURE 10 | (A) Receiver Operating Characteristic (ROC) curves and (B–D) Calibration curves for the three trained models (full PACE, purely dosimetric PACE, and

Lyman-Kutcher-Burman–LKB) on the Leave-One-Out cross-validation on the clinical dataset.

available data without necessarily relying on a fully established
radiobiological background (31).

The functional form of the PACE model was designed to take
into account some key points. First, a huge body of literature
on NTCP suggests that the radiation toxicity is a function more
or less related to the extent of the dose release, depending on
structure and physiology of the organ and on the considered
endpoint. Second, same doses to different subregions could in
principle result in different odds of global damage. Finally, the
relationship between dose and outcome can be more or less
strong within the considered anatomical district.

The first point suggested to adopt a theoretical framework
including a parameter for the description of the dose-volume

effect, such as the largely exploited DVH-based LKB model
(Equation 1). The second point led to replace the dose
distribution with a collection of odds specifically estimated for
the spatial position of local dose release (Equation 2). Finally,
the third point was addressed by weighting the odds according
to their uncertainty (Equation 3).

The PACE framework, by construction, allows to naturally
model a multivariable phenomenon such a RIM, by including
possible non-dosimetric covariates (potentially point functions)
within the assessment of NTCP.

The model was first demonstrated in silico. To this
purpose, we devised and implemented several synthetic plausible
radiobiologies, in order to simulate diverse RS maps and
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several dose-volume effects. PACE scheme was able to learn the
responses assigned to the dose distributions with high accuracy
and robustness, consistently outperforming the LKB approach
in a wide range of synthetic physiopathologies. Not surprisingly,
the reported learning curves revealed that, compared to LKB, the
PACE model requires a higher number of dose distributions to
reduce the deviation between training and validation accuracies,
as a result of the wider spectrum of information it has to take
into account. Nevertheless, the overall lowermodel bias exhibited
by PACE allows to obtain more accurate predictions in the
validation set even at moderately low cardinality (N<50) of the
training set.

This is reflected in the application to a real clinical dataset
of about 100 patients with a relatively low number of RIM
events (18%). The estimates of the volume-effect parameters
(ν for PACE or n for LKB) highlighted the relevance of the
value of the highest doses in the RIM prediction, which is
consistent with some previous findings on lung toxicity (16, 32).
Interestingly, the same dataset permits to obtain much sharper
estimates of the PACE model parameters than those provided
by the LKB.

PACE performance, evaluated by both discrimination and
calibration scores, was significantly higher than the LKB
benchmark. This trend was confirmed by the cross-validation,
which ruled out severe overfitting issues, despite the complexity
of the PACE structure.

It is worth mentioning that the better accuracy achieved
by the full PACE model is not to be ascribed just to the
inclusion of a significant clinical covariate (i.e., the age). Indeed,
while the PACE superiority bears witness to the opportunity to
incorporate non-dosimetric variables, the scores obtained by the
simpler PACENoAge still prove a sensible improvement over a
conventional NTCP scheme.

Remarkably, a further application of this new NTCP
philosophy concerns the capability to infer the spatial pattern
of underlying RS map for the analyzed RIM. The fulfillment
of such task was successfully demonstrated for several synthetic
radiobiologies, showing that the RS mapping tool applies pretty
well over a wide spectrum of dose-volume effect behavior driven
by n. This enables a change in perspective for the usage of
NTCP models, which turns out to be a valuable learning tool
for knowledge building if properly queried. A key point in this

context, strictly related to the generalizability of the PACEmodel,
are the characteristics of the learning cohort of patients, which—
similarly to what happens in the training of standard DVH-based
NTCPmodels—is warranted to show highly inhomogeneous and
mutually uncorrelated dose distributions (11).

At the same time, the very nature of this new NTCP scheme,
which takes into account the full 3D distribution of dose, makes
it particularly suitable for studying toxicity outcomes related to
modern radiation therapy techniques, such as stereotactic body
radiation therapy and particle therapy, characterized by greatly
heterogeneous dose distributions.

We are aware that the increased complexity of a PACE model,
compared to the corresponding LKB function, may hinder the
diffusion of this scheme in the clinical practice. Nonetheless, an
increasing consciousness in the radiation oncology community
of the inhomogeneous RS of several organs justifies and actually
calls for an adequate and modern NTCP approach. On the other
hand, PACE scheme can be considered in all respects within
the large family of machine learning algorithms, which find
more and more room within the recent releases of treatment
planning systems.

In conclusion, we designed and demonstrated, both in silico
and in clinical datasets, an original, phenomenological NTCP
model, which we nicknamed PACE, to blend the need for
RIM prediction with the awareness of inhomogeneous dose
susceptibility. It is conceived to work for different RIM outcomes
from arbitrary district irradiation, with minimal research
cognitive bias. We believe this could open new perspectives for
clinical radiobiology.
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