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Simple Summary: Subacute ruminal acidosis (SARA) is a most prevalent metabolic disorder of
ruminants which poses a great threat to the health and wellbeing of animals. The purpose of this
research was to induce SARA in in vitro conditions and to determine the potential of active dry yeast
(ADT) and thiamine synergistically in mitigating the adverse effects of SARA. Both the supplements
ADY and thiamine synergistically enhanced the ruminal pH, decreased the abundance of negative
rumen bacteria and increased the abundance of useful rumen bacteria and protozoa. It was concluded
that the combined use of ADY and thiamine as a supplement could mitigate SARA. SARA not only
damages the health of the animals but also has detrimental effects on the economic conditions of the
farmers. Therefore, this research could be beneficial for society.

Abstract: Ruminal acidosis is a type of metabolic disorder of high-yielding ruminants which is
associated with the consumption of a high-grain diet. It not only harms the productive efficiency,
health and wellbeing of the animals but also has detrimental effects on the economy of the farmers.
Various strategies have been adapted to control ruminal acidosis. However, none of them have
produced the desired results. This research was carried out to investigate the potential of active
dry yeast (ADY) and thiamine in a synergistic mode to mitigate in vitro-induced ruminal acidosis.
The purpose of this study was to determine how active dry yeast alone and in combination with
thiamine affected the ruminal pH, lactate, volatile fatty acids, lipopolysaccharides (LPS) and microbial
community in in vitro-induced ruminal acidosis. The experiment comprises three treatment groups,
(1) SARA/control, (2) ADY and (3) ADYT (ADY + thiamine). In vitro batch fermentation was
conducted for 24 h. The results indicated that ruminal induced successfully and both additives
improved the final pH (p < 0.01) and decreased the LPS and lactate (p < 0.01) level as compared
to the SARA group. However, the ADYT group decreased the level of lactate below 0.5 mmol/L.
Concomitant to fermentation indicators, both the treatment groups decreased (p < 0.05) the abundance
of lactate-producing bacteria while enhancing (p < 0.01) the abundance of lactate-utilizing bacteria.
However, ADYT also increased (p < 0.05) the abundance of protozoa compared to the SARA and
ADY group. Therefore, it can be concluded that ADY and thiamine in synergistic mode could be a
better strategy in combating the adverse effects of subacute ruminal acidosis.

Keywords: active dry yeast; ruminal acidosis; lipopolysaccharides; microbial community; thiamine

1. Introduction

In current farming systems, ruminants with higher production potential are usually
offered a diet which is rich in concentrates and low in forages to enhance their production
and efficiency. However, such kinds of feeding practices may increase the risk of metabolic
disorders like subacute ruminal acidosis (SARA). SARA affects the gastric health and
welfare of ruminants. Low rumen pH values (5.8–5.0) more than 3 h in a day is considered
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as the most significant indicator of SARA that takes place either repeatedly or which
continues for a considerable amount of time [1]. In addition to ruminal volatile fatty
acids (VFA), various other toxic compounds contribute to SARA’s pathophysiology. These
toxic factors are biogenic amines like histamine [2] and lipopolysaccharide (LPS). These
compounds are microbial in origin. LPS is a part of the Gram-negative bacteria’s cell
wall, and is produced during the lysis of the bacteria. In contrast, biogenic amines are
produced by decarboxylating the precursor amino acids under the degradation of ruminal
microbes [3]. Therefore, sub-acute ruminal acidosis causes dysbiosis of ruminal microbiota
and metabolic disorders [4]. Various strategies have been adapted to prevent sub-acute
ruminal acidosis like the addition of sodium bicarbonate to the ration, or probiotics such
as Megasphaera elsdenii as well as essential oils (cinnamaldehyde and eugenol) [5]. Active
dry yeast and vitamin B1 also showed some good results in counteracting some adverse
effects of SARA [6,7]. However, none of the strategies controlled SARA successfully The
current study was designed to evaluate the potential of thiamine and active dry yeast in a
synergistic mode against in vitro-induced ruminal acidosis. Therefore, the first objective of
this research was to induce an in vitro model of ruminal acidosis in goats and the second
object was to assess the modulating effects of active dry yeast alone and in combination with
vitamin B1 on rumen fermentation indices and the microbial community in this ruminal
acidosis model.

2. Materials and Methods
2.1. Donor Animals

Three rumen-cannulated dairy goats (body weight (BW): 38 ± 0.52 kg, mean ± SD)
were utilized in this experiment as donors of rumen fluid. All the goats were offered a diet
made up of 0.5 kg of concentrate (corn grain) and 0.5 kg of alfalfa hay. The Yangzhou Uni-
versity Animal Care and Use Committee granted approval for all experimental procedures
to be conducted. Before the morning feeding, the rumen fluid was emptied into a container
with a CO2-filled headspace after being filtered through four layers of muslin gauze from
the goats’ fistulas. For 30 min at 39 ◦C, the container was left undisturbed, allowing the
feed particles to float to the top of the bottle. The granules floating on the surface were
removed, and the remaining fluid was used as inoculum.

2.2. Experimental Design and Sampling

The substrate (1 gm) made up of corn (500 mg), ground soymeal bean (150 mg), oat grass
hay (150 mg) and alfalfa hay (200 mg) was dried in an oven, weighed and incorporated in a
single bottle. The total 45 bottles were filled with the substrate and divided into 3 groups with
groups (1) SARA/control group (Substrate + 0 additive) and two treatment groups, (2) ADY
(Substrate 0.5 mg ADY) and (3) ADYT (Substrate + 0.5 mg ADY + 0.2 mg Thiamine)/bottle.
The recommended dose of active dry yeast is 0.5 g/1 kg DMI/day providing 1× 104 CFU
of S. cerevisiae (ADY; Yea-Sacc®1026; Alltech, Nicholasville, KY, USA). As the substrate
weight was 1 g, we incorporated 0.5 mg of active dry yeast into the treatment group.
Similarly, the thiamine dose was calculated as 0.2 mg in the treatment group on the basis of
a previous study done by Zhang et al., 2019 [8].

In every bottle, 8 mL of filtered ruminal fluid and 32 mL of 37 ◦C reduced buffer was
incorporated [9]. After that, each bottle was flushed with CO2, closed and fermented at
39 ◦C for 24 h. For the analysis of rumen pH, lactic acid, NH3-N and microbial protein
content (MCP), ruminal fluid was collected at 3 h, 6 h, 9 h, 12 h and 24 h of fermentation.
For this, three bottles from each group at the designated time point were detached from the
fermentation chamber. Thereafter, the termination of the fermentation process was carried
out by shifting the fermentation bottles in an ice tub.

After the termination of incubation, the fluid pH was calculated by a portable pH
meter (HI9024C, HANNA, Woonsocket, RI, USA). The incubated fluid was transported to
centrifuge tubes, and the centrifugation was conducted at 12,000× g for 10 min to isolate the
solid and liquid phases. Filtered liquid samples were preserved at −20 ◦C. Subsequently,
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the stored samples were used to evaluate lactic acid, volatile fatty acid (VFA), MCP, LPS
and NH3-N concentrations. While solid models were converted into suspended solution
by mixing them in the solution of phosphate buffer (PBS, pH 7.2) of 5 mL and preserved at
−80 ◦C till it was used for the extraction of DNA.

2.3. Analysis of Fermentation Parameters

The concentration of VFA was measured by the gas chromatography (GC-14B; Shi-
madzu, Kyoto, Japan) technique proposed by Wang et al. [10]. Lactic acid and MCP were
determined by following the methods proposed by Barker and Summerson (1941) [11] and
Wang et al. [12], respectively, while NH3-N was measured by steam distillation method [13]
and Keeney was determined by commercially available limulus amebocyte lysate assays
(Xiamenhoushiji, Xiamen, China) as formerly revealed by Liu et al. [14].

2.4. Extraction of DNA and RT_PCR

Freeze-dried samples of the suspended solution were ground with the help of a pestle
and mortar. Freeze drying has been considered beneficial in enhancing the quality and
quantity of DNA [15]. DNA was extracted to follow the method of Malekkhahi et al.,
2016 [14]. After the extraction of the DNA, the samples were stored at −80 ◦C until further
investigation. Subsequently, the extracted DNA was served as a template of the polymerase
chain reaction.

The relative abundance of Prevotella albensis, Streptococcus bovis, M. elsdenii, Fibrobacter
succinogenes, S. ruminantium, Anaerovibrio lipolytica, Lactobacillus spp., Ruminococcus albus
and Protozoa were analyzed by RT-PCR by following the procedure of a previous study [16].
Table 1 shows the primers of the microbial species. The primers were assembled from
the literature to amplify bacteria 16S rRNA and protozoal 18S rRNA region. Real-time
PCR was performed by employing an AB 7300 system (Applied Biosystems, Foster City,
CA, USA). Each reaction mixture was run in twice. Power SYBR green PCR master mix
(Applied Biosystems, Foster City, CA, USA) in combination with the designated primer set
was used for the amplification of the reaction.

Changes in prescribed populations (fold changes) of Prevotella albensis, Streptococcus bovis,
M. elsdenii, Fibrobacter succinogenes, S. ruminantium, Anaerovibrio lipolytica, Lactobacillus
spp., Ruminococcus albus and Protozoa were determined employing a relative quantification
calculation and the method [17], concerning the general bacteria [18] cycle threshold (CT)
values used as the reference and average Ct of the CON group as the calibrator value.

Table 1. Real-time PCR primers are used to amplify DNA.

Target Organism Forward/Reverse Primer Sequence Product Size References

General bacteria F
R

GTGSTGCAYGGYTGTCGTCA
ACGTCRTCCMCACCTTC 146 [19]

S. bovis F
R

TTCCTAGAGATAGGAAGTTTCTTCGG
ATGATGGCAACTAACAATAGGGGT 127 [20]

Prevotella albensis F
R

GCGCCACTGACGCTGAAG
CCCCAAATCCAAAAGGACTCAG 110 [21]

F. succinogenes F
R

F GTTCGGAATTACTGGGCGTAAA
CGCCTGCCCCTGAACTATC 121 [22]

M. elsdenii F
R

AGATGGGGACAACAGCTGGA
CGAAAGCTCCGAAGAGCCT 79 [20]

S. ruminantium F
R

CAATAAGCATTCCGCCTGGG
TTCACTCAATGTCAAGCCCTGG 71 [15]

Lactobacillus F
R

AGCGAACAGGATTAGATACCC
GATGGCACTAGATGTCAAGACC 233 [23]
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Table 1. Cont.

Target Organism Forward/Reverse Primer Sequence Product Size References

Anaerovibrio lipolytica F
R

TGGGTGTTAGAAATGGATTCTAGTG
GCACGTCATTCGGTATTAGCAT 109 [21]

Ruminococcus albus F
R

CCCTAAAAGCAGTCTTAGTTCG
CCTCCTTGCGGTTAGAACA 176 [6]

Protozoa F
R

GCTTTCGWTGGTAGTGTATT
CTTGCCCTCYAATCGTWCT 223 [18]

2.5. Statistical Analysis

The statistical analysis of the data was done using SPSS 16.0 software (SPSS Inc.,
Chicago, IL, USA). A one-way ANOVA and Duncan’s post hoc multiple comparisons test
were used to assess the data on the signs of fermentation as well as the abundance of the
ruminal microbial community. At p < 0.05, a difference was deemed significant.

3. Results
3.1. Fermentation Parameters

Table 2 indicates that SARA is successfully induced. The ADYT supplementation
prevents the reduction of pH value at the threshold level of 5.8. However, ADY also
improved the rumen pH (p < 0.01) as compared to the SARA group. Table 3 shows that
lactic acid concentrations in both the treatment groups decreased (p < 0.01) but the response
of ADYT in the reduction of lactate was more obvious. Table 4 depicts that after 12 h
and 24 h of fermentation, the concentration of NH3-N (p < 0.01) decreased in treatment
groups compared to the SARA group. Table 5 represents that the concentration of MCP
increased significantly after 24 h of incubation in ADYT group. Table 6 reflects that the
concentration of TVFA, acetic acid and A/P significantly increased (p < 0.01) in treatment
groups while the concentration of propionic acid and LPS decreased (p < 0.01) in treatment
groups compared to the SARA.

Table 2. Effect of ADY and ADYT on pH value at different time points of incubation.

pH Noted at Hours of Incubation SARA/Control ADY ADYT SEM p-Value

0 h 6.58 6.56 6.56 0.001 0.23
3 h 6.43 6.44 6.46 0.014 0.17
6 h 6.25 b 6.27 b 6.37 a 0.021 0.004
9 h 5.95 c 6.05 b 6.22 a 0.021 0.00

12 h 5.68 c 5.81 b 6.04 a 0.027 0.00
24 h 5.56 c 5.70 b 5.92 a 0.021 0.00

Subacute ruminal acidosis. Active dry yeast. Active dry yeast + Thiamine. a–c Means denoted by various
superscripts differ significantly (p < 0.05).

Table 3. Effect of ADY and ADYT on Lactic Acid.

Lactic Acid (mmol/L)
at Various Time Points Incubation SARA/Control ADY ADYT SEM p-Value

3 h 0.28 0.27 0.27 0.01 0.85
6 h 0.34 0.33 0.33 0.00 0.35
9 h 0.39 0.38 0.36 0.011 1.60

12 h 0.54 a 0.44 b 0.41 b 0.024 0.003
24 h 0.76 a 0.53 b 0.45 c 0.028 0.00

a–c Means denoted by various superscripts differ significantly (p < 0.05).
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Table 4. Effect of ADY and ADYT on NH3-N.

NH3-N (mg/dL) at Different
Hours of Incubation SARA/Control ADY ADYT SEM p-Value

3 h 18.16 18.30 18.54 1.005 0.932
6 h 22.22 22.43 21.88 1.45 0.930
9 h 25.61 23.44 24.47 1.25 0.297

12 h 33.79 a 30.33 b 29.28 b 1.34 0.035
24 h 27.99 a 22.52 b 21.23 b 1.37 0.06

a, b Means denoted by various superscripts differ significantly (p < 0.05).

Table 5. Effect of ADY and ADYT on Microbial protein content (MCP).

MCP (mg/mL)
at Different Hours of Incubation SARA/Control ADY ADYT SEM p-Value

3 h 5.41 18.30 18.54 0.71 0.849
6 h 5.59 22.43 21.88 0.070 0.697
9 h 5.69 23.44 24.47 0.089 0.56

12 h 5.88 30.33 29.28 0.073 0.508
24 h 6.25 b 6.35 ab 6.43 a 0.050 0.30

MCP = microbial protein. a, b Means denoted by various superscripts differ significantly (p < 0.05).

Table 6. Effect of ADY and ADYT on Volatile fatty acids and Lipopolysaccharide.

Items SARA/Control ADY ADYT SEM p-Value

TVFA (mmol/L) 113.03 b 124.27 ab 132.91 a 6.40 0.056
Acetic Acid (%) 51.91 c 56.15 b 61.16 a 1.41 0.002

Propionic Acid (%) 28.65 a 23.34 b 21.23 b 1.003 0.001
Butyric Acid (%) 15.85 16.51 13.50 1.57 0.216

Isobutyric Acid (%) 0.68 c 0.88 b 1.43 a 0.035 0.000
Isovaleric Acid (%) 1.52 a 1.35 b 1.54 a 0.068 0.061

Valeric Acid% 1.39 b 1.77 a 1.25 c 0.039 0.001
A/P 1.81 c 2.40 b 2.89 a 0.085 0.002

LPS (EU/mL) 17,857.81 a 13,051.27 b 9875.32 c 1211.23 0.002
TVFA = acetate + propionate + butyrate + valerate + isobutyrate + isovalerate. LPS = Lipopolysaccharide.
A/P = Acetate to propionate ratio. a–c Means denoted by various superscripts differ significantly (p < 0.05).

3.2. Rumen Microbial Community

Table 7 illustrates the fold change in the abundance of microbial populations among
the treatment groups. The results indicate that the abundance of S. bovis, P. albensis and
Lactobacilli decreased (p < 0.05) in treatment groups compared to the SARA group. In
contrary to this, the abundance of Anaerovinriyplytic, M. elsdenii, Ruminococcus albus and
S. ruminantium was enhanced p < 0.05 in the treatment groups. However, the abundance of
F. succinogens and protozoa in the SARA and ADY group significantly decreased (p < 0.05)
compared to the ADYT group.

Table 7. Effect of ADY and ADYT on the abundance of rumen microbial community.

Items SARA/Control ADY ADYT SEM p-Value

S. bovis 1.00 a 0.833 a 0.59 b 0.07 0.003
P. albensis 1.00 a 0.72 b 0.53 c 0.058 0.001

Lactobaciilli 1.00 a 0.78 b 0.44 c 0.082 0.001
Anaerobic lyplitica 1.00 b 1.23 b 1.62 a 0.096 0.002

M. elsdenii 1.00 b 1.20 b 1.65 a 0.132 0.007
R. albus 1.00 b 1.43 b 1.76 a 0.142 0.005

S. ruminantium 1.00 b 1.17 b 1.61 a 0.084 0.001
F. succinogenes 1.00 c 1.24 b 1.76 a 0.1150 0.002

Protozoa 1.00 b 1.12 b 1.77 a 0.098 0.007
a–c Means denoted by various superscripts differ significantly (p < 0.05).
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4. Discussion
4.1. Fermentation

The fermentation of a high-concentrate diet often results in the production and accu-
mulation of a higher amount of lactic acid in the rumen [8,24]. The mechanism of controlling
ruminal acidosis is to inhibit lactate-producing microbial communities and to stimulate the
activity of lactate-utilizing bacteria or starch-engulfing protozoa [25]. We hypothesized that
thiamine and active dry yeast synergistically alleviate in vitro-induced subacute ruminal
acidosis by batch culture method. The alleviation was suggested to be achieved by increas-
ing the pH level and reducing the content of lactic acid and other toxic compounds like
lipopolysaccharide (LPS). In the current study, ruminal pH declined constantly from 0 h to
24 h of fermentation. The interesting point is that the pH declines in a similar pattern after
the grain feeding in vivo studies in the SARA group [23,26]. Reduction in ruminal pH < 5.8
for more than 3 h/24 h is considered a threshold value for establishing SARA [27]. After 12
to 24 h of incubation, the pH in the SARA group was noted below the threshold value of
5.8 in the SARA/control group while in treatment 1 the pH value was above 5.8 and 5.6 at
12 h and 24 h of fermentation, respectively. While in treatment 2, the pH value was higher
at 12 and 24 h of incubation. This shows that this may be due to the synergetic effect of
ADY and thiamine. Contrary to our study, AlZahat et al. found that ADY supplementation
did improve the rumen pH value significantly (p < 0.05) compared to the SARA [6]. This
shows that active dry yeast can stabilize rumen pH more effectively in combination with
thiamine. Although some studies show that active dry yeast alone can stabilize the rumen
pH during ruminal acidosis in ruminants [28], other studies show that active dry yeast
has not affected the ruminal pH under high-grain feeding [29]. Thiamine supplementation
under high-grain feeding has a positive correlation with rumen pH [30], and past studies
show that inclusion of thiamine in a grain-rich diet can improve the ruminal pH [7].

As compared to the pH value, the concentration of lactic acid decreased at 12 and
24 h in treatment groups compared to SARA. The decrease in lactic acid concentration is
associated with an increase in ruminal pH, and active dry yeast may stimulate the growth
of cellulolytic bacteria. The results of our study are consistent with the task of Lilla et al. [31].
Inclusion of thiamine in grain-rich diet favors the growth of lactate-utilizing bacteria [23],
and similar to our findings, Pan et al.,2016 found that the lactic acid concentration was low
in the treatment group compared to the SARA group [11]. Contrary to our study, active
dry diet supplementation did not show any difference between the SARA and treatment
groups [10,14].

In the SARA group, the concentrations of LPS in our study was higher as compared
to findings Yin et al. [32] in in vitro-induced ruminal acidosis model. LPS is an endotoxin
which is the part of Gram-negative bacteria. It releases in the rumen due to lysis of the
bacteria during ruminal acidosis as these bacteria are pH-sensitive [33]. Previous studies
indicated that active dry yeast alone or in combination with other additives could not
minimize LPS in high-grain-fed sheep [34].

Contrary to that, LPS level significantly decreased in both treatment groups. Sup-
plementation of active dry yeast improves the rumen environment by making it more
conducive for the growth of fibro lytic bacteria by removing oxygen from it [6,35]. As
ruminal acidosis causes an imbalance between lactate-producing and lactate-utilizing bac-
teria and inclusion of thiamine can facilitate a balance between them [23] and reduces LPS
concentration in SARA-induced goats and cattle [7,8].

The disturbance in the microbial community as a result of grain feeding plays a vital
part in the etiopathology of sub-acute ruminal acidosis [36]. Hence, the response of ADY in
combination with thiamine is more promising in the stabilization of fermentation indicators.

4.2. Bacterial Community

It is evident from the results that as compared to ADY, ADYT supplementation in
in vitro rumen acidosis could improve rumen function by enhancing ruminal pH and acetic
acid and reducing lactic acid and LPS in a better way. This progress in rumen fermentation
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indicators could be the reflection of the improved microbial community [37]. In keeping
view of it, we further investigated the microbial response to the SARA group and both
treatment groups.

The inclusion of thiamine in a high-grain diet improves the growth of cellulytic bacteria [38].
The population of cellulytic bacteria like F. succinogenes lowered during the subacute

ruminal acidosis challenge [39]. Saccharomyces cerevisiae promotes the growth of F.
succinogenes and other fibrolytic bacteria [28]. The impact of ADY on the abundance of
F. succinogenes agrees with previous studies [29,40] where supplementation of ADY did
not improve the growth of the bacteria. But in combination with thiamine, it enhanced the
bacterial population as compared to the SARA group. This could be due to the higher pH
value in the ADYT group.

Under lower ruminal pH, lactate concentration decreases [41] because the abundance
of lactate-utilizing bacteria like Megasphaera elsdenii start declining during high-grain feed-
ing [23]. ADY can enhance ruminal pH by improving lactate utilization [42] through
facilitating the growth of Megasphaera elsdenii and selemonas [37]. However, in our study, the
ADYT group significantly enhanced the abundance of Megasphaera elsdenii and selemonas
while ADY effected positively on the growth of Megasphaera elsdenii. This is consistent
with the findings of Chaucheyras-Durand et al., 2008. Contrary to our study, the ADY
supplementation showed no effect against Megasphaera elsdenii in SARA-induced dairy
cattle [29].

S. bovis and P. albensis are a Gram-negative bacterium which prevails in a high con-
centration during ruminal acidosis and considered a key source of LPS [36]. LPS may
damage the health of affected animals like laminitis [43]. The ADYT group significantly
depicted a reduction in the abundance of P. albensis compared to ADY. This reflects that
ADYT supplementation could help in minimizing the negative consequences of ruminal
acidosis on the health of animals.

4.3. Protozoa

Protozoa are sensitive to low ruminal pH, in an intensive farming system, grain
feeding is a common practice which may imbalance the ruminal protozoa. The decline
protozoa in the SARA group is in line with the study of Owens et al. (1998), who established
that fibrous mat is essential for the multiplication of protozoa [44]. Slyter, 2004, indicated
that high osmotic pressure along with low ruminal pH could have a direct lethal effect
on protozoa [44]. The result indicated that ADY supplementation did not affect protozoa.
This agrees with the study of AlZahal et al., 2014, where ADY supplementation could not
enhance protozoa in SARA-induced cattle [6]. However, ADYT showed a positive effect
(p < 0.05) on protozoa. The better protozoa population detected with ADYT than ADY and
the SARA group is perhaps directly related to the increased pH values in the ADYT group.

5. Conclusions

It is concluded that a substrate comprises 50% corn grain and 15% soybean meal is
sufficient to induce subacute ruminal acidosis in in vitro conditions. The results further
confirmed that both the treatment groups improved ruminal pH but as compared to the
ADY group, the ADYT group showed a significant reduction in the abundance of lactate-
producing bacteria, lactate and LPS content and increased the abundance of lactate-utilizing
bacteria and protozoa. Therefore, supplementation of ADY and thiamine in combination
would have the potential to mitigate sub-acute ruminal acidosis. Further, in vivo studies
can be recommended to validate the results of the in vitro study.

Author Contributions: Conceptualization, H.W.; data curation, G.A.; formal analysis, G.A.; funding
acquisition, H.W.; methodology, G.A.; project administration, H.W.; resources, H.W.; software, G.A.;
supervision, H.W.; validation, H.W.; visualization, H.W.; writing—original draft, G.A.; writing—review
and editing, H.W. All authors have read and agreed to the published version of the manuscript.



Animals 2022, 12, 2333 8 of 9

Funding: Projects from the Jiangsu Higher Education Institutions Priority Academic Program De-
velopment (PADA) and the National Natural Science Foundation of China (NSFC No. 31572429)
provided funding for this research.

Institutional Review Board Statement: With the approval of Yangzhou University’s Animal Care
and Use Committee, animal care and procedures were carried out in compliance with Chinese
regulations for animal welfare (SXXY2015-0054).

Informed Consent Statement: Not applicable.

Data Availability Statement: This article contains all the data that were created or examined during
this investigation.

Acknowledgments: The authors gratefully acknowledge the students from Hongrong Wang’s Lab
for the assistance of the experimental sampling and animal feeding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Morgante, M.; Stelletta, C.; Berzaghi, P.; Gianesella, M.; Andrighetto, I. Subacute rumen acidosis in lactating cows: An investigation

in intensive Italian dairy herds. J. Anim. Physiol. Anim. Nutr. 2007, 91, 226–234. [CrossRef] [PubMed]
2. Aschenbach, J.R.; Gäbel, G. Effect and absorption of histamine in sheep rumen: Significance of acidotic epithelial damage. J. Anim.

Sci. 2000, 78, 464–470. [CrossRef] [PubMed]
3. Gozho, G.N.; Plaizier, J.C.; Krause, D.O.; Kennedy, A.D.; Wittenberg, K.M. Subacute Ruminal Acidosis Induces Ruminal

Lipopolysaccharide Endotoxin Release and Triggers an Inflammatory Response. J. Dairy Sci. 2005, 88, 1399–1403. [CrossRef]
4. Hua, C.; Tian, J.; Tian, P.; Cong, R.; Luo, Y.; Geng, Y.; Tao, S.; Ni, Y.; Zhao, R. Feeding a High Concentration Diet Induces Unhealthy

Alterations in the Composition and Metabolism of Ruminal Microbiota and Host Response in a Goat Model. Front. Microbiol.
2017, 8, 138. [CrossRef]

5. Jaramillo-López, E.; Itza-Ortiz, M.F.; Peraza-Mercado, G.; Carrera-Chávez, J.M. Ruminal acidosis: Strategies for its control. Austral.
J. Vet. Sci. 2017, 49, 139–148. [CrossRef]

6. AlZahal, O.; Dionissopoulos, L.; Laarman, A.; Walker, N.; McBride, B. Active dry Saccharomyces cerevisiae can alleviate the effect
of subacute ruminal acidosis in lactating dairy cows. J. Dairy Sci. 2014, 97, 7751–7763. [CrossRef]

7. Pan, X.; Yang, L.; Beckers, Y.; Xue, F.; Tang, Z.; Jiang, L.; Xiong, B. Thiamine supplementation facilitates thiamine transporter
expression in the rumen epithelium and attenuates high-grain-induced inflammation in low-yielding dairy cows. J. Dairy Sci.
2017, 100, 5329–5342. [CrossRef]

8. Zhang, H.; Peng, A.L.; Zhao, F.F.; Yu, L.H.; Wang, M.Z.; Osorio, J.S.; Wang, H.R. Thiamine ameliorates inflammation of the
ruminal epithelium of Saanen goats suffering from subacute ruminal acidosis. J. Dairy Sci. 2020, 103, 1931–1943. [CrossRef]

9. Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure
transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [CrossRef]

10. Wang, D.; Zhang, R.; Zhu, W.; Mao, S. Effects of subacute ruminal acidosis challenges on fermentation and biogenic amines in the
rumen of dairy cows. Livest. Sci. 2013, 155, 262–272. [CrossRef]

11. Barker, S.B.; Summerson, W.H. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 1941, 138,
535–554. [CrossRef]

12. Wang, M.-Z.; Wang, H.-R.; Cao, H.-C.; Li, G.-X.; Zhang, J. Effects of Limiting Amino Acids on Rumen Fermentation and Microbial
Community In vitro. Agric. Sci. China 2008, 7, 1524–1531. [CrossRef]

13. Bremner, J.; Keeney, D. Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal. Chim. Acta 1965, 32,
485–495. [CrossRef]

14. Liu, J.-H.; Xu, T.-T.; Liu, Y.-J.; Zhu, W.-Y.; Mao, S.-Y. A high-grain diet causes massive disruption of ruminal epithelial tight
junctions in goats. Am. J. Physiol. Integr. Comp. Physiol. 2013, 305, R232–R241. [CrossRef] [PubMed]

15. Ruiz, M.E.; Pando, M.A. Load Transfer Mechanisms of Tip Post-Grouted Drilled Shafts in Sand. In Proceedings of the International
Foundation Congress and Equipment Expo 2009, Orlando, FL, USA, 15–19 May 2009; pp. 23–30. [CrossRef]

16. Valizadeh, R.; Behgar, M.; Mirzaee, M.; Naserian, A.A.; Vakili, A.R.; Ghovvati, S. The effect of physically effective fiber and soy
hull on the ruminal cellulolytic bacteria population and milk production of dairy cows. Asian-Australas. J. Anim. Sci. 2010, 23,
1325–1332. [CrossRef]

17. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method.
Methods 2001, 25, 402–408. [CrossRef] [PubMed]

18. Denman, S.E.; McSweeney, C. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial
populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [CrossRef]

19. Maeda, H.; Fujimoto, C.; Haruki, Y.; Maeda, T.; Kokeguchi, S.; Petelin, M.; Arai, H.; Tanimoto, I.; Nishimura, F.; Takashiba,
S. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas
gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol. Med. Microbiol. 2003, 39, 81–86. [CrossRef]

http://doi.org/10.1111/j.1439-0396.2007.00696.x
http://www.ncbi.nlm.nih.gov/pubmed/17516944
http://doi.org/10.2527/2000.782464x
http://www.ncbi.nlm.nih.gov/pubmed/10709939
http://doi.org/10.3168/jds.S0022-0302(05)72807-1
http://doi.org/10.3389/fmicb.2017.00138
http://doi.org/10.4067/S0719-81322017000300139
http://doi.org/10.3168/jds.2014-8212
http://doi.org/10.3168/jds.2016-11966
http://doi.org/10.3168/jds.2019-16944
http://doi.org/10.1016/0377-8401(94)90171-6
http://doi.org/10.1016/j.livsci.2013.05.026
http://doi.org/10.1016/S0021-9258(18)51379-X
http://doi.org/10.1016/S1671-2927(08)60412-5
http://doi.org/10.1016/S0003-2670(00)88973-4
http://doi.org/10.1152/ajpregu.00068.2013
http://www.ncbi.nlm.nih.gov/pubmed/23739344
http://doi.org/10.1061/41021(335)3
http://doi.org/10.5713/ajas.2010.90651
http://doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://doi.org/10.1111/j.1574-6941.2006.00190.x
http://doi.org/10.1016/S0928-8244(03)00224-4


Animals 2022, 12, 2333 9 of 9

20. Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine
rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [CrossRef]

21. Khafipour, E.; Krause, D.O.; Plaizier, J.C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysac-
charide and triggers inflammation. J. Dairy Sci. 2009, 92, 1060–1070. [CrossRef]

22. Zhang, C.; Guo, Y.; Yuan, Z.; Wu, Y.; Wang, J.; Liu, J.; Zhu, W. Effect of octadeca carbon fatty acids on microbial fermentation,
methanogenesis and microbial flora in vitro. Anim. Feed Sci. Technol. 2008, 146, 259–269. [CrossRef]

23. Wang, H.; Pan, X.; Wang, C.; Wang, M.; Yu, L. Effects of different dietary concentrate to forage ratio and thiamine supplementation
on the rumen fermentation and ruminal bacterial community in dairy cows. Anim. Prod. Sci. 2015, 55, 189–193. [CrossRef]

24. Rivera-Chacon, R.; Castillo-Lopez, E.; Ricci, S.; Petri, R.M.; Reisinger, N.; Zebeli, Q. Supplementing a Phytogenic Feed Additive
Modulates the Risk of Subacute Rumen Acidosis, Rumen Fermentation and Systemic Inflammation in Cattle Fed Acidogenic
Diets. Animals 2022, 12, 1201. [CrossRef] [PubMed]

25. Owens, F.N.; Secrist, D.S.; Hill, W.J.; Gill, D.R. Acidosis in cattle: A review. J. Anim. Sci. 1998, 76, 275–286. [CrossRef] [PubMed]
26. Shen, Y.Z.; Ding, L.Y.; Chen, L.M.; Xu, J.H.; Zhao, R.; Yang, W.Z.; Wang, H.R.; Wang, M.Z. Feeding corn grain steeped in citric

acid modulates rumen fermentation and inflammatory responses in dairy goats. Animal 2019, 13, 301–308. [CrossRef]
27. Plaizier, J.C.; Krause, D.O.; Gozho, G.N.; McBride, B.W. Subacute ruminal acidosis in dairy cows: The physiological causes,

incidence and consequences. Vet. J. 2008, 176, 21–31. [CrossRef]
28. Chaucheyras-Durand, F.; Walker, N.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and

future. Anim. Feed Sci. Technol. 2008, 145, 5–26. [CrossRef]
29. Malekkhahi, M.; Tahmasbi, A.; Naserian, A.A.; Mesgaran, M.D.; Kleen, J.; AlZahal, O.; Ghaffari, M. Effects of supplementation of

active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood
metabolites, and milk production in dairy cows. Anim. Feed Sci. Technol. 2016, 213, 29–43. [CrossRef]

30. Pan, X.; Yang, L.; Xue, F.; Xin, H.; Jiang, L.; Xiong, B.; Beckers, Y. Relationship between thiamine and subacute ruminal acidosis
induced by a high-grain diet in dairy cows. J. Dairy Sci. 2016, 99, 8790–8801. [CrossRef]

31. Lila, Z.A.; Mohammed, N.; Yasui, T.; Kurokawa, Y.; Kanda, S.; Itabashi, H. Effects of a twin strain of Saccharomyces cerevisiae
live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 2004, 82, 1847–1854. [CrossRef]

32. Yin, Y.-Y.; Liu, Y.-J.; Zhu, W.-Y.; Mao, S.-Y. Effects of Acarbose Addition on Ruminal Bacterial Microbiota, Lipopolysaccharide
Levels and Fermentation Characteristics In vitro. Asian-Australas. J. Anim. Sci. 2014, 27, 1726–1735. [CrossRef] [PubMed]

33. Li, S.; Khafipour, E.; Krause, D.; Kroeker, A.; Rodriguez-Lecompte, J.; Gozho, G.; Plaizier, J. Effects of subacute ruminal acidosis
challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J. Dairy Sci. 2012, 95, 294–303. [CrossRef]
[PubMed]

34. Garcia Diaz, T.; Ferriani Branco, A.; Jacovaci, F.A.; Cabreira Jobim, C.; Bolson, D.C.; Pratti Daniel, J.L. Inclusion of live yeast
and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen
morphology. PLoS ONE 2018, 13, e0193313.

35. Chaucheyras-Durand, F.; Durand, H. Probiotics in animal nutrition and health. Benef. Microbes 2010, 1, 3–9. [CrossRef] [PubMed]
36. Khafipour, E.; Li, S.; Plaizier, J.C.; Krause, D.O. Rumen microbiome composition determined using two nutritional models of

subacute ruminal acidosis. Appl. Environ. Microbiol. 2009, 75, 7115–7124. [CrossRef]
37. Pinloche, E.; McEwan, N.; Marden, J.-P.; Bayourthe, C.; Auclair, E.; Newbold, C.J. The Effects of a Probiotic Yeast on the Bacterial

Diversity and Population Structure in the Rumen of Cattle. PLoS ONE 2013, 8, e67824. [CrossRef]
38. Pan, X.; Xue, F.; Nan, X.; Tang, Z.; Wang, K.; Beckers, Y.; Jiang, L.; Xiong, B. Illumina Sequencing Approach to Characterize

Thiamine Metabolism Related Bacteria and the Impacts of Thiamine Supplementation on Ruminal Microbiota in Dairy Cows Fed
High-Grain Diets. Front. Microbiol. 2017, 8, 1818. [CrossRef]

39. Schlegel, G.; Ringseis, R.; Windisch, W.; Schwarz, F.; Eder, K. Effects of a rumen-protected mixture of conjugated linoleic acids on
hepatic expression of genes involved in lipid metabolism in dairy cows. J. Dairy Sci. 2012, 95, 3905–3918. [CrossRef]

40. El Hassan, S.M.; Newbold, C.J.; Edwards, I.E.; Topps, J.H.; Wallace, R.J. Effect of yeast culture on rumen fermentation, microbial
protein flow from the rumen and live-weight gain in bulls given high cereal diets. Anim. Sci. 1996, 62, 43–48. [CrossRef]

41. Krause, K.M.; Oetzel, G.R. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed. Sci.
Technol. 2015, 126, 215–236. [CrossRef]

42. Nocek, J.E. Bovine Acidosis: Implications on Laminitis. J. Dairy Sci. 1997, 80, 1005–1028. [CrossRef]
43. Khafipour, E.; Krause, D.O.; Plaizier, J.C. Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial

endotoxin in the rumen without causing inflammation. J. Dairy Sci. 2009, 92, 1712–1724. [CrossRef] [PubMed]
44. Sylvester, J.T.; Karnati, S.K.R.; Yu, Z.; Morrison, M.; Firkins, J.L. Development of an Assay to Quantify Rumen Ciliate Protozoal

Biomass in Cows Using Real-Time PCR. J. Nutr. 2004, 134, 3378–3384. [CrossRef] [PubMed]

http://doi.org/10.1007/s00253-006-0802-y
http://doi.org/10.3168/jds.2008-1389
http://doi.org/10.1016/j.anifeedsci.2008.01.005
http://doi.org/10.1071/AN14523
http://doi.org/10.3390/ani12091201
http://www.ncbi.nlm.nih.gov/pubmed/35565627
http://doi.org/10.2527/1998.761275x
http://www.ncbi.nlm.nih.gov/pubmed/9464909
http://doi.org/10.1017/S1751731118001064
http://doi.org/10.1016/j.tvjl.2007.12.016
http://doi.org/10.1016/j.anifeedsci.2007.04.019
http://doi.org/10.1016/j.anifeedsci.2015.12.018
http://doi.org/10.3168/jds.2016-10865
http://doi.org/10.2527/2004.8261847x
http://doi.org/10.5713/ajas.2014.14292
http://www.ncbi.nlm.nih.gov/pubmed/25358366
http://doi.org/10.3168/jds.2011-4447
http://www.ncbi.nlm.nih.gov/pubmed/22192209
http://doi.org/10.3920/BM2008.1002
http://www.ncbi.nlm.nih.gov/pubmed/21840795
http://doi.org/10.1128/AEM.00739-09
http://doi.org/10.1371/journal.pone.0067824
http://doi.org/10.3389/fmicb.2017.01818
http://doi.org/10.3168/jds.2011-4835
http://doi.org/10.1017/S1357729800014296
http://doi.org/10.1016/j.anifeedsci.2005.08.004
http://doi.org/10.3168/jds.S0022-0302(97)76026-0
http://doi.org/10.3168/jds.2008-1656
http://www.ncbi.nlm.nih.gov/pubmed/19307653
http://doi.org/10.1093/jn/134.12.3378
http://www.ncbi.nlm.nih.gov/pubmed/15570040

	Introduction 
	Materials and Methods 
	Donor Animals 
	Experimental Design and Sampling 
	Analysis of Fermentation Parameters 
	Extraction of DNA and RT_PCR 
	Statistical Analysis 

	Results 
	Fermentation Parameters 
	Rumen Microbial Community 

	Discussion 
	Fermentation 
	Bacterial Community 
	Protozoa 

	Conclusions 
	References

