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Abstract

The fastest-evolving regions in the human and chimpanzee genomes show a remarkable excess of weak (A,T) to strong (G,C)

nucleotide substitutions since divergence from their common ancestor. We investigated the phylogenetic extent and possible

causes of this weak to strong (W/S) bias in divergent sequences (BDS) using recently sequenced genomes and

recombination maps from eight trios of eukaryotic species. To quantify evidence for BDS, we inferred substitution histories

using an efficient maximum likelihood approach with a context-dependent evolutionary model. We then annotated all

lineage-specific substitutions in terms of W/S bias and density on the chromosomes. Finally, we used the inferred
substitutions to calculate a BDS score—a log odds ratio between substitution type and density—and assessed its statistical

significance with Fisher’s exact test. Applying this approach, we found significant BDS in the coding and noncoding sequence

of human, mouse, dog, stickleback, fruit fly, and worm. We also observed a significant lack of W/S BDS in chicken and

yeast. The BDS score varies between species and across the chromosomes within each species. It is most strongly correlated

with different genomic features in different species, but a strong correlation with recombination rates is found in several

species. Our results demonstrate that a W/S substitution bias in fast-evolving sequences is a widespread phenomenon. The

patterns of BDS observed suggest that a recombination-associated process, such as GC-biased gene conversion, is involved

in the production of the bias in many species, but the strength of the BDS likely depends on many factors, including genome
stability, variability in recombination rate over time and across the genome, the frequency of meiosis, and the amount of

outcrossing in each species.
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Introduction

The recent sequencing of the genomes of many closely re-

lated species has created a powerful new paradigm for in-

vestigating the evolutionary processes that generate the

diversity of life on Earth. Comparing the complete human

genome sequence to that of a chimpanzee, our closest living

relative, Dreszer et al. (2007) demonstrated that the most

divergent regions of both genomes show a striking W/S

substitution bias and that this association is correlated with

recombination rates. This bias in divergent sequences (BDS)

is not limited to neutrally evolving sequences and can signif-

icantly impact substitution patterns in conserved noncoding

sequences (Pollard, Salama, King et al. 2006) and protein-

coding exons (Berglund et al. 2009; Ratnakumar et al.

2010), suggesting the possibility of significant functional

consequences. These observations have profound implica-

tions regarding the interpretation of adaptive evolution in

fast-evolving sequences of the human genome and our un-

derstanding of the evolutionary forces driving divergence

between closely related species in general.

In this paper, we explore two fundamental questions

about BDS and what the phenomenon tells us about ge-

nome evolution and function. First, is BDS unique to the

hominoids or a more widespread phenomenon? The recent

sequencing of many closely related eukaryotic species ena-

bles us to investigate the phylogenetic extent of BDS. Sec-

ond, what evolutionary processes produce BDS? Based on

the patterns of BDS found in human, Dreszer et al.

(2007) argued that GC-based gene conversion (gBGC)

(Duret and Galtier 2009) is the cause of BDS. gBGC is a non-

adaptive evolutionary process that favors the fixation of
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weak alleles near the double-strand breaks that initiate re-
combination events. Episodes of gBGC in a genomic region

could produce an association between W/S substitutions

and substitution density (BDS) by drivingW/Smutations to

fixation in recombination hotspots. We investigate the ori-

gin of BDS by examining correlations between BDS and ge-

nomic variables, including recombination rates, in different

species.

To examine BDS in a broader phylogenetic context, we
characterized recent substitutions in eight trios of eukaryotic

organisms including: human (Homo sapiens), mouse (Mus
musculus), dog (Canis familiaris), chicken (Gallus gallus), stick-
leback (Gasterosteus aculeatus), fruit fly (Drosophila mela-
nogaster), worm (Caenorhabditis elegans), and yeast

(Saccharomyces cerevisiae). We selected these species based

on availability of sequenced genomes for a closely related

comparison taxon and an outgroup, quality of the genome
assemblies, and (if possible) availability of recombination

maps.

To enable these genome-wide analyses, we inferred sub-

stitution histories using maximum likelihood and a context-

dependent model of evolution with the PHAST package

(Hubisz et al. 2011). This approach accounts directly for

CpG hypermutability and other context effects that can lead

to incorrect inference of substitution type (e.g., W/S vs.
not W/S) in parsimony-based analyses. Next, we analyzed

substitution patterns using a new efficient statistical test for

the association of nucleotide substitution types with substi-

tution rates and genome annotations. Most previous studies

of substitution patterns in divergent regions have focused on

discrete predefined elements across the genome; in contrast,

our approach is more broad and allows a flexible continuous

definition of ‘‘divergent’’ based on the density of substitution
across the genome. Our work extends the approach of

Dreszer et al. (2007) and provides a more rigorous statistical

framework for measuring associations between substitution

type and density.

Using these tools, we confirm the previously observed

pattern of BDS in the human genome and its association

with elevated recombination rates. Our analysis of non-

primate clades shows that BDS is common outside of hu-
man, though not universal. When BDS is present, it exists

in both coding and noncoding sequence and is often, but

not always, correlated with high rates of recombination.

This correlation, paired with the lack of W/S bias in

within-species polymorphisms, argues that a recombina-

tion-driven fixation bias for strong nucleotides, such as

that produced by gBGC, may be involved in the production

of BDS, especially when there is variation in strength and
location of gBGC over time. Overall, the strong evidence

we find for BDS in many eukaryote genomes highlights the

importance of understanding its causes and developing

statistical models of DNA and protein evolution that incor-

porate these observations.

Materials and Methods

Data

Genome sequences and multiple sequence alignments of

recent assemblies for all species (fig. 1) were downloaded

from the University of California, Santa Cruz (UCSC) Ge-

nome Browser (Kent et al. 2002). The genome alignments
were constructed from syntenic pairwise alignments which

were then multiply aligned using the UCSC/MULTIZ align-

ment pipeline (Kent et al. 2003; Blanchette et al. 2004).

Whenmore than one precomputed alignment was available

for a reference species, we chose the most phylogenetically

restricted. For chicken, we did not consider the microchro-

mosomes (International Chicken Genome Sequencing Con-

sortium 2004) in our analysis. The following genome
assemblies were used (UCSC identifiers): hg18, panTro2,

rheMac2, mm9, rn4, cavPor2, canFam2, felCat3, bosTau4,

FIG. 1.—The patterns of BDS across eight eukaryotic lineages.

Each trio of species contains a reference (red branch), comparison, and

outgroup species. Substitutions occurring on the branch leading to the

reference species from the last common ancestor with the comparison

species were considered. The color of each box reflects the strength of

the BDS in the associated species. Warm colors (reds) indicate W/S

BDS, and cool colors (blues) indicate a preference against W/S

substitutions in fast-evolving regions. Asterisks indicate a significant

deviation from expected substitution patterns. BDS statistics for each

species are given in table 1.

GC-Biased Substitutions in Divergent Sequences GBE

Genome Biol. Evol. 3:516–527. doi:10.1093/gbe/evr051 Advance Access publication June 13, 2011 517



galGal3, taeGut1, anoCar1, gasAcu1, oryLat1, fr2, dm3,
droSim1, droYak2, ce6, caePb2, caeJap1, sacCer2, sacPar,

sacMik. Conservation scores for each reference species were

downloaded from the Genome Browser; phyloP (Pollard

et al. 2010) scores were used when available, otherwise

phastCons (Siepel et al. 2005; Hubisz et al. 2011) scores

were used. Species trees and divergences were taken from

the phastCons tree models estimated from 4-fold degener-

ate sites using phyloFit (Siepel et al. 2005; Hubisz et al.
2011).

The raw single nucleotide polymorphism (SNP) data for

human and mouse come from dbSNP (Sherry et al. 2001)

release 130 and 128, respectively. SNPs for chicken were

identified by the Beijing Genomics Institute and downloaded

from the UCSC Genome Browser bgiSNP track.

Recombination rate data were obtained from a variety of

sources. For human, we used the combined recombination
map from the HapMap project (The International Hapmap

Consortium 2007), as well as the deCODE genetics male

and female maps which are based on 15,257 Icelandic

parent–offspring pairs (Kong et al. 2010). Mouse recombi-

nation data were downloaded from the Mouse Map Con-

verter (Jackson Laboratories 2009), which is based on SNP

analysis across 46 families (Shifman et al. 2006; Cox et al.

2009). The chicken recombination map fromGroenen et al.
(2009) is based on SNPs across three mapping populations.

For fruit fly, the Drosophila Recombination Rate Calculator

(Fiston-Lavier et al. 2010), which compares genetic and

physical maps of the genome to infer recombination rates,

was used.

Analysis

Our BDS analysis pipeline consists of several steps. For each

clade of interest, we started with an alignment of three spe-

cies: reference, comparison (sister taxon), and outgroup.

Our analysis workflow is as follows (details below). First,

the three-species alignments were filtered for alignment

quality. Then substitution histories were computed using
maximum likelihood and a context-dependent evolutionary

model. Given the set of expected recent substitutions, the

association between patterns of substitution and substitu-

tion density (BDS) was quantified. Finally, the strength of

the BDS across the genome was correlated with several

other genomic features.

Data processing and analysis were performed using cus-

tom programs written in R (R Development Core Team
2009) and Python with SciPy (Jones et al. 2001) and mat-

plotlib (Hunter 2007).

Alignment Filtering. In order to study patterns of substi-

tution between species, it is crucial that the data are not pol-

luted by false substitutions introduced by alignment errors.

We filtered all alignments in a consistent manner across

each set of species using several criteria that could be

applied in each clade considered. First, repetitive sequences
as identified by the UCSC Genome Browser alignment pipe-

line were not considered. These regions were identified us-

ing the Tandem Repeats Finder and RepeatMasker (Smit and

Hubley 2008–2010) and are indicated by lowercase letters in

the alignments. (See the Genome Browser documentation for

more details.) Next, the quality of the alignment around each

position was considered. If there were any insertions or dele-

tions between the reference and comparison species within
five base pairs (bp) of a position, then it was not considered.

Finally, all positions in regions of the genome that had signif-

icant homology to another region of the genomewere filtered

out. These duplicated or repetitive regions are often difficult to

align to other species due to their similarity. These regions

were removed using the Genome Browser’s chainSelf track

of significant alignments of a genome with itself.

Identification of Recent Substitutions. We are inter-
ested in substitutions that occurred in the reference species

since its divergence from the last common ancestor with

the comparison species—for example, on the human lineage

after its last common ancestor with chimpanzee. These

branches of interest are indicated in red in figure 1. After fil-

tering the alignments as described above, we fit a context-

dependent dinucleotide phylogenetic model to the align-

ments for each chromosome using maximum likelihood.
We used the general unrestricted dinucleotide model with

strand symmetry (U2S) (Siepel and Haussler 2004). This phy-

logenetic model was fit to the alignments with phyloFit from

the PHAST software package (Hubisz et al. 2011). Using the

model, we computed (also using phyloFit) the posterior

expectednumberofsubstitutionsofeachtypeoneachbranch

of the tree for each site in the alignment.

Calculation of BDS. Given the inferred probabilities of
each type of substitution on the branch of interest at each

site across each genome, we quantified the BDS with a log

odds ratio that relates the density and pattern of substitu-

tions across a genomic region. The odds ratio is based on

a two-by-two contingency table in which each possible sub-

stitution was classified as 1) W/S or not W/S and 2) in

a divergent sequence or not. Any substitution from an A or T

in the ancestor to G or C in the reference species wasW/S,
and all others were not. Each position was classified as di-

vergent/not divergent based on the substitution density in

a genomic window of a given size around it. The expected

number of substitutions of each type on the reference

branch at this position was then added to the relevant cell

of the contingency table.

Given the resulting two-by-two contingency table for

a genomic region of interest, we calculated the log odds ra-
tio and associated statistics in the standard manner after

rounding the expected number of substitutions in each cell

to the nearest whole number. This log odds ratio quantifies

the strength of association between W/S bias and
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sequence divergence. If substitutions in divergent windows
exhibit an excess of W/S changes, then the log odds ratio

is greater than zero. It is less than zero if these divergent

regions contain fewer W/S substitutions than expected.

We refer to this log odds ratio as the BDS score and use

the terms ‘‘bias,’’ ‘‘BDS,’’ and ‘‘W/S BDS’’ to refer to in-

creased W/S substitution in regions of high divergence.

The genomic regions over which the BDS score was calcu-

lated may be small sequence blocks (as used in the correla-
tion analysis), a set of regions across the genome (as in the

coding sequence analysis), or the entire genome. The signif-

icance of the BDS score was assessed with Fisher’s exact test

(FET). All reported P values are from the FETunless otherwise

indicated.

We explored a range of window sizes and density cut-

offs; figure 2 demonstrates the robustness of our results to

any specific cutoff. When a single cutoff was required, we
used window size of 1,000 bp and a substitution density

such that as near to 5% of all substitutions as possible were

assigned to the divergent group. Because the reference–

comparison species pairs we examined have different levels

of sequence divergence, this threshold varies in absolute

value across species (i.e., it is lower for species that are less

diverged and higher for species that are more diverged).

Correlation ofGenomic Features across theGenome.
To explore the correlation of data that vary across the genome,

we selected an appropriate block size on which the features

could be quantified. (This was often limited by the scale of the

recombinationmaps available or the number of expected sub-

stitutions in a region.) Nonoverlapping blocks of 1 Mb were

used for all species except for fly, worm, and yeast, where we

used blocks of 10 and 100 kb due to their smaller genomes.

We created a vector for each feature being compared, for
example, BDS and recombination rate, across each corre-

sponding block of the genome and calculated the Spearman

rank correlation across all blocks. We also calculated and plot-

ted the Spearman correlation of smoothed versions of the

data. The data were smoothed by convolution with

a seven-block Hanning window. To evaluate the significance

of the difference in the correlation of a genomic feature with

two other features, for example, in the comparison of BDS
with male and female recombination rate, empirical P values

were obtained by bootstrapping with 10,000 comparisons to

random features.

Results

BDS Occurs in Vertebrates and Invertebrates

We calculated BDS scores and P values for eight diverse eu-

karyotic lineages (fig. 1). Figure 2A gives the BDS computed

over substitutions on the human lineage since divergence

from its last common ancestor with chimp for a range of

window sizes and substitution density thresholds. For each

window size, there is significant BDS; that is, the fastest-
evolving regions show a significant enrichment for W/S

nucleotide substitutions (increasing curves; all P � 0). This

result is in agreement with that reported in Dreszer et al.

(2007) using parsimony to infer substitutions and a different

statistical test for association between substitution type and

density.

Extending the analysis to other lineages, we find signif-

icant BDS in mouse (P 5 5.2 � 10�5), dog (P � 0), stickle-
back (P � 0), fruit fly (P � 0), and worm (P 5 5.1 � 10�5)

(fig. 1 and table 1). As in the human genome, the patterns of

BDS in these species are not sensitive to the particular win-

dow size and density thresholds used (fig. 2 and supplemen-

tary fig S1, Supplementary Material online). However, we do

observe interspecies differences in the magnitude of the

BDS score. Dog exhibits the strongest bias, whereas mouse

has the weakest statistically significant W/S BDS.
Reversing the roles of the reference and comparison spe-

cies, we also find BDS in chimpanzee and several additional

genomes (data not shown). However, inference of substitu-

tion histories is more difficult in comparison species, whose

genome assemblies tend to be lower quality and often lack

the resources for proper alignment quality filtering.

We also calculated a variation of the BDS score that con-

siders only W/S and S/W substitutions. This resulted in
slightly elevated scores compared with considering all sub-

stitution types. For example, in human, the bias increased

from 0.12 to 0.14.

Chicken and Yeast Show a Significant Lack of
W/S BDS

We do not observe W/S BDS in either chicken or yeast

(table 1). In contrast to the other vertebrates analyzed,

chicken shows a small but significant strong-to-weak

(S/W) bias in fast-evolving regions (P 5 5.3 � 10�6). Sim-

ilarly, yeast shows a significant excess of S/W nucleotide
changes in divergent regions (P55:8�10�7, fig. 2D). This
pattern in fixed substitutions is consistent with the S/W

mutation bias observed in yeast (Lynch et al. 2008). In

the next sections, we investigate several aspects of BDS

that help us to interpret these observations. We consider

possible explanations in the Discussion.

Variation in BDS between Species Is Not Due to
Their Divergence

The species trios analyzed exhibit a range of evolutionary

distances between the reference and comparison species

(fig. 1; table 1). It is possible that the length of the branch
considered might affect 1) our power to detect BDS and 2)

the estimated strength of the BDS between the two species

compared. Several observations argue against such biases,

however. First, significant BDS patterns were observed in all

comparisons. Hence, even though branch length likely
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influences the test’s power, we are still able to detect a signal

in each lineage. Additionally, the strength of the BDS ob-

served between two species is not well correlated with their

divergence (table 1). We also calculated BDS in substitutions

between human and a series of increasingly divergent spe-

cies that mirror the divergences of the other eukaryotic spe-

cies sets considered here. In three of the four comparisons

(human with tarsier, tree shrew, and opossum), significant
bias was still identifiable between human and the more dis-

tant comparison species (supplementary table S1, Supple-

mentary Material online). However, the fact that W/S

BDS was not found in one of the comparisons (human with

marmoset) suggests that the sources of BDS may not be

constant over time or that our ability to detect BDS depends

upon the quality of the comparison genome. We also tested

the use of increasingly divergent outgroup species and

found no major influence on patterns of BDS. Thus, our

method is able to detect bias within the range of divergence

found in the species sets we analyzed, including those used

to quantify BDS in chicken and yeast.We therefore conclude

that factors other than evolutionary distance appear to drive

the variation in BDS between lineages.

BDS Occurs in Both Coding and Noncoding Regions

Coding and noncoding sequences are often under very
different patterns of evolutionary constraint. The protein-

coding fractions of the genomes we considered vary from

around 2% in human to 73% in yeast (table 2). Thus, if sub-

stitution bias is different in coding and noncoding regions,

this could influence our conclusions about the phylogenetic

FIG. 2.—Divergent sequences are significantly W/S biased in many, but not all, eukaryotes. Genomic regions with a high divergence show

a significant enrichment for W/S substitutions (BDS) compared with regions with fewer substitutions. BDS is found in human (A), mouse, dog (B),

stickleback, fly, and worm (C). In contrast, chicken and yeast (D) do not exhibit significant W/S BDS. These patterns are not sensitive to the size of the

window (500–2000 bp) or the substitution density threshold. The gray bars indicate 95% confidence intervals for the BDS score. This figure includes

substitution densities for which between 1% and 99% of substitutions are considered divergent. Table 1 gives BDS statistics for all species considered,

and plots are provided for the other four species in supplementary figure S1 (Supplementary Material online).
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distribution of BDS. In particular, if BDS was absent or very

weak in coding regions, we would have less power to detect

genome-wide BDS in species with a high fraction of coding

DNA, such as worm and yeast.

To investigate this issue, we calculated BDS scores sep-

arately for coding regions in each species. Table 2 demon-

strates that in species with significant genome-wide BDS,
significant bias is present in coding sequence considered

alone. Interestingly, coding regions generally exhibit

stronger BDS than noncoding sequence. Similarly, coding

sequence in yeast and chicken show S/W BDS, in agree-

ment with the genome-wide evidence of S/W BDS in

these species. The S/W bias in chicken coding regions

is of similar magnitude to the genome-wide amount,

but is not significant. This is not surprising given the weak
signal in chicken genome wide. These results argue that

patterns of bias in coding and noncoding sequences are

usually in agreement and that the different fraction of

coding sequence in different genomes is unlikely to be

the source of their different bias patterns.

Intraspecies BDS Varies within and between
Chromosomes

In the previous sections, a single BDS score was computed

for each species to quantify genome-wide patterns of bias.

To profile variation in BDS within genomes, we computed

BDS scores across the chromosomes of each species in win-

dows ranging in length from 10 kb to 1 Mb.

The strength of BDS varies across the chromosomes of

each species (fig. 3). Some sections of the chromosome have

significant bias, whereas others do not exhibit any BDS. This

variation was observed previously in human (Dreszer et al.
2007), where a significant increase in BDS was found near

the telomeres of most human and chimp chromosomes. Al-

though variance in the BDS score is universal, increased BDS

near telomeres is not a general phenomenon in all species

we considered.

BDS strength also varies between chromosomes. To com-

pare the bias between chromosomes, we computed the BDS

score for each chromosome in each species. In human, all
chromosomes show peaks of significant BDS, but there is

significant variation in the strength of the bias overall on dif-

ferent chromosomes (P , 2.2 � 10�16., Woolf test). The

overall GC content of a chromosome is strongly correlated

with recombination rate and negatively correlated with

chromosome length in many species, including human

(Fullerton et al. 2001) and chicken (International Chicken

Genome Sequencing Consortium 2004). To frame BDS pat-
terns in the context of these previous findings, we correlated

its strength on each human chromosome with these fea-

tures. Chromosomal BDS was not significantly correlated

with the chromosome’s GC content (Spearman q50:04), re-

combination rate (q5� 0:01), or length (q50:04). A similar

lack of correlation of chromosomal BDS with GC content,

recombination rate, and length was observed in all other

species with significant BDS.

Local BDS Is Often Correlated with Recombination
Rate

To investigate patterns of BDS at a finer scale, we calculated

Spearman rank correlations of BDS in 1 Mb blocks with
several genome features that vary across chromosomes:

sex-averaged recombination rate, evolutionary conservation,

Table 1

BDS Statistics in Eight Eukaryotic Species.

Divergent Regions Nondivergent Regions
Branch

Species W/S Not W/S W/S Not W/S Length BDS P value

Human 0.445 0.555 0.425 0.575 0.01 0.12 �0

Mouse 0.419 0.581 0.415 0.585 0.17 0.02 5.2 � 10�5

Dog 0.512 0.488 0.423 0.577 0.20 0.52 �0

Chicken 0.392 0.608 0.401 0.599 0.34 �0.05 5.3 � 10�6

Stickleback 0.439 0.561 0.418 0.582 0.43 0.13 �0

Fruit fly 0.297 0.703 0.270 0.730 0.13 0.19 �0

Worm 0.311 0.689 0.295 0.705 0.81 0.11 5.1 � 10�5

Yeast 0.426 0.574 0.442 0.558 0.25 �0.10 5.8 � 10�7

NOTE.—BDS is a log odds ratio quantifying the association between W/S substitution and the density of substitution. P values are computed using FET. Branch lengths are given

in expected substitutions per site. All statistics are based on a cluster size of 1,000 bp and a density threshold that results in approximately 5% of substitutions being placed in the

divergent class.

Table 2

BDS Is Present in Coding Regions.

Species Percent Coding Coding BDS

Human 2.4 0.51

Mouse 2.3 0.11

Dog 1.5 0.83

Chicken 3.0 �0.07

Stickleback 8.2 0.14

Fruit fly 18.5 0.51

Worm 27.9 0.36

Yeast 72.9 20.11

NOTE.—Bold indicates significant BDS.

GC-Biased Substitutions in Divergent Sequences GBE

Genome Biol. Evol. 3:516–527. doi:10.1093/gbe/evr051 Advance Access publication June 13, 2011 521



GC content, and substitution rate (table 3). Stickleback,

worm, and yeast were not included in the recombination cor-

relation analysis due to lack of appropriate recombination
maps. Our findings support the previous result in human, ob-

tained using different methods, that recombination rate and

BDS are correlated (Dreszer et al. 2007). This pattern occurs in

other species as well; three of the four species (human,

mouse, and fly) that have significant genome-wide BDS

and recombination rate data show a significant correlation

between these variables. The one exception is dog, which
has experienced a recent pseudogenization of the PRDM9

gene (Oliver et al. 2009). This loss may explain the strong

BDS in dog and the lack of correlation between BDS and re-

combination (see Discussion). BDS is not consistently

FIG. 3.—BDS is often correlated with recombination rate. The BDS varies in strength along chromosomes and is significantly correlated with sex-

averaged recombination rate in (A) human chromosome 6 (q50:36 smoothed, P5 9 � 10�7) and (B) mouse chromosome 16 (q50:36 smoothed, P5 2

� 10�4). The smoothed data are plotted with solid lines, and the raw values are indicated with dashed lines. See table 3 for genome-wide correlation

statistics for these and other species on the raw data. For ease of visualization and comparison in this figure, the data have been scaled so that the

minimum value is 0 and the maximum is 1.
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correlated with GC content, substitution density, or conser-

vation, although specific species do show modest significant

correlations with some of these variables. Most notably, three

out of the six species with genome-wide BDS have a positive

correlation between BDS and evolutionary sequence conser-

vation.
Overall, our analyses suggest that BDS and recombina-

tion rate are often but not always correlated. It also appears

that fluctuations in BDS are not directly associated with GC

percent, divergence, or conservation; however, factors that

indirectly influence these features may be relevant to the

production of BDS patterns in some species.

BDS and Recombination Are More Strongly Corre-
lated in Males

In the species for which we have sex-specific recombination
data, we also considered the correlation of these rates with

BDS separately for the two sexes. Previous studies of human

Alu repeats (Webster et al. 2005) and substitution hotspots

(Dreszer et al. 2007) indicate that biases associated with re-

combination may have a sex-specific impact. We find that

BDS in human and mouse is more strongly associated with

male recombination rate than with female (q50:152 vs.

0:119 in human, P � 0:042; q50:093 vs. 0:014 in mouse,
P � 0:001). In dog, BDS does not show a significant corre-

lation with sex-averaged recombination rate. However,

when looking at male and female rates separately, the cor-

relation with the male rate is significantly greater than with

female (q50:058 vs. �0:039, P � 0:001), and though it is

small in magnitude, the correlation between male recombi-

nation rate and BDS is significant (P 5 0.018).

In contrast, when looking sex-specific rates in chicken,
a species that does not show significant BDS overall, neither

male or female recombination rates are significantly associ-

ated with BDS across the genome (q5� 0:079 and�0:074,

respectively), and the difference between the sex-specific

correlations is not significant. These results suggest that when

significant genome-wide BDS is present, the spatial correla-
tion of BDS and recombination along a species’ chromosomes

is consistently higher in males. Sex-specific recombination

data from additional species would help to test and further

explore this hypothesis.

BDS Is Not Present in SNPs

Our test can also be applied to SNP data to study bias in

population-level sequence variation. Dreszer et al. (2007)

found no W/S bias in regions of the human with a high

density of SNPs, suggesting that a fixation bias rather than

a mutation bias was likely responsible for the BDS. To ex-
plore the phylogenetic extent of this pattern, we considered

SNPs in human, mouse, and chicken. SNPs for each species

were downloaded from the UCSC Table Browser (Karolchik

et al. 2004). The ancestral variant was identified by parsi-

mony using the alignment with the comparison species.

Then, BDS scores were computed for SNPs using the same

methods as used for fixed differences. SNPs for which

no comparison species was present or with indeterminate
ancestry were not considered in the analysis.

SNPs in human, mouse, and chicken do not exhibit W/S

BDS (supplementary fig. S4, Supplementary Material on-

line). This contrasts with the patterns in recent fixed substi-

tutions in human and mouse. In fact, there is a significant

lack of W/S changes in regions with the highest SNP den-

sity; the BDS scores are �0:095 for human SNPs (P � 0),

�0:018 for mouse (P 5 3.3 � 10�5), and �0:177 for
chicken (P 5 8.5 � 10�6). Thus, just as the BDS in recent

fixed substitutions is present in species other than human,

the previously observed lack of BDS in human SNPs also ap-

pears to be a general pattern. This result suggests that BDS is

unlikely to be driven by local variation in mutation rates and

patterns.

BDS Patterns Are Robust to the Methodology Used
to Infer Substitution Histories

The use of parsimony to infer substitution types can poten-

tially introduce biases into analyses of substitution patterns

(Eyre-Walker 1998; Hernandez et al. 2007). CpG hypermu-
tability, which increases the probability of multiple substitu-

tions at a site and depends on the dinucleotide context, is

a particular concern. To avoid these possible biases, our re-

sults are based on genome-wide substitution histories re-

constructed in a maximum likelihood framework using

a context-dependent evolutionary model. For comparison,

we also performed the analysis using 1) maximum likelihood

with a noncontext-dependent strand-specific reversible
model (SSREV) and 2) parsimony.

Using maximum likelihood with the SSREV model produ-

ces very similar conclusions to those obtained with the U2S

context–dependent model (supplementary fig. S2, Supple-

mentary Material online). This suggests that context-

Table 3

Correlation of BDS with Other Genome Features.

Recombination GC Substitution

Species Rate Percent Density Conservation

Human 0.16 0.05 0.08 �0.01

Mouse 0.08 0.10 �0.02 0.09

Dog 0.02 �0.09 �0.04 0.11

Chicken �0.09 �0.12 �0.03 0.06

Stickleback N/A 0.02 0.08 0.02

Fruit Fly 0.10 0.15 �0.05 0.14

Worm N/A 0.03 �0.02 �0.11

Yeast N/A 0.07 �0.06 0.03

NOTE.—Each value is the Spearman correlation of BDS with the specified feature

across blocks of the genome. Bold indicates a significant correlation at the 0.01 level.

Blocks of 1 Mb were used for all species, except for fly (100 kb), worm (10 kb), and

yeast (10 kb). The raw values for each feature were used; the correlation coefficients

generally increase if the data are smoothed before calculation (e.g., see fig. 3).
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dependent effects, such as CpG hypermutability, do influ-
ence the results slightly, but not significantly. The use of par-

simony also leads to qualitatively similar conclusions;

however, worm and chicken change their BDS classification

(supplementary fig. S3, Supplementary Material online).

When comparing all three methods, the two maximum like-

lihood approaches agree most closely, suggesting that using

parsimony may indeed have an impact on inferred substitu-

tion histories. This is likely the result of fairly long branches in
several of the clades considered; these are more likely to

have experienced multiple substitutions, which would be

missed by parsimony. Within the maximum likelihood con-

text, our results are robust to the use of a context-depen-

dent model or not, indicating that CpG effects are not

the driving force behind BDS.

Discussion

We have demonstrated that divergent regions of several

metazoan genomes from human to worm are associated

with elevated rates of W/S substitution relative to the rest

of the genome. In contrast, chicken and yeast do not exhibit

significant BDS.

Episodic Biased Gene Conversion Is a Likely Cause
of BDS

In human and several other species with significant BDS, we

found consistent BDS in coding as well as noncoding
sequences, correlations between BDS scores and recombi-

nation rates (especially in the male sex), and no significant

BDS in SNPs. All of these observations are consistent with

a recombination-associated, nonadaptive fixation bias as

a cause of BDS. gBGC is a likely candidate. This bias occurs

when there is a weak–strong polymorphism in a recombina-

tion heteroduplex, and the DNA mismatch is preferentially

repaired to the strong base pair. These GC-biased conver-
sion blocks are thought to range between 200 bp and

2 kb in length (Duret and Galtier 2009). gBGC has been

directly observed in yeast (Mancera et al. 2008), but obtain-

ing experimental evidence for the action of gBGC is

extremely challenging in other species. Nonetheless, gBGC

has received considerable attention as a possible explana-

tion for many dominant and unexplained genomic attrib-

utes, such as the large-scale variation in GC content (the
so-called isochore structure) of mammalian genomes

(Eyre-Walker and Hurst 2001; Galtier et al. 2001; Meunier

and Duret 2004; Romiguier et al. 2010). By driving strong

alleles to higher frequencies and ultimately to fixation

around recombination hotspots, bursts of gBGC could result

in an increase in substitution rates and a W/S–biased sub-

stitution pattern (Berglund et al. 2009). These evolutionary

events could produce the BDS pattern.
Other evolutionary mechanisms, such as variation in mu-

tation rates across the genome or natural selection for GC

alleles (Eyre-Walker and Hurst 2001), could also produce
BDS. However, the action of a biased mutation rate is not

consistent with our observations. Specifically, the lack of

W/S BDS in SNPs argues against mutation bias as a source

of the BDS pattern. The relationship between BDS and se-

lection is less clear. If natural selection on GC content drives

BDS, we would expect consistent differences in bias be-

tween regions of high and low conservation, such as coding

and noncoding sequence. In most of the taxa we examined,
significant BDS is present in both coding and noncoding se-

quence, and higher in coding regions. In addition, three spe-

cies (mouse, dog, and fly) show a significant correlation

between genome-wide patterns of BDS and evolutionary

conservation. But the three other species with significant

BDS (human, stickleback, and worm) show no such corre-

lation. If selection has a role in BDS, we might additionally

expect BDS to be stronger in species with large effective
population sizes due to the increased efficiency of selection;

however, this pattern is not observed. Thus, selective forces

may be involved in the creation of BDS in some lineages,

perhaps in concert with gBGC, but they are unlikely to

be the sole cause of BDS. Together, these results suggest

that there may multiple causes and paths to the creation

of BDS in genomes.

Why Is BDS Stronger in Some Species than Others?

A recent study of the evolution of GC content across the

mammalian phylogeny suggests that its dynamics are not

constant across the tree and are influenced by many factors

related to life history and genome organization (Romiguier

et al. 2010). The variation we observe in BDS strength across

the taxa considered here suggests a similarly dynamic pic-

ture for BDS with many possible factors influencing its
strength. For example, the phylogenetic extent of gBGC,

a likely source of BDS, across eukaryotes and its effect on

genome evolution are currently unknown. There is strong

sequence-based evidence for gBGC in mammals (Duret

and Galtier 2009), and a recent comprehensive analysis

of meiosis products in yeast provided direct experimental ev-

idence of gBGC (Mancera et al. 2008). There is also indirect

evidence of gBGC in additional eukaryotic taxa, based on
correlations between GC content and recombination rate

or chromosome size found in birds (International Chicken

Genome Sequencing Consortium 2004), turtles (Kuraku

et al. 2006), flies (Marais et al. 2003), worms (Marais

et al. 2001), and several other species (Glémin 2010).

If gBGC is a cause of BDS, our identification of BDS in sev-

eral eukaryotic species adds to the mounting evidence for its

importance in genome evolution. However, it also suggests
that population characteristics and mating patterns can in-

fluence the strength of BDS. Generation time, effective pop-

ulation size, frequency of outcrossing, recombination

pattern, and conversion bias will all influence the effective-

ness of gBGC (Duret and Arndt 2008), and many of these
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traits vary between species or within species over evolution-
ary time. These factors complicate cross-species comparison.

For example, in light of the experimental evidence for

gBGC in S. cerevisiae (Birdsell 2002; Mancera et al.

2008), our finding of a significant lack of W/S BDS in yeast

might seem to argue against gBGC as a cause of the bias.

However, yeast differs from the other species we analyzed in

a number of relevant genetic and physiological dimensions.

Several aspects of sensu stricto yeast biology could act to
limit gBGC’s mutagenic impact. Most wild yeasts studied

to date have very low frequencies of sex and outcrossing;

recent work estimates that S. paradoxus undergoes meiosis

only once in every 1,000 generations and only 1% of mat-

ings are outcrossed (Tsai et al. 2008). Since gBGC requires

both meiosis and heterozygosity, its effect may be reduced

in yeast by a factor of approximately 105 compared with ob-

ligately outcrossed species (Marais et al. 2004; Glémin et al.
2006; Tsai et al. 2010; Harrison and Charlesworth 2011).

The resulting reduced mutagenic impact of gBGC has been

proposed as an explanation for several differences in geno-

mic patterns between yeast and other eukaryotes, such as

the conservation of recombination hotspots (Tsai et al.

2010). Thus, the lack of detectable BDS in yeast is not incon-

sistent with the theory that gBGC is involved in creating BDS

in other species.
Several factors may contribute to the lower BDS observed

in mouse than in human. For example, recombination rate is

thought to be approximately two times higher on average in

human than in mouse (Coop and Przeworski 2006), and it is

also less variable across mouse chromosomes. Since BDS

likely results from episodic gBGC (either in time or across

the chromosome), this relative lack of variation would pro-

duce less difference between divergent and nondivergent
sequences in mouse. In agreement with this interpretation,

a very recent study found that substitution patterns are under

different influences in primates and rodents with a weaker

effect of gBGC in rodents (Clément and Arndt 2011).

In dog, in contrast to other species with BDS, BDS and

recombination rate do not show a significant correlation

across the genome. The PRDM9 gene, which is thought

to determine the location of about 40% of human recom-
bination hotspots, has been pseudogenized in dog (Oliver

et al. 2009). This event likely dramatically influenced the re-

combination landscape of dog and thus may explain why

current recombination patterns do not correlate well with

historical patterns of bias over the entire branch to the an-

cestor of dog and cat. Further investigations are needed to

determine exactly why BDS is so strong in the dog genome.

The chicken genome lacks significant W/S BDS despite
an estimated recombination rate, on both macro- and mi-

crochromosomes, considerably higher than in human (Inter-

national Chicken Genome Sequencing Consortium 2004).

However, the chicken karyotype is thought to have been

far more stable over time than that of most mammals and

may resemble that of the ancestral amniote (Webster et al.
2006). Lack of chromosomal rearrangements removes a com-

mon source of variation in recombination rate across the ge-

nome over time. In addition, the cellular machinery for

determining recombination hotspots may be different in birds

because sauropsids lack PRDM9 as well (Oliver et al. 2009).

Finally, the varying quality and availability of genome se-

quence data complicate cross-species comparisons of BDS.

Low-coverage genome sequences are more likely to create
noise from false substitutions inferred from sequencing er-

rors. Our sequence and alignment quality filters help correct

for these differences. But in the end, some subsets of each

genome may still be influenced by error.

The phylogenetic patterns of BDS identified here point to

the need for future work integrating all relevant variables in

a consistent model for BDS. Unfortunately, this approach

awaits further data generation as many of the important
variables are not yet well-characterized across multiple taxa.

gBGC and Selection may Jointly Shape the Evolu-
tion of Functional Sequences

The dramatic enrichment for W/S substitutions in and

around human accelerated regions (HARs) (Pollard, Salama,

King, et al. 2006; Katzman et al. 2010) and the presence of

possibly deleterious BDS in coding sequence (Berglund et al.

2009; Ratnakumar et al. 2010) suggest a complex interac-

tion between BDS, selection, and the evolution of functional
DNA elements. If the substitutions driving BDS in coding re-

gions are caused by gBGC, they may increase the suscepti-

bility of a gene to malfunction, as would be expected from

the accumulation of mildly deleterious alleles (Charlesworth

B and Charlesworth D 1998).

The presence of BDS inmany HARs prompted the sugges-

tion that gBGC, rather than positive selection, may have

generated the acceleration (Galtier and Duret 2007). Thus,
we might expect that HARs showing strong evidence of

gBGC would be less likely to have obtained new functions

in human. HAR1 and HAR2 (HACNS1), the two fastest

evolving HARs, have strikingly biased substitution patterns.

However, there is strong experimental evidence of function

maintenance in HAR1 (Pollard, Salama, Lambert, et al.

2006) and gain in HAR2 (Prabhakar et al. 2008)—a surpris-

ing result if the human-specific changes in these sequences
were created by a purely neutral mutational process. There-

fore, we hypothesize that in some evolutionary scenarios,

gBGC substitutions may themselves lead to novel functions

or may set the stage for later adaptive changes, perhaps due

to compensatory substitutions driven by selection.

Conclusions

In this study, we used efficient statistical methods to high-
light phylogenetic patterns of a substitution bias. Our anal-

ysis of BDS in many eukaryotes suggests that it is common
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outside of human. Episodic gBGC driven by recombination is
likely to play a major role in the production of BDS, but

a number of evolutionary and organismal factors are likely

to influence its occurrence. These conclusions underscore

the importance of developing models of sequence evolution

that incorporate the action of gBGC and other processes

that interact with selection (Hurst 2009). Several promising

preliminary steps have been made in the modeling of gBGC

and selection (Duret and Arndt 2008; Berglund et al. 2009;
Ratnakumar et al. 2010; Glémin 2010). As more genomes

are assembled and richer recombination and polymorphism

data become available for multiple species, we will be able

to develop a deeper understanding of the causes and effects

of BDS across the tree of life.

Supplementary Material

Supplementary figures S1–S4 and table S1 are available at
Genome Biology and Evolution online http://www.gbe.

oxfordjournals.org/.
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