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Abstract
Chest X-rays are a vital diagnostic tool in the workup of many patients. Similar to most medical imaging modalities, they 
are profoundly multi-modal and are capable of visualising a variety of combinations of conditions. There is an ever pressing 
need for greater quantities of labelled images to drive forward the development of diagnostic tools; however, this is in direct 
opposition to concerns regarding patient confidentiality which constrains access through permission requests and ethics 
approvals. Previous work has sought to address these concerns by creating class-specific generative adversarial networks 
(GANs) that synthesise images to augment training data. These approaches cannot be scaled as they introduce computational 
trade offs between model size and class number which places fixed limits on the quality that such generates can achieve. We 
address this concern by introducing latent class optimisation which enables efficient, multi-modal sampling from a GAN 
and with which we synthesise a large archive of labelled generates. We apply a Progressive Growing GAN (PGGAN) to 
the task of unsupervised X-ray synthesis and have radiologists evaluate the clinical realism of the resultant samples. We 
provide an in depth review of the properties of varying pathologies seen on generates as well as an overview of the extent of 
disease diversity captured by the model. We validate the application of the Fréchet Inception Distance (FID) to measure the 
quality of X-ray generates and find that they are similar to other high-resolution tasks. We quantify X-ray clinical realism 
by asking radiologists to distinguish between real and fake scans and find that generates are more likely to be classed as real 
than by chance, but there is still progress required to achieve true realism. We confirm these findings by evaluating synthetic 
classification model performance on real scans. We conclude by discussing the limitations of PGGAN generates and how 
to achieve controllable, realistic generates going forward. We release our source code, model weights, and an archive of 
labelled generates.
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Introduction

The chest radiograph (CXR) is the most common diagnostic 
radiological procedure [2] and is commonly used to screen, 
diagnose or monitor conditions across a variety of clinical 
contexts. This ubiquity has resulted in substantial research 
interest in the automated diagnosis of such films [21, 26, 
37], with a recent surge in activity due to the COVID-19 

pandemic [33, 46, 52]. State-of-the-art (SOTA) models are 
capable of radiologist-level performance across a subset of 
pathologies in only a fraction of the time needed for human 
review [15, 36, 37]. This activity in CXRs represents a sec-
tion of the development of Computer Aided Diagnostic 
(CAD) systems that aim to provide tangible benefit to clini-
cians and patients alike by reducing diagnostic turnaround 
times, minimising errors, and supporting the clinical deci-
sion making process [36, 42]. Large scale, anonymised, pub-
lic imaging datasets underscore these efforts by providing 
the necessary clinical data for the training of CAD models 
[15, 17, 53]. The development of these archives is both time 
consuming and costly, requiring extensive expert labelling 
and anonymisation of patient protected information prior to 
release. Radiology reports produced during clinical prac-
tice are typically used as surrogates for expert review and 
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are mined for diagnostic labels [15, 36, 37]. Anonymisation 
of images involves the detection of annotations containing 
protected patient information such as names that may be 
contained within the pixel data, or the removal of metadata 
that may be contained within digital imaging and communi-
cations in medicine (DICOM) files [17]. This process does 
not adjust the image data of a particular scan, which may 
result in patient re-identification if visual elements of the 
image are rare.

Medical imagery exhibits multi-modal long-tailed distri-
butions with significant heterogeneity in the presentation of 
similar disease patterns due to equipment, scan technique, 
and patient variability [57]. This issue is demonstrated by 
most large CXR archives as they are limited to a single clini-
cal site which reduces the captured variability of the fac-
tors of heterogeneity [57]. The resulting sparsity of training 
data has obvious implications for making the development 
of robust diagnostic models more challenging. In addition, 
alterations in protected patient information such as sex, age, 
ethnicity, and socioeconomic class have been demonstrated 
to produce biases in diagnostic performance not significantly 
explained by variations in disease prevalence with improve-
ments only seen with usage of multi-source image datasets 
[45].

There is a clear need for methodologies capable of resolv-
ing this data disparity while retaining or even augmenting 
privacy. Generative adversarial networks (GANs) have 
received significant attention as a potential solution for 
their ability to synthesise medical images [4, 40, 51] without 
compromising patient confidentiality as they learn to repli-
cate the source distribution without access to the underly-
ing training data [54]. GANs capable of high fidelity image 
synthesis would address data challenges in machine learning 
and in medical education and training by:

– Creating datasets that do not compromise patient confi-
dentiality, but provide the same diagnostic outcomes;

– Providing class-balanced datasets;
– Generating augmented images by semantic variation in 

visual content without altering the diagnosis; and
– Synthesising images with specified target pathologies

This study serves to comprehensively evaluate the medical 
plausibility of synthetic CXRs as well as their applications 
to diagnostic radiology. 1 We evaluate the Progressively 
Growing GAN (PGGAN) [18] methodology applied to gen-
erate multi-modal, megapixel resolution CXRs. We provide 
domain expert examination of the properties of generated 

images as well as a review of expert discrimination between 
real and generated samples. In addition, we provide the fol-
lowing contributions:

– An evaluation of the applicability of the Fréchet Incep-
tion Distance (FID) for automatically evaluating X-ray 
generates.

– A proposal for extracting images for a specific pathology 
through a modified latent space search.

– A proposal for generating patient image series through 
local pathology sampling.

– An evaluation of the performance of synthetic image 
datasets derived from multi-modal generators.

Source code is available [43], as well as model weights and 
a collection of labelled generated images [44].

Background

Generative Adversarial Networks

GANs are a form of implicit generative model rooted in 
game theory that learns to reproduce an unseen training dis-
tribution through competitive optimisation. The prototypical 
GAN consists of a pair of neural networks in opposition 
to one another: a generator (G) whose goal is to generate 
plausible samples, and a discriminator (D) whose goal is to 
distinguish such samples from real samples (x) drawn from 
a training distribution [10]. The generator learns to sample 
from a latent vector (z) to produce a sample (G(z)) of the 
generated (ℙg ) distribution which is similar to a chosen ref-
erence distribution (ℙr ). The training signal is provided by 
how effectively such a generate is classified as real by the 
discriminator (D(G(z))). This configuration is optimal when 
the generator produces samples indistinguishable from the 
reference set and the discriminator can no longer learn to 
detect generates [28, 41]. The configuration can be inter-
preted as a two-player minimax game with the following 
value function:

wherein the discriminator (D) attempts to maximise the 
value function by separating real from generated images 
and the generator (G) attempts to minimise it by producing 
samples that cannot be detected by the discriminator.

The GAN formulation has found utilisation for a variety 
of tasks, namely image-to-image translation [16, 58], image 
super-resolution [24, 55], and semantic image editing [47] to 
name just a few. Perhaps the most common usage is that of 

(1)
min
G

max
D

V(D,G) = 𝔼
x∼ℙr

[logD(x)]

+ 𝔼
x∼ℙg

[log(1 − D(G(x)))]

1 An ethics waiver was issued for this work by the Human Research 
Ethics Committee (Medical) of the University of the Witwatersrand, 
Johannesburg on 11/08/2020.
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image synthesis, wherein a GAN attempts to produce images 
that mirror a reference image set. The Deep Convolutional 
GAN [35] was an initial step towards improving resolutions 
by making use of convolutional layers as opposed to the fully 
connected approach of the original GAN.

This, however, did not resolve fundamental problems with 
training instability that caused models to fail to converge 
or resulted in mode dropping, a phenomenon, where image 
variability is sacrificed for image quality and at worst can 
result in a the generation of only a handful of images [3]. 
These issues become more prominent as image resolution 
increases as the discriminator is able to more easily detect 
generated samples [18]. This places significant constraints 
on the upper limit of resolutions that a DCGAN model can 
achieve.

Recent work has adapted the loss functions employed [3, 
11, 27], progressively scaled generate size [18], or employed 
style transfer techniques [19, 20] to improve training sta-
bility. These techniques have enabled megapixel resolution 
generation while retaining much of the quality and diversity 
of reference images.

We focus on the Progressively Growing GAN (PGGAN) 
methodology employed by Karras et al. [18]. This technique 
trains on progressively larger images as each resolution con-
verges, stabilising the training process and enabling initial 
training to progress faster as batch sizes can be larger. It is an 
attractive option for high-resolution image synthesis as it has 
far more moderate computational requirements compared 
to its later variants [19, 20]. The training methodology for 
PGGAN additionally combats the effects of generator modal 
collapse through the inclusion of minibatch discrimination, 
which operates by considering the variability of samples it is 
trained on. This promotes the generator to maintain sample 

diversity as a reduction would aid the discriminator in iden-
tifying samples as fake. Despite these benefits, there are 
important theoretical limitations for the PGGAN that must 
be considered. The later StyleGAN variant by Karras et al. 
[19] discusses that the network’s only source of stochastic 
variation arises from the initial latent space sample which 
results in the consumption of network synthetic capacity 
to preserve variation for later image scales. This results 
in repetitive patterns in images and a loss of variability at 
greater resolutions. In addition, the progressively growing 
technique itself is known to result in phase artifacts with sec-
tions of images becoming fixed in preferred locations from 
training at lower resolutions [20] (Fig. 1).

Synthetic Medical Data

There is a multitude of work that aims to adapt GANs for 
resolving data disparities via data generation while improv-
ing both patient confidentiality and model performance. In 
the pursuit of this, synthetic medical data aims to capture 
information of diagnostic utility while eliminating the pos-
sibility of patient re-identification [34]. Park et al. utilise 
GANs to produce anonymised clinical data tables that are 
interoperable with model architectures applied to standard 
tables, yet can be shared without concern of violating patient 
privacy [34].

Other works have successfully applied DCGANs for 
dataset augmentation in various CXR classification tasks. 
Moradi et al. focus on generating both normal and cardiac 
abnormality images, they find that GAN-based augmentation 
outperforms traditional training augmentation of flipping, 
cropping, or scaling images [30] . Salehinejad et al. expand 
upon this concept by producing a per-class DCGAN and 

Fig. 1  Training configuration 
for PGGAN. The network trains 
until convergence and then dou-
bles the spatial resolution. This 
process is repeated until the 
desired resolution is achieved
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utilising generates to balance classes for a more diverse per-
formance improvement [40]. Both approaches demonstrate 
the potential benefits GANs offer for dataset augmentation, 
however, are handicapped by the need for per-class models. 
Training a model per class is computationally prohibitive 
and fails to capture the interactions between pathologies that 
may be exploited to improve diagnostic accuracy.

Beyond CXRs, PGGANs have been applied to generate 
other high resolution medical images. Beers et al. demon-
strate the applicability of the method for creating high fidel-
ity reproductions of the retinal fundus and MRI slices of 
gliomas [4], while Togo et al. produce patches of X-rays of 
gastritis [51]. Both implementations introduce domain-spe-
cific modifications. Beers et al. include segmentation maps 
as additional channels for fundal images to enhance the gen-
eration of features relevant to diagnosis of retinopathy, while 
Togo et al. introduce a conditional loss at higher resolutions 
to promote the distinction between gastritis and normal tis-
sues. Korkinof et al. synthesise high resolution full field 
mammograms and provide comparisons of generated and 
source images, noting that the images appear similar with 
the preservation of several common tissue artifacts [23]. 
Bowles et al. augment CT and MRI data with synthetic slices 
and observe improvements in segmentation performance [5].

Despite significant variation in both domain and task, 
most medical image GAN implementations are constrained 
to produce individual classes or random samplings from the 
latent space with little control over generated content.

Image Quality Metrics

The automated evaluation of the quality of medical imagery 
is a diverse field with a variety of available methods depend-
ent on the evaluation task at hand. These methods are typi-
cally divided into full, reduced, and no reference assess-
ment methods. Full reference methods typically evaluate 
degradation of an image against a source. This may take 
many forms, from directly comparing pixel values, signal to 
noise ratios, or to assessing structural or feature similarities. 
Reduced reference methods evaluate alterations in images 
against natural image statistics and are typically used in find-
ing distortions in transmitted images. No reference methods 
only compute elements of a given image to produce a quality 
assessment and are similarly utilised for transmitted images, 
where no reference may exist. Utilising standard full refer-
ence methods for synthetic image evaluation is difficult as 
while the images may closely resemble the source image 
distribution, the generator does not have direct access to the 
distribution and as such does not reproduce any particular 
image. This precludes the use of standard comparison tech-
niques as even structural or feature similarity metrics are 
intended for comparison of matched images [50].

The Fréchet Inception Distance (FID) is a metric 
intended to provide a solution for evaluating the quality of 
generated images  [13]. It functions by embedding a set of 
real and synthetic images in the final average pooling layer 
of an Inception Net  [49] pre-trained on ImageNet  [39]. 
The sets are assumed to be multivariate Gaussian distribu-
tions with the average and covariance of each utilised to 
calculate the Fréchet distance (2), also known as the Was-
serstein-2 distance. (�Pr

,
∑

Pr
) and (�Pg

,
∑

Pg
) refer to the 

mean and covariance of the real and generated distribu-
tions, respectively.

This distance reflects the difference in the average features 
extracted from each image set based on the learned kernels 
of the Inception Net model. This is broadly similar to the 
feature-based full reference quality assessment metric, yet 
is capable of application to unpaired images by considering 
the average combination of features in both sets. The dis-
tance has been demonstrated to be consistent with human 
judgement of visual quality and more resistant to noise than 
prior approaches [13, 25]. The FID is sensitive to class mode 
dropping, with distances increasing with greater class dis-
crepancies between the two sets as the average set of features 
begins to differ. Despite this sensitivity, the FID reports ideal 
results if a model reproduces the training samples perfectly 
[25]. The use of the FID for medical images requires the 
underlying Inception model be capable of extracting features 
to adequately represent and compare sets against one other. 
This may be problematic given that X-rays are distinct from 
the classes found in ImageNet.

Human eYe Perceptual Evaluation (HYPE) [56] in con-
trast to the aforementioned automated approaches, standard-
ises the human evaluation of model generates by consider-
ing either the time necessary to discriminate between real 
and fake images (HYPEtime ) or the average error rate given 
unlimited evaluation time (HYPE∞ ). The evaluation meth-
odology is demonstrated to produce reliable results that are 
capable of separating out differences in model performance.

In addition to the already mentioned quality measures 
for generated images, a significant element to examine is 
the performance of models developed using synthetic data 
applied to the original task of interest. Shmelkov et al. [48] 
propose the GAN-train metric, which evaluates the clas-
sification performance of a model trained exclusively on 
synthetic data and then run on the original test set. This 
method quantifies the effective difference between synthetic 
and real datasets on a benchmark task of interest and pro-
vides important information regarding the extent to which 
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the model captures significant features of the underlying data 
distribution.

X‑Ray Synthesis Experiments

Dataset

The ChestX-ray14 dataset is an update to the ChestX-ray8 
dataset [53], a large, open medical X-ray dataset published 
by the National Institutes of Health (NIH) Clinical Center. 
The dataset comprises 112120 X-rays from 30805 unique 
patients. The images comprise 15 classes, viz.:

– No Finding
– Atelectasis
– Cardiomegaly
– Consolidation
– Edema
– Effusion
– Emphysema
– Fibrosis
– Hernia
– Infiltration
– Mass
– Nodule
– Pleural Thickening
– Pneumonia
– Pneumothorax

These images were collected from a clinical archive and 
should broadly reflect the typical clinical prevalence of these 
conditions within the community served by the NIH. 75% of 
images are normal investigations. The remainder are made 
up of the various labels ranging from the most prevalent, 
infiltration (10%), to the least, hernia (0.5%). The diagnostic 
labels are accompanied by bounding boxes for feature locali-
sation. These labels were created through natural language 
processing (NLP) of the associated radiology and were 
initially estimated to be over 90% accurate. This accuracy 
has been disputed, with the visual content reviewed to not 
adequately match the proposed labels for a number of inves-
tigations [31]. A modified set of labels was made available 
by Rajpurkar et al. [36] as part of their work on pathology 
detection, wherein a network was trained to classify images 
based on the original labels and then subsequently used to 
relabel the original dataset. These labels are available for the 
majority of images with a residual manually labelled test set 
which has not been released publicly.

The NIH dataset, license and publication can be found 
here: https:// nihcc. app. box. com/v/ Chest Xray- NIHCC

Progressively Growing GAN

We implement a modified PGGAN model [18] in Pytorch 
and perform training via Pytorch Lightning [9] based on 
the open-source implementation produced by Facebook 
Research and available through the Pytorch Model Zoo. 2 We 
start with a randomly initialised model and initially generate 
4x4 images with progressively doubling of the spatial reso-
lution after convergence at each scale. We allow mixing of 
the prior trained layers with the newly added layers through 
upsampling with the proportion of the previous layer consid-
ered reducing in linearly as training progresses.

We utilise WGAN-GP loss [11], equalised learning rates, 
minibatch discrimination, and pixel normalisation [18]. We 
also implement an exponential moving average of genera-
tor weights which we use for evaluation. We train up to a 
resolution of 1024x1024 with 800000 images shown during 
each period of layer mixing and a further 800000 for train-
ing of the added layers. All training was performed on an 
Amazon Web Services (AWS) p3.8xlarge instance with 4 
V100 GPUs. Model training took 6 days.

Examples of images generated by the model can be seen 
in Fig. 2.

Image Classification

For labelling the various CXRs, we implement a 
Densenet-121 [14] pre-trained on ImageNet [39] and replace 
the final fully connected layer with the number of classes in 
the ChestX-ray14 dataset. The model is trained end-to-end 
in a multi-label configuration to predict all classes simul-
taneously while making use of the weighted cross entropy 
function (3) implemented by Guendel et al. [12]. The modi-
fied loss balances the frequency of positive ( Np ) and nega-
tive ( Nn ) labels per class (c) based on the overall frequency 
within the training dataset. This adjusts the loss to require 
the model to discriminate equally between all classes which 
improves performance for rarer classes.

For training, we extract a subset of the full dataset to include 
only images with modified labels from Rajpurkar et al. [36], 
we group images at the patient level and average the labels 
across all images for an individual to produce a summary of 
the average set of conditions per patient. The dataset is then 
split into training, validation and test sets through iterative 

(3)

DCE(yc, ŷc) = wP ⋅ yc log(ŷc) + wN ⋅ (1 − yc) log(1 − ŷc),

wP =
Np + Nn

Np

, wN =
Np + Nn

Nn

2 https:// github. com/ faceb ookre search/ pytor ch_ GAN_ zoo

https://nihcc.app.box.com/v/ChestXray-NIHCC
https://github.com/facebookresearch/pytorch_GAN_zoo
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stratification of the average patient labels to maintain label 
proportions across sets while ensuring no patient overlap 
occurs. We augment images with a 10◦ rotation, random 
horizontal flip probability of 50%, and colour jitter for 

brightness, contrast, saturation, and hue of 0.1. The model 
is trained using an ADAM optimiser [22] using the default 
settings with an initial learning rate of 10−3 , which we reduce 
by a factor of ten if the validation macro-averaged Receiver 

Fig. 2  Examples of uncurated, random samples from the exponential moving average of the generator. Samples are drawn at random from a 
N(0, 1) distribution without use of the truncation trick
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Operating Characteristic (ROC) Area Under Curve (AUC) 
fails to improve for several epochs. Once model performance 
plateaus, it is evaluated on the test set. We repeat the same 
process for the final trained discriminator, replacing the final 
linear scoring layer with the number of classes and train the 
subsequent classification model end-to-end.

Pathology Optimisation

Given the multi-modal nature of pathology contained 
within X-ray images, it is not possible to utilise standard 
conditional GANs [29, 32] for label-specific image syn-
thesis, as these typically require independent classes that 
can be encoded and fed to the generator to control syn-
thesis. Multi-modal constraints are more consistent with 
text-to-image generation [38], which considers a vector 
representation of the conditional text input that is seman-
tically meaningful and capable of providing a useful dis-
tance based on model predictions [29]. This enables the 
discriminator to evaluate both image quality and similarity 
to the conditional text input in scoring generates. These 
techniques are likely to be problematic in the progressively 
growing formulation as the disease patterns vary consid-
erably in terms of scale of finding and influence over the 

image as a whole. As an example, Cardiomegaly may be 
evaluated simply by having the cardiac border enlarged 
relative to the overall width of the chest cavity, whereas 
Emphysema in contrast may have enlarged lung fields, flat-
tened diaphragms, and a reduced apparent cardiac size. 
These features become apparent at differing resolutions 
and as such, attempting to condition this information 
throughout training is likely to hamper performance.

We sidestep these issues in multi-modal conditional 
training by instead drawing inspiration from work on the 
embedding of images into the latent space [8]. Embed-
ding images requires the inversion of the generator. This is 
typically performed either by training an encoder network 
that maps an image to a location in the latent space or 
by gradient descent optimisation of a random sample to 
minimise reconstruction loss [1]. We opt to find a latent 
representation that maximises the corresponding image’s 
classification score for a label of interest. We optimise 
using a single label at a time to allow for inclusion of 
related labels that would be consistent with the presenta-
tion of real X-rays. We base the implementation on the 
work by Creswell et al. [8]. Pseudocode for such a method 
can be seen in Algorithm 1 with a visual representation of 
this technique in Fig. 3.

Fig. 3  Visual representation of 
class generation method shown 
in Algorithm 1
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Results and Analysis

Image Quality

The generated images, as shown in Fig. 2, appear to broadly 
reflect the NIH source images with global features vary-
ing similarly across both sets. Sex, posture, exposure, and 
positioning (AP vs PA) are all represented within the gener-
ates. The images accurately reflect the standard anatomical 
features found in CXRs with realistic alterations in perspec-
tive seen with changes in patient posture or positioning of 
the X-ray detector. Soft tissues such as the heart, liver, and 
stomach are faithfully reproduced with normal variability 
in their relative positioning. Bony structures are correctly 
placed but suffer from inconsistent profiles, with the ribs 
in particular tending to reveal a degree of undulation. 
Closer inspection often reveals slight curves or alterations 
in calibre that are seldom explained by the perspective of 
the image. Beyond the X-ray itself, the model has learnt 
to include various markup elements included in the refer-
ence images. Most images have a symbol or tag demon-
strating the left side of the image, in addition, projection 
descriptors such as ‘PORTABLE’ and ‘AP’ are included on 
numerous images. Images are typically sided correctly and 
tend to have visual projections similar to included labels, 
although at times this is difficult to confirm. Some images 
do not match the included text, with some having multiple 
copies of a particular label. A white arrow typically used to 
demonstrate that a patient was upright for portable scan has 
also been reproduced, tends to co-occur with text denoting 
the scan type as portable and is often in similar positions to 

the reference images. Elements such as white borders, poor 
exposure, cropping, or rotation are all present in the source 
dataset and reproduced in some samples by the PGGAN 
model (Fig. 4).

The main distinction between distributions is that the 
generated images broadly lack certain smaller scale fea-
tures of the source set. Jewelry, ECG leads, pacemakers, 
and IV catheters are largely absent with occasional partially 
formed objects in locations, where these should appear. The 
elements of the missing structures form only a fraction of 
each overall image and are often fairly detailed objects them-
selves. A potential explanation for this phenomenon is the 
progressive growing technique itself, as these objects would 
only be generated near the end of the training process as the 
resolution of the images allowed for the details to be appre-
ciated. Examining the generator in the final model without 
the moving weight average, supports this as a larger propor-
tion of the images possess partially formed objects, imply-
ing the network was slowly incorporating these features. 
The appearance of these elements failed to improve despite 
training beyond the recommended total number of images. 
If this is the case, it is probably due to the reduced batch 
size at higher resolutions which would result in exceedingly 
slow convergence for rarer, more subtle features. An alter-
nate explanation is the aforementioned capacity loss that 
prompted the shift to style-based networks as networks con-
sume their own synthetic ability to retain variability in later 
layers. The effects of this are likely to be more pronounced 
in CXRs compared to other domains, like facial data, due 
to the presence of distinct small scale structures such as IV 
lines or ECG leads that are readily discernible on standard 
images.
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To evaluate the applicability of the FID for automatic 
X-ray quality assessment, we first attempt to produce a 
meaningful zero measure by splitting the NIH dataset at the 
patient level and using the average labels from each patient 
to iteratively stratify the patients into two similar groups. 
The concept being that the groups should have similar dis-
ease distribution and be free of patient overlap. We calculate 
a low value of 0.53 for the FID, indicating that the underly-
ing Inception network extracts similar features on average 
from both sets. These features may be sub-optimal given that 
the underlying network has not been trained on biomedical 
data, yet the small distance demonstrates that the images are 
embedded in a similar manner. We now need to demonstrate 
whether the metric can in fact distinguish between X-rays.

Given that the images are known to vary by pathology 
label, we argue that if the distance metric can reliably sepa-
rate distinct classes, it must have filters that are capable of 
extracting features that are meaningful for evaluating the 
clinical plausibility of generates. If we were to re-train an 
Inception network purely to calculate the FID for medical 
imagery, the network would be trained to classify an image 
according to its class labels. If the current weights of the 
network are already able to provide such a separation, then 
there is no need to re-train and the metric can in fact be 
applied to the problem at hand.

To evaluate the extent to which the FID can discrimi-
nate between individual pathologies we utilise the No Find-
ing label as a baseline as it principally should be absent of 
any significant changes while still varying similarly along 
protected patient parameters such as sex and age. We then 
evaluate the distance between it and the set of X-rays con-
taining each other label, the results of which can be seen 
in table with the addition of a split along sex and the over-
all comparison between real and synthetic images 1. The 
results provide evidence that the FID is able to distinguish 
between the labelled pathologies and a baseline X-ray with 
the distance seemingly recapitulating the relative scale of the 

Fig. 4  Comparison of sample quality between different GAN architectures and the source dataset

Table 1  Fréchet Inception Distance (FID) per Dataset Split

Split FID Split FID

Stratified 0.53 Hernia 15.96
Sex 7.87 Infiltration 20.05
No Finding 0.00 Mass 10.06
Atelectasis 19.90 Nodule 6.22
Cardiomegaly 14.23 Pleural Effusion 23.90
Consolidation 42.45 Pleural Thickening 13.05
Edema 59.40 Pneumonia 32.05
Emphysema 19.56 Pneumothorax 18.00
Fibrosis 9.72 Synthetic 8.02
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pathological change on the image. Very large distances are 
associated with the Edema and Consolidation labels, which 
are findings that may distort major segments of the lung 
fields, while Mass and Nodule labels produce significantly 
reduced distances as they generally occupy only small seg-
ments of the study. To provide more substantial evidence, 
we calculate a pairwise distance matrix between all classes 
and utilise multidimensional scaling to plot the relative 2D 

positions in Fig. 5. The various class locations show that 
the FID is able to cluster similar labels together. In addi-
tion, a hierarchical cluster based on the distance matrix, also 
shown in Fig. 5, successfully groups sets of related find-
ings. The cluster demonstrates that the features extracted 
by the network underlying the FID are likely to be of a high 
enough quality to group sets of related findings and that the 

Fig. 5  NIH Class Label FIDs. Left: Classes plotted according to the 
multidimensional scaling of the pairwise distance matrix calculated 
by selecting each class as a baseline and determining the distance to 

all other classes in turn. Right: A hierarchical cluster based on the 
distance matrix showing the grouping of similar classes based on the 
features extracted by the Inception network when calculating the FID

Fig. 6  Label prevalence of 
the original NIH dataset and a 
random selection of 130,000 
PGGAN generates. Point esti-
mates are the average number 
of each label across all images. 
95% Confidence intervals are 
provided by re-sampling the 
full set of labels with replace-
ment 10,000 times. The network 
demonstrates a degree of mode 
dropping of classes with finer 
details that it finds difficult to 
reproduce
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technique is likely applicable to CXRs despite not being 
explicitly trained to detect features of these images.

We as a result evaluate the quality of synthetic X-rays 
compared to the NIH source images. The FID between the 
full source dataset and 100000 random PGGAN generates 
is 8.02. This value is comparable with FIDs reported for the 
PGGAN architecture on other non-biomedical high-resolu-
tion image generation tasks [18].

Pathological Variability

We estimate the pathological variability of the PGGAN 
generates in an effort to quantify the extent to which model 
capture the variability of the various disease entitites con-
tained within the source CXRs. The labels were estimated 
by utilising a common classifier to label both the NIH and 
generated iamge sets with confidence intervals derived by 
bootstrapping the predictions 10,000 times. The propor-
tion of the class labels from the NIH dataset and a random 
selection of 130,000 generated images can be seen in Fig. 6. 
Overall it can be seen that the generates cover the range of 
labels with each represented in broadly similar proportions 
to the NIH set. Despite the similarity, there appears to be 
a degree of mode dropping with a majority of labels being 
significantly less prevalent in the generates compared to the 
reference set with the exception of Atelectasis, Cardiomeg-
aly, Infiltration and No Finding. We hypothesize that this is 
likely to be due to a continuation of the phenomenon noted 
with the absence of certain smaller objects, the objects in 
this case being features of disease. This is supported by the 
label distribution, as more common conditions with larger 
disease features tend to be over represented, while diseases 
with progressively finer features are increasingly sparse in 
the generated samples. No Finding for example, is largely 
defined by the absence of smaller features and can be seen 
to be significantly in excess beyond the NIH set. Atelectasis 
and Cardiomegaly in comparison, define several character-
istics that are present at a moderate resolution and see a 
smaller increase in prevalence. This is in stark contrast to 
Emphysema and Pleural Thickening, which may be quite 
fine on X-ray and similarly show the greatest reduction in 
prevalence.

Pathology Generation

We utilise class optimisation to generate pathological images 
based on the method described in Algorithm 1. We sample 
the initial latent code from a truncated normal distribution 
with a threshold of 0.7 [6]. We attempt the method with 
both a Densenet-121 and a re-purposed Discriminator as 
classifiers. We generally found optimising the Densenet-121 
model proved to be slower, more difficult and less reliable 
overall. The process frequently plateaus and subsequently 

fails to produce a sample for a particular class. Successes 
often rely on favourable sampling from the latent space, 
with such samples typically converging rapidly. The same 
process applied to the re-purposed discriminator proved 
more successful as samples converged more regularly with 
greater ease in achieving higher logit values for a particular 
class. This discrepancy is due to the input size of the dif-
ferent models. The Densenet as a result of being trained on 
a smaller resolution requires images to be resized prior to 
classification and as such results in a worse estimation of the 
gradient. Replication of the process with a Densenet trained 
on a larger input size produced significant improvements to 
both the reliability and rapidity of convergence. Examples of 
successful pathology generates can be seen in Fig. 7. Many 
more examples of multi-modal pathology can be seen in the 
linked image archive.

Attempts to modify the optimisation process to produce 
examples of isolated labels often fails to converge, with 
optimisation by minimising other class scores alongside the 
maximisation of the class of interest typically resulting in a 
significant limitation to the score that can be achieved. This 
phenomenon is explained by the multi-modal nature of the 
disease classes and the underlying biomedical relationship 
between classes that results in label co-occurrence. These 
relationships can be seen with increases to the logit thresh-
old when optimising for a particular class. Clearer examples 
of particular conditions tend to co-occur with their medical 
complications. Increasing class scores for Cardiomegaly 
begin to include a greater proportions of Pleural Effusion 
labels, this may be related to the complications that occur 
in heart failure that may cause images with these labels to 
co-occur. Similarly, increasing Emphysema class values pro-
duces associated Pneumothorax labels, while Nodule find-
ings produce associated Mass labels. These findings reflect 
that the underlying unsupervised training methodology has 
captured the relationship between various X-ray features and 
optimising for the pathology enables us to tease out these 
properties.

As part of class optimisation, we’re required to set a score 
threshold for determining when a proposed image has con-
verged to be representative of a particular class. We utilise 
Youden’s J statistic to determine the optimum cut-off based 
on the validation ROC curve per class when training the 
classifier. To simulate degrees of disease severity in pro-
duced images, we randomly increase this threshold by the 
absolute value of the distribution of N(1, 1) when optimis-
ing. It is quite seldom that a dataset includes only a sin-
gle image of a patient. Typically there are series of patient 
images, where individuals are re-scanned several times. 
There are a multitude of potential reasons for this, follow-
up on patient condition, assessment of medical intervention, 
or routine imagery prior to surgery, are just a handful of 
potential reasons. The end result is that most datasets have a 
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significant proportion of very similar images, wherein posi-
tion or disease severity may be altered slightly but the over-
all image is largely unchanged. We simulate this process by 
sampling in the vicinity of a particular pathology-optimised 
latent code. We treat the optimised location as a centre and 
sample the surrounding hypersphere within N(0, 0.2) . We 

find that this enables the creation of images with the same 
set of diagnoses but minor changes in orientation, exposure, 
or disease severity. The degree of variability can be tuned by 
adjusting the standard deviation; however, we find a value of 
0.2 tends to produce minor variations without compromising 
the diagnostic label (Fig. 8).

Fig. 7  Example classes generated by maximising the classifier class logit. Images often have multiple findings, the finding optimised is the label 
given
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The fact that the latent space may be optimised with 
regard to disease classification at all implies a degree of ori-
entation with respect to pathology which may hold semantic 
value. We leave a full exploration of the properties of the 
latent space to future work.

Radiologist Review

We evaluate the plausibility of generated X-rays to domain 
experts through a series of image reviews. We ask a group of 
practising radiologists to identify a set of real images out of 
a grid of mixed X-rays as well as to select a real image out 
of a pair of real and generated images. We received feedback 
from 3 consultant (equivalent to board certified) radiolo-
gists, and 5 radiology registrars (equivalent to residents in 
North America). Image grids consist of six X-rays that are 
produced with a 50% probability of being real or generated, 
we evaluate six such grids. Real images were identified as 
such by radiologists 73% (95% CI 63, 82) of the time, while 
generates were identified as real 61% (95% CI 51, 70) of 
the time, with both groups more likely than chance to be 
identified as real, with reals p < 0.0001 and generates p 
= 0.0155 for a one-sided t-test. Radiologist performance 
on X-ray discrimination equates to a HYPE∞ score of 33% 
(95% CI 24, 43). Discrimination of image pairs is clearly in 
favour of real images, with radiologists correctly identifying 
the true image of a pair 71% (95% CI 55, 86) of the time. We 
evaluate 20 such image pairs. Comments from respondents 
mentioned bony abnormalities as the main feature used to 
identify samples as being synthetic. Images were embedded 
as options within a Google Form and shown at a 260 × 260 
resolution with unlimited time to review images prior to 
making a decision.

Synthetic Model Training

For evaluating the classification performance of a model 
trained only on synthetic data, we generate an archive of 
CXRs of comparable size and with labels in a similar pro-
portion to the source NIH dataset. We uniformly sample 
between 3 and 6 related images per class optimisation opera-
tion and treat them as belonging to the same ’patient’. We 

similarly iteratively stratify the synthetic patients into train-
ing and validation sets in the same manner as during ini-
tial classifier training, retaining only the original test set of 
real images, which we use for all comparisons. We train a 
Densenet classifier in the same configuration as described in 
Sect. 3.3. We evaluate performance relative to real images as 
well as images embedded into the generator’s latent space. 
We consider embedding images as the current alternative to 
individual class generation, whereby a network predicts the 
latent encoding of a given image. To achieve this, we retrain 
the discriminator to predict such a representation given a 
random sample from the generator and minimising the mean 
squared error between the predicted and actual locations 
in the latent space. We train with the proposed embedded 
image alongside the original labels. A table of comparative 
ROC AUC values can be seen in Table 2

The class generation results provide further evidence 
that the PGGAN model has learnt to replicate all the classes 
within the original NIH dataset, as the synthetic classi-
fier is able to detect each pathology from the source to a 

Fig. 8  Example of local sam-
pling after class generation. 
Images show similar anatomical 
and pathological features with 
variations in image contrast, text 
markup, and patient positioning

Table 2  Comparison of Performance of Classification Models 
Trained on Synthetic vs Real Data

Class Label Embedded Class Generated Real

Atelectasis 0.646 0.851 0.923
Cardiomegaly 0.602 0.907 0.968
Consolidation 0.675 0.928 0.963
Edema 0.746 0.941 0.985
Emphysema 0.51 0.901 0.972
Fibrosis 0.63 0.868 0.961
Hernia 0.611 0.951 0.986
Infiltration 0.596 0.796 0.847
Mass 0.516 0.825 0.936
No finding 0.605 0.861 0.932
Nodule 0.543 0.748 0.909
Pleural effusion 0.636 0.903 0.954
Pleural thickening 0.583 0.881 0.954
Pneumonia 0.595 0.932 0.975
Pneumothorax 0.568 0.877 0.947
Average 0.604 0.878 0.947
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degree significantly greater than expected by chance, despite 
never actually seeing an image from the original dataset. 
Furthermore, the generated classes demonstrate that the 
method reliably produces examples of each class, with a 
performance reduction similar to that seen with previous 
PGGAN generation tasks [51]. These results should scale 
with improvements made to the quality of generated images, 
as augments to the underlying GAN will reduce the distinc-
tion between the synthetic and real sets, which alongside 
class generation, will allow for even better representations 
for training. The poor performance of embedded samples are 
indicative of such a method failing to preserve class-specific 
information, and show it to be less suitable of a method for 
producing anonymised clinical archives. A potential alterna-
tive to predictive embedding would be to optimise the latent 
space to minimise image reconstruction loss. Our experi-
ments with this showed promise for more faithful representa-
tions; however, the performance was profoundly worse than 
alternatives, requiring days to convert an archive compared 
to only a handful of hours for competing approaches. We 
attempted comparisons with generating classes through a 
simpler DCGAN architecture similarly trained on the full 
NIH dataset. We found the generation process intractable as 
the model often failed to produce class scores sufficient to be 
considered examples of that class despite extensive optimi-
sation. We attribute this to a combination of mode dropping 
and lower image quality which precludes the formation of 
certain classes.

These results provide substantial evidence that class 
optimisation is effective at producing images that are rep-
resentative of a particular disease label and can enable a 
single unsupervised GAN to produce a fully labelled cohort 
of classes from an anonymised dataset.

Discussion

Through both automated and expert review of the medical 
plausibility of generated X-rays as well an evaluation of 
synthetic model performance we have outlined the proper-
ties of the PGGAN architecture applied to CXRs. Expert 
review demonstrated global coherence of the imagery with 
reproduction of numerous features associated with varying 
disease classes. Deficiencies have been noted with a broad 
absence of detailed, small scale features that are typically 
easily discernible on X-ray films. Automated comparisons 
of image features by means of the FID provide evidence that 
the quality of generates is of a similar standard to typical 
high-resolution tasks, where PGGAN is applied.

These limitations are likely explained by stochastic bot-
tlenecks and slower convergence of novel features at higher 
resolutions and are inherent to the design and training for-
mulation employed by the baseline PGGAN methodology. 

Future work should follow improvements made to subse-
quent GAN architectures in the PGGAN lineage [19, 20], 
or alternatively examine alternate approaches such as Very 
Deep Variational Autoencoders (VAEs) [7] which have simi-
larly shown promise for high-resolution image synthesis. 
Irrespective of the exact mechanism used to generate images, 
the implementation of multi-modal class optimisation allows 
for the extraction of disease-representative classes from the 
latent space that can be utilised to construct labelled syn-
thetic datasets of arbitrary size.

We suspect this method will prove to be of even greater 
utility with GAN architectures that possess less entangled 
latent spaces and could allow for disease optimisation at 
varying resolutions by considering scale-specific elements 
of the extended latent space seen in StyleGAN and later 
works [19]. We envision that such techniques should allow 
significant control over the severity of disease present in 
generates and may provide profound capabilities for data-
set augmentation. This would allow for applications such as 
demonstrating potential progression or resolution of disease 
or retaining disease presentation but shifting patient par-
ticular parameters such as age or sex. Scale specific modi-
fications may enable the synthesis of support devices such 
as IV lines that may be differed against the source image 
and used for augmentation in segmentation tasks. We envi-
sion that continued development along this route will enable 
task-specific image extraction from broad image generators, 
as unsupervised GANs trained on large corpora of diverse 
images should be able to extract a multitude of classes based 
on the capabilities of the associated classifier, even if such 
classes were not labelled in the original individual datasets.

Conclusion

We have applied a progressively growing GAN model to the 
task of synthesising high-resolution chest X-ray images for 
the evaluation of their suitability as a replacement for stand-
ard images for the tasks of model development and student 
education. The overarching goal of this investigation being 
to improve the protection of patient privacy without com-
promising data availability. We evaluate the applicability of 
the Fréchet Inception Distance to the evaluation of synthetic 
chest X-rays and find that the underlying network is capa-
ble of providing a meaningful metric for generate quality 
despite the difference in data distribution. We demonstrate 
that it is possible to produce realistic, clinically plausible 
images that capture much of the variation in standard X-rays; 
however, there remains a significant need for improvement 
in the reproduction of small-scale details to achieve truly 
indistinguishable samples. We demonstrate that the model 
is capable of reproducing all abnormalities of interest and in 
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similar proportions to the source image distribution despite 
differences in small scale features. We describe a methodol-
ogy for the extraction of class representative images from the 
generator’s latent space by optimisation of a classifier score 
and demonstrate that such a method is capable of construct-
ing a fully labelled synthetic dataset from an unsupervised 
generator. We describe potential avenues of improvement for 
generate quality and anticipate that such improvements will 
enable the production of high quality teaching and training 
images without the concern of breaching patient confiden-
tiality. We make the source code, final model weights and a 
large archive of labelled generates used in this study avail-
able to the broader research community.
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