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Simple Summary: Immunotherapy offers new hope for patients with recurrent or metastatic head and
neck cancer. However, only 20% of patients respond to this treatment. Combining radiotherapy in novel
ways with immunotherapy can lead to synergistic effect by enabling cancer recognition by immune
system and rendering tumor microenvironment less immunosuppressive. Based on a literature review,
the main factors that need to be considered in future trials of immunoradiotherapy in head and neck
cancer are discussed. The significance of proper timing of the treatment, the radiotherapy fractionation,
patient selection, the number and the site of irradiated lesions, and the irradiated volume have been
established in preclinical and clinical trials across different solid tumors. However, the trials using
immunoradiotherapy in patients with recurrent or metastatic head and neck cancer have shown poor
results so far and the reasons for this are elaborated on.

Abstract: Immunotherapy with immune checkpoint inhibitors (ICI) has recently become a standard
part of the treatment of recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC),
although the response rates are low. Numerous preclinical and clinical studies have now illuminated
several mechanisms by which radiotherapy (RT) enhances the effect of ICI. From RT-induced
immunogenic cancer cell death to its effect on the tumor microenvironment and vasculature,
the involved mechanisms are diverse and intertwined. Moreover, the research of these interactions is
challenging because of the thin line between immunostimulatory and the immunosuppressive effect
of RT. In the era of active research of immunoradiotherapy combinations, the significance of treatment
and host-related factors that were previously seen as being less important is being revealed. The impact
of dose and fractionation of RT is now well established, whereas selection of the number and location
of the lesions to be irradiated in a multi-metastatic setting is something that is only now beginning
to be understood. In addition to spatial factors, the timing of irradiation is as equally important
and is heavily dependent on the type of ICI used. Interestingly, using smaller-than-conventional RT
fields or even partial tumor volume RT could be beneficial in this setting. Among host-related factors,
the role of the microbiome on immunotherapy efficacy must not be overlooked nor can we neglect
the role of gut irradiation in a combined RT and ICI setting. In this review we elaborate on synergistic
mechanisms of immunoradiotherapy combinations, in addition to important factors to consider in
future immunoradiotherapy trial designs in R/M HNSCC.
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1. Introduction

Head and neck cancers account for 3–5% of cancer cases with a 5-year overall survival rate of
around 50–65% across all stages in the developed world [1–5]. Two-thirds of these patients present
with locally advanced disease in which, despite aggressive multimodal treatment, relapses occur in
around 50% of cases in the first two years, whereas 15% of all patients eventually develop distant
metastases [6,7]. In patients with recurrent or metastatic (R/M) head and neck squamous cell carcinoma
(HNSCC), the most effective systemic treatment offered a median overall survival of 10 months in
the pre-immunotherapy era [8]. With the approval of the first immune checkpoint inhibitor targeting
immune checkpoint programmed cell death protein 1 (anti-PD-1) for R/M HNSCC in 2016, durable
responses are now observed. However, the proportion of responding patients is below 20% and this
resistance to anti-PD-1 is usually multifactorial [9–12]. At the same time, around 60% of HNSCC
patients receiving immune checkpoint inhibitors experience immune-related adverse effects and in
up to 17% of patients these are grade 3 or higher. However, the overall effect on the quality of life is
positive compared to standard chemotherapy treatment [9–11,13]. Therefore, research on the possible
means of enhancing the anti-PD-1 effect is much needed.

Historically, radiotherapy (RT) was seen as a local treatment and its effect explained by loss
of tumor cells’ reproductive ability [14,15]. Furthermore, its net effect on the immune system was
understood as immunosuppressive [16]. Now the multifaceted interaction between the immune system
and RT is well acknowledged [17]. Even after ablative RT doses the reduction of tumor burden is
dependent on functional T cells [18]. Nonetheless, RT serves as an in situ vaccination where it promotes
tumor antigen cross-presentation and induces the production of chemokines and cytokines to enhance
the local and abscopal antitumor immune responses [19,20].

Despite numerous preclinical studies showing synergistic effects of concomitant anti-PD-1
treatment and RT, the results of clinical trials are not as straightforward [21–23]. In this review we
present the biological rationale for combining anti-PD-1 with RT in R/M HNSCC and explore the
details and formulate recommendations that need to be taken into consideration in design of future
clinical trials.

2. Biological Rational for Immunoradiotherapy Combination in R/M HNSCC

2.1. Resistance to Anti-PD-1 Therapy in R/M HNSCC

Since its discovery in 1991, our understanding of the PD-1/PD-L1 axis has expanded from its
role in maintenance of peripheral tolerance to its part in immune evasion of cancer. Binding of the
co-inhibitory receptor PD-1 to its ligand PD-L1 results in inhibition of antigen processing and presentation
by antigen presenting cells (APC), T cell anergy, and in increase in regulatory T cells. PD-L1 on tumor
cells and associated immune cells (combined positive score, CPS) is expressed in 85% patients with R/M
HNSCC. Blockade of this axis releases the brake and reinvigorates T cells, resulting in their antitumor
activity [10,24–26]. Nevertheless, less than one fifth of all patients with R/M HNSCC respond to this
therapy and even those who do eventually progress [10,27]. A brief overview of the resistance mechanisms
to anti-PD-1 below will be followed by explanation of RT’s potential to modulate them.

A prerequisite for primed CD8+ effector T cells to exert their cytotoxic function is their intratumoral
infiltration. Even though HNSCC are among the most immune-infiltrated cancers still less than half of
HNSCC are so called inflamed tumors, characterized by ample TILs, inflammatory response, cytolytic
activity, and IFN signaling. Furthermore, this immune class of HNSCC can be further dissected into
exhausted and active subtypes, with latter having significantly favorable prognosis and showing higher
responses to anti-PD-1. These tumors are more likely to be normoxic and be of an inflamed/mesenchymal
subtype of human papilloma virus (HPV) mediated tumors [28–32]. The hypoxia is a part of
multifaceted immunosuppressive tumor microenvironment, which is defined by the presence of the
immunosuppressive metabolites, cytokines, and cells such as regulatory T cells (Tregs), myeloid derived
suppressive cells (MDSC), cancer stem-like cells (CSC), and immunosuppressive tumor associated
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macrophages (TAMs) [33–35]. For example, HNSCC has in fact one of the highest Treg/CD8+ T cell
ratios among various cancers [32].

After intratumoral infiltration primed CD8+ T cells must recognize specific tumor neoantigens
(TNAs, which are not covered by central tolerance) or tumor-associated antigens (TAAs, for which
central tolerance is leaky) bound to MHC I on cancer cells [36]. TNAs are a result of mutant peptides
mostly resulting from somatic mutations in cancer DNA, and overall tumor mutation burden (TMB)
has been shown to correlate with response to anti-PD-1 antibodies across multiple cancers, including
HNSCC [37].

Despite HNSCC ranking in the upper quartile of cancers by TMB with five mutations per
million base pairs, this by itself is only a prerequisite for effective neoantigen presentation [38,39].
After translation, polypeptides are processed by antigen processing machinery (APM) and loaded
onto the MHC I heavy-chain-β2-microglobulin complex. The significance of APM is evident from
the lack of CD8+ TIL recognition of HNSCC despite expressed MHC I in the case of defective APM
which is deficient in 20–80% of HNSCC [40–42]. Loss of β2-microglobulin is also a known evasive
mechanism to anti-PD-1 therapy [43,44]. β2-microglobulin gene mutation is uncommon in non-HPV
mediated (HPV–) HNSCC in contrast to HPV mediated (HPV+) HNSCC, where genes of the immune
presentation pathway, such as β2-microglobulin and HLA, are more often mutated [45–47].

Furthermore, inhibition of the PD-1/PD-L1 axis in HNSCC can lead to compensatory upregulation
of alternative immune checkpoints, such as TIM-3, LAG-3, CTLA-4, TIGIT, GITR, and VISTA [48,49].

2.2. Immunomodulatory Effects of Radiotherapy

The concern for RT’s immunosuppressive effects stems from a generally recognized extreme
lymphocytes’ radiosensitivity, resulting in inactivation of 90% of lymphocytes exposed to 3 Gy in in vitro
colony formation assay [50]. However, preoperative RT in oral squamous cell carcinoma has been shown
to significantly induce proliferative activity of CD8+ TILs and the relative radioresistance of TILs has
been attributed to TGFβwhich is induced already by low-dose RT [51–55]. Nevertheless, RT can increase
the concentration of immunosuppressive cells in HNSCC TME and the magnitude of this effect seems
to depend on RT details (e.g., hypofractionated RT increases T cell tumor infiltration, downregulates
intratumoral immunosuppressive VEGF, and leads to lesser increase in MDSC as compared to
conventionally fractionated RT [56–63]) and on tumor characteristics (e.g., increase of CSCs in TME
after RT is more prominent in HPV− HNSCC as compared to HPV+ [64]). Some immunomodulatory
effects of RT on TME are presented in Figure 1.

Immunogenic cancer cell death (ICD) leading to the activation of the adaptive response is central
to the immunostimulatory effects of various anticancer treatments including RT (Figure 2) [65,66].
In a preclinical model, ICD was shown to be dose-dependent with increasing concentrations
of released/expressed danger-associated molecular patterns (DAMPs) that are necessary for the
recruitment and maturation of DCs when irradiated from 2 to 20 Gy [65,67,68]. A cross-presentation of
antigens by DCs on their major histocompatibility complex I (MHC I) to T cell receptors (TCRs) on
naïve CD8+ T cells follows. The latter are activated by co-stimulatory membrane ligands and cytokines
provided by DCs upon stimulation by DAMPs and type I interferons (IFN I) [69]. Favorably, RT causes
dose-dependent increase of MHC I expression in vitro as well as in vivo [70]. Furthermore, RT also
enhances the diversity of TCR repertoire of intratumoral T cells and enhanced diversity of PD-1+CD8+

T cells is a positive predictor of response to anti-PD-1 therapy [71,72]. IFN I production in DCs and
cancer cells is driven by exogenous or endogenous DNA in ectopic places such as cytosol which is
sensed by a central protein connecting several DNA sensing pathways, Stimulator of interferon genes
(STING) [73]. RT produces cytosolic DNA-containing micronuclei and non-mitochondrial free cytosolic
DNA, especially in cells with loss of p53 function, which is lost in a majority of HPV– HNSCC [74,75].
Importantly, RT doses above 12–15 Gy induce the production of exonuclease Trex1 that degrades the
cytosolic DNA, thus inhibiting type I IFN signaling via cGAS-STING pathway [76]. In HPV+ HNSCC,
it was demonstrated that E6 and E7 viral oncoproteins also suppress RIG-I-mediated innate immune
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signaling and interferon beta (IFNβ) induction [77]. Furthermore, E7 oncoprotein was shown to
antagonize the cGAS-STING DNA-sensing pathway and promote degradation of STING, which results
in a loss of a IFN I-mediated response [78–80]. However, differential responses of HPV+ and HPV−
HNSCC to RT in terms of DNA sensing are yet to be elucidated. Notably, sustained IFN I signaling
was shown to promote immunosuppression by enhancing PD-L1 and PD-1 expression in HNSCC [81].
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Figure 1. Selected immunomodulatory effects of radiotherapy (RT) on tumor microenvironment
(TME). Depending on the dose and fractionation as well as characteristics of established TME, RT
can act immunostimulatory by enhancing major histocompatibility complex I (MHC I) expression,
antitumoral type 1 tumor-associated macrophages (TAM1), natural killer cells (NK), dendritic cells
(DC) and cytotoxic (CD8+) and helper (CD4+) T cell infiltration. Contrary, the RT impact can be
immunosuppressive by inducing protumoral type 2 tumor-associated macrophages (TAM2), regulatory
T cell (Treg) and myeloid-derived suppressive cell (MDSC) infiltration, programmed-death ligand
1 (PD-L1) upregulation, tumor growth factor β (TGFβ) expression, and neutrophil extracellular
traps (NET) expulsion. The impact of low dose RT (LD RT) and high dose RT (HD RT) on tumor
vasculature is differential. Furthermore, RT induces adhesion molecules expression on endothelium,
such as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1),
and E-selectin, which are needed for leukocytes to extravasate and infiltrate tumors. (Created with
BioRender.com).

To exert their cytotoxic function, primed CD8+ TILs must recognize specific TNAs bound to MHC
I on cancer cells [36]. Even though conventional chemotherapy and RT can induce somatic mutations,
their contribution to overall TMB is not significant [82,83]. However, it has been shown across several
human epithelial cancer cell lines, including HNSCC, that sublethal RT doses have a positive effect on
the expression of numerous genes involved in antigen processing and presentation [84].
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Figure 2. Simplified presentation of radiation-induced immunogenic cell death. Damage induced
by RT mediates the release of tumor neoantigens (TNAs) or tumor-associated antigens (TAAs) and
potentiates the antigenicity of the cancer cells. The induced antigenicity of tumors must be coordinated
by the exposure of danger signals (DAMPs) that are necessary for the recruitment and maturation
of antigen-presenting cells such as dendritic cell (DC). This is referred to as adjuvanticity. Therefore,
dying cells must expose or release DAMPs which are recognized by pattern recognition receptors (PRR)
on DCs. This results in recruitment and enhanced uptake of cancer antigens by DCs. Type I IFNs are
sensed by interferon-alpha/beta receptor (IFNAR) in DCs, which is vital for antigen cross-presentation
to CD8+ T cells and their activation, resulting in antitumor response. (Created with BioRender.com).

3. Clinical Challenges with Combination of RT and Anti-PD-1 in R/M HNSCC

There are several dozen ongoing trials registered at ClinicalTrials.gov that are exploring the safety
and efficacy of ICI combined with RT in R/M HNSCC (Table 1) [85–87]. To date, the only randomized
trial in metastatic HNSCC utilizing concurrent SBRT and anti-PD-1 therapy to present results is the
phase II trial of McBride et al. who randomized 62 patients with metastatic HNSCC to either nivolumab
or nivolumab with SBRT (3 × 9 Gy). Only one lesion was irradiated between the first and second
dose of nivolumab. There were no significant differences between the two arms in response rates in
non-irradiated lesions (34.5% vs. 29.0%), median duration of responses (not reached vs. 9.3 months),
median PFS (1.9 vs. 2.6 months), overall survival at one year (50.2% vs. 54.4%), or toxicities grade 3 or
higher (13.3% vs. 9.7%) [23]. This same RT regimen, which has been proven to be worth pursuing
in previous preclinical and clinical trials, was combined with anti-PD-1 agent cemiplimab in another
series of 15 patients with R/M HNSCC who were refractory to one or more lines of prior systemic
therapy [76,88–91]. Three fractions of 9 Gy were delivered one week after the first cemiplimab dose.
Low-dose cyclophosphamide and granulocyte-macrophage colony-stimulating factor were added to
deplete Tregs and stimulate DC maturation, respectively [91]. With only one partial response this
combination failed to show any advantage over anti-PD-1 monotherapy.



Cancers 2020, 12, 3197 6 of 25

Table 1. Ongoing clinical trials incorporating radiotherapy and immunotherapy in recurrent or metastatic head and neck squamous cell carcinoma.

Name Study Phase
(Planned)

Number of
Participants

Immunotherapy RT fx RT Technique RT Target Timing of RT and
ICI

Primary
Endpoint

CONFRONT,
NCT03844763 I–II 71 Avelumab and

cyclophosphamide 1 × 8 Gy “Highly
conformal” 1 lesion ICI 1. day and

Q2W; RT 8. day Toxicity and ORR

NCT03283605 I–II 35 Durvalumab and
tremelimumab 30–50 Gy in 3–5 fx SBRT 2–5 lesions RT between 2. and

3. ICI cycle PFS

NCT03539198 I 91 Nivolumab 3–5 fx (various doses) Proton SBRT 1 lesion RT between 2. and
3. ICI cycle ORR

REPORT,
NCT03317327 I–II 20 Nivolumab 60 Gy in 1.5 Gy fx BID NA LR recurrence or 2.

primary
RT starts with the
2. ICI cycle Toxicity

NCT03522584 I–II 20 Durvalumab and
tremelimumab 3 fx (dose unknown) HIGRT or SBRT 1–5 lesions RT during week 3

of ICI Toxicity

NCT02684253 II, randomized 65 Nivolumab 3 × 9 Gy (randomized to
nivolumab +/− RT) SBRT 1 lesion RT between 1. and

2. cycle of ICI ORR

NCT03521570 II 51 Nivolumab Unknown (completed in
6–6.5 weeks) IMRT LR recurrence or 2.

primary
RT starts with the
2. ICI cycle PFS

NCT02289209 II 48 Pembrolizumab 60 Gy in 1.2 Gy fx BID NA LR recurrence or 2.
primary

RT starts with the
1. ICI cycle PFS

NCT03085719 II 26 Pembrolizumab High dose in 3 fx and low
dose in 2 fx NA Minimum 1 lesion NA ORR

KEYSTROKE,
RTOG 3507,

NCT03546582
II, randomized 102 Pembrolizumab

NA (over 2 weeks;
randomized to SBRT+/−
pembrolizumab)

SBRT LR recurrence or 2.
primary SBRT and then ICI PFS

Keynote-717,
IMPORTANCE,
NCT03386357

II, randomized 130 Pembrolizumab 12 × 3 Gy (randomized to
pembrolizumab +/− RT) NA 1–3 lesions ICI on the 3. day

of RT ORR

NCT04454489 II 15 Pembrolizumab Quad-shot RT NA
At least 1 lesion in
the head and neck

region

RT starts between
ICI cycles 2 and 3 ORR

NCT04399785 II 34 Camrelizumab NA SBRT NA NA ORR

RT—radiotherapy, fx—fractions of RT, ICI—immune checkpoint inhibitor, Q2W—every other week, ORR—overall response rate, SBRT—stereotactic body RT, PFS—progression-free
survival, BID—two fraction in a day, NA—not available, LR—locoregional, HIGRT—hypofractionated image-guided RT, IMRT—intensity-modulated RT, Quad-shot—at least one cycle of
14.8 Gy in four fractions (3.7 Gy per fraction) delivered twice daily over two consecutive days.
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There is a plethora of possible reasons for failure of RT to act synergistically with anti-PD-1 in these
two trials and these are schematically presented in Figure 3 and further discussed below. As pertinent
data in HNSCC are scarce, findings from other tumor types are also used to illustrate the importance
of these factors.
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Figure 3. Factors to consider in trials of combined radiotherapy (RT) and immunotherapy. Even though
the most effective RT dose-fractionation in the setting of immunoradiotherapy is still ill-defined,
biological rationales for particular RT schemes are being elucidated. Due to inherent radiosensitivity of
lymphocytes and different mechanisms of actions of immunotherapeutics, temporal coordination of RT
and immunotherapy is most important. Reducing overall tumor burden and interlesional heterogeneity
point in favor of multisite irradiation vs. single-site irradiation in metastatic setting. It also seems
irradiation of lesions in different organs, e.g., in liver vs. in brain, leads to different immunogenic results.
Importantly, partial tumor volume irradiation appears to confer compelling results. The characteristics
of the existent immunosuppressive tumor microenvironment (TME) are heterogeneous and dynamic
and present a key obstacle to (radio) immunotherapy efficacy. (Created with BioRender.com).

3.1. Patient Selection

Different patterns of distant metastases (later appearance and diverse sites) have been described
in HPV+ versus HPV− oropharyngeal (OP) cancers, which could partially be attributed to survival
bias (8-year overall survival of 71% in HPV+ versus 30% in HPV− patients) [92–94]. Nevertheless,
patients with locoregionally advanced HPV+ OP cancers experience disease recurrence in one third of
cases with similar rates of distant metastases as those with HPV− OP cancer [92,93]. HPV infection
in these cancers facilitates immune recognition and T cell infiltration. However, higher response to
anti-PD-1 therapy in these patients has not been unequivocally confirmed [95–98]. Due to inherently
increased radiosensitivity of HPV+ OP cancers compared to HPV− despite their similar response rates
to ICI, locally ablative RT added to ICI could lead to more pronounced synergistic effects by greater
reduction of disease burden in HPV+ OP cancer patients [94,99]. On the other hand, in the McBride
et al. trial the proportion of responding patients with HPV− HNSCC was higher in the SBRT plus
nivolumab arm compared to nivolumab only arm, suggesting that less inflamed HPV− tumors could
benefit more from addition of RT [23,95].
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Oligometastatic disease is a well-known entity in other cancers, while reports on its occurrence and
management in HNSCC are scarce [94]. Nevertheless, aggressive local therapy of (oligo)metastases in
HNSCC has been described to offer significant survival advantage [100,101]. Ablative therapy
of all accessible metastatic lesions should therefore be strongly considered in the combined
immunoradiotherapy setting in patients with oligometastatic HNSCC and good performance
status [102,103].

Recurrence in previously irradiated areas is a frequent pattern of relapse in patients with locally
advanced HNSCC and it seems that patients with locoregionally recurrent disease as opposed to
metastatic disease have somewhat lower responses to anti-PD-1 [10,104–107]. Furthermore, locoregional
recurrence is also a major type of progression on ICI therapy [108]. The question of feasibility and
efficacy of re-irradiation during immunotherapy is therefore vital. Two case reports offer some crude
answers: a successful re-irradiation of regional oligoprogression during treatment with nivolumab in a
heavily pretreated patient with HPV− HNSCC of unknown primary site, and a positive outcome even
after a second course of re-irradiation of the recurrence at the primary site in a patient with heavily
pretreated metastatic non-keratinizing nasopharyngeal carcinoma receiving pembrolizumab [109,110].
Even though re-irradiation with doses above 50 Gy in combination with chemotherapy by itself offers
median overall survival of up to 30% at two years, in both of the presented (re)re-irradiation cases
doses were much lower and therefore synergy with immunotherapy is a plausible explanation [107].
These two reports contradict the observed compromised nivolumab efficacy in HNSCC after previous
aggressive local treatment reported by some authors; therefore, re-irradiation with its positive effect
on TME together with anti-PD-1 could provide valuable treatment intensification in patients with
locoregionally recurrent HNSCC [111].

Another important aspect of clinical anti-PD-1 use is the role of concurrent chemotherapy
that seems to be appropriate in CPS-low patients with higher symptom burden in need of faster
treatment response. Notably, in KEYNOTE-048 duration of response to pembrolizumab alone versus
pembrolizumab combined with chemotherapy was substantially longer, 22.6 vs. 6.7 months [10]. It is
prudent to speculate that concurrent high-dose chemotherapy with its immunosuppressive effects
impairs long-term anti-PD-1 efficacy and that instead of chemotherapy SBRT with its local cytotoxic
effect and lesser systemic immunosuppressive effect could be of use for CPS-low patients in need of
fast treatment response.

3.2. Fractionation and Dose Selection

In general, conflicting results exist regarding the optimal fractionation regimen to elicit a positive
immunomodulatory effect of RT, and HNSCC-specific data are lacking.

Experiments on Lewis lung carcinoma, melanoma, colon cancer, and melanoma murine models
showed greater potency of SBRT (2 × 11.5 Gy or 3 × 8 Gy) compared to more fractionated RT with
comparable dose (9 × 4 Gy or 18 × 2 Gy), resulting in improved local and abscopal antitumor immune
response. SBRT superiority was due to greater reduction of intratumoral hypoxia and significantly
increased T cell infiltration. When anti-PD-1 was added to fractionated RT, growth suppression was
comparable to that of SBRT alone, but inferior to SBRT+anti-PD-1 combination [61,62]. Additionally,
in combination with immunotherapy, more fractionated RT regimens resulted in more frequent
lymphopenia and inferior outcomes in metastatic lung cancer patients [112].

As described above, ICD is dose-dependent with increasing concentrations of DAMPs when
irradiated from 2 to 20 Gy, while doses above 12–15 Gy were shown to inhibit IFN I signaling via
cGAS-STING pathway [67,76]. Therefore not surprisingly, delivering 15 Gy in two 7.5 Gy fractions was
shown to be more effective in increasing tumor-specific T cell responses without a significant increase
in intratumoral Tregs than a single fraction of 15 Gy [113]. Perhaps most well-known is the abscopal
effects of RT when combined with anti-CTLA-4 only in fractionated RT (3 × 8 Gy or 5 × 6 Gy) and not
in single fraction RT (1 × 20 Gy) in a murine breast cancer model [114]. In a clinical setting, however,
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Maity et al. observed a clear abscopal response after 1 × 17 Gy used concomitantly with anti-PD-1 in a
melanoma patient previously progressing on anti-PD-1 treatment [115].

It is obvious that direct translation of preclinical findings into clinical practice is difficult.
Importantly, genetic heterogeneity, TME, tumor vasculature, α/β issue, systemic immune status,
and different irradiation techniques in murine models with newly implanted and previously untreated
tumors cannot be compared to real-life scenarios [113,116,117]. For example, in immunocompetent
mice, the antitumor T lymphocytic response is caused as an artifact of cancer cell implantation
and, therefore, tumors treated immediately after implantation are responsive even to single agent
immunotherapy. The approach becomes inefficient in the later stages of disease due to the changes
in TME [118]. Secondly, contrary to irradiation regimens in preclinical models, in clinical practice
SBRT target doses are inherently heterogeneous with maximums of more than 150% of the prescribed
dose [119]. Furthermore, in preclinical models, irradiation is performed on superficial tumors, whereas
in clinical settings tumors are usually deep-seated and a larger volume of surrounding normal tissue is
simultaneously irradiated which could lead to different outcomes. For example, when using conformal
multifield RT techniques, a large skin surface is usually irradiated. As a result, highly radioresistant
epidermal Langerhans cells upregulate MHC II upon RT, migrate to lymph nodes, and induce
an increase in Treg cell numbers, which can be detrimental to the effect of immunotherapy [120].
These factors should be considered when evaluating results from preclinical studies to be translated
into clinical trials.

Immuno(radio)therapy is increasingly being tested in the primary setting as either adjuvant,
definitive, or neoadjuvant therapy. Findings especially from neoadjuvant trials will provide us with
data that can be used in R/M HNSCC as well [121]. For example, in early phase trial preoperative SBRT
with either 5 × 8 Gy (n = 5) or 3 × 8 Gy (n = 5) concurrently with nivolumab, administered 5 weeks
pre-surgery in patients with HPV+ OP or unknown primary HNSCC ineligible for transoral robotic
surgery yielded 100% complete pathologic response (pCR) in 5 × 8 Gy cohort and 80% pCR in 3 × 8 Gy
cohort with major pathologic response (<10% viable cancer cells) in the remaining patient. Toxicity
was higher in the 5 × 8 Gy, thus 3 × 8 Gy regimen with comparable clinical effectiveness was selected
for further evaluation [89].

Altogether, utilizing hypofractionated RT with moderate doses of 6–12 Gy per fraction seems
to be most prudent based on data so far. However, further research on the optimal RT dose and
fractionation schedule for its combination with ICI in R/M HNSCC is needed. When the aim of RT
delivered concurrently with ICI is control of a single symptomatic site, higher doses offering better
local control need to be applied, although at the cost of losing positive immunomodulation.

3.3. Site and Number of Lesions

The abscopal effect of RT can be considered clear proof of its in situ vaccination effect but can
only be observed if at least one of the tumor lesions is not irradiated [19]. This poses an inherent
challenge as disseminated cancers in humans are genetically more heterogeneous than preclinical
cancer models and irradiation of a single lesion could therefore be inefficient in serving as an in situ
vaccination [116]. This is one of the three major drawbacks of single-site versus multisite irradiation
metastatic HNSSC, in which a possibility of a branched pattern of clonal evolution resulting in
inter-metastatic heterogeneity is well known [122]. The second is the effect of RT rendering TME less
hostile for circulating CD8+ T cells to access and exert their effector function, therefore leaving lesions
non-irradiated could be detrimental. Finally, overall tumor burden which cannot be substantially
reduced by single-site RT and persisting bulky lesions could present a major obstacle to the effect
of immunotherapy. These factors in favor of comprehensive multi-site RT are extensively discussed
by Brooks and Chang [123]. An observation by Menon et al. supports multisite irradiation in
the setting of immunoradiotherapy even if with only a low dose RT. They analyzed a subset of 26
patients with metastatic cancers (predominantly lung adenocarcinomas) from three prospective trials
of immunotherapy with SBRT (mostly 50 Gy in four fractions) which had at least one lesion that
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received low dose (1–20 Gy, average 7.3 Gy). Low-dose irradiated lesions responded in 58% compared
to 18% in no-dose lesions (<1 Gy, p = 0.0001). When analyzed per dose ranges, response rate was
significantly higher in lesions receiving >5 Gy [124].

Importantly, irradiation of tumor lesions in different organs might lead to different results.
McGee at al. showed that irradiation of visceral organs (lung, liver) as opposed to irradiation of brain
and bone lesions leads to decreased overall NK cells and their exhaustion. Furthermore, SBRT of
viscera was shown to increase and activate memory T cells. Since total dose was associated with these
changes and different organs were treated with different SBRT regimens, results of this study must be
interpreted with caution [125]. Other researchers showed that the combination of immunotherapy
and RT is also effective in brain metastases, however, more treatment-related complications can be
anticipated [126,127]. Similar inter-organ differences were observed between liver directed SBRT
versus lung directed SBRT with concomitant anti-CTLA-4 agent in a metastatic NSCLC, with a more
pronounced increase in T cell activation in the former [128]. Furthermore, when evaluating different
immune responses to treatment of visceral versus bone lesions, concomitant therapy with RANKL
inhibitors (e.g., denosumab) should be considered an important factor, because anti-RANKL was
shown to enhance anti-PD-1 effect in preclinical study [129].

The arguments in favor of multisite SBRT are strong, but caution is advised if ablative doses are
used. In a randomized trial of multisite ablative SBRT in patients with various oligometastatic cancers,
SBRT-related deaths were observed in 4.5% [130]. Whether irradiation of metastases in different organs
in patients with metastatic HNSCC receiving anti-PD-1 leads to different responses is so far unknown.

3.4. Timing

Positive effects of RT on immune response are expected early after irradiation. In different
murine models RT led to transient increased PD-1 expression on CD8+ and CD4+ T cells 24 h after RT,
resulting in synergistic effect of concomitantly administered anti-PD-L1 and RT. This was not a case in
a sequential application setting where RT was followed by anti-PD-L1 after 7 days [22]. It seems that
application of anti-PD-1 preceding RT could also be of benefit, as was shown in retrospective analysis
of 758 patients with different metastatic solid cancers treated with either anti-CTLA-4 or anti-PD-1/L1,
and RT within 30 days of immunotherapy. Those patients receiving immunotherapy 30 days or more
before RT benefited the most regardless of histology, immunotherapy type, and anatomic site of
RT [131]. This could, however, be a consequence of the fact that early progressors who usually have
worse prognosis were being treated by RT earlier. Importantly, half-lives of anti-PD-1 agents are rather
long, with serum half-life ranging from 12 to 23 days with peak occupancy of circulating CD3 T cells
4–24 h and a plateau occupancy 57 days after application [132,133].

Another point in favor of concomitant RT and anti-PD-1 treatment is RT’s local cytotoxic effect.
Hyperprogression during ICI therapy has been described in 0–29% of patients with R/M HNSCC and
appears to be more common in younger patients, in those with regional recurrences, and/or higher
peripheral neutrophil–lymphocyte ratio [134–136]. Adding RT early during immunotherapy could
potentially prevent hyperprogression and its detrimental effect.

An often overlooked aspect of timing is inter-fractional time interval of SBRT, which deserves
special attention in hypoxic solid tumors such as HNSCC [137]. Hypoxia makes tumors more resistant
to radio- and immunotherapy [137,138]. While SBRT is known to induce considerable vascular damage
resulting in postponed indirect cell death, normalization of tumor vasculature after ablative SBRT
has also been observed. These differences in the observed outcomes are probably a consequence of
different RT fractionation and dose regimens, and different TMEs [139,140]. Nevertheless, prolonging
inter-fractional interval results in reoxygenation (largely due to reduced oxygen consumption that
follows extensive cancer cell death), thus removing hypoxia-induced immunosuppressive stimuli and
radioresistance, which can be an issue particularly in bulky tumors [141].

Research on the optimal timing of combining immunotherapy and RT optimal timing should also
take into consideration the circadian rhythms of different parts of the immune system. Intrinsic clocks
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affect innate as well as adaptive immune cells’ development, movement, and function. For example,
egress of T cells into efferent lymphatics in a preclinical murine model was observed to be highest
around 9 h after dawn and vaccination of the elderly was shown to be more effective in inducing
antibodies production when done in the morning as opposed to the afternoon [142]. In addition to
circadian oscillations, immune oscillations over several days were also observed to have an impact on
the efficacy of cancer therapy and should be further explored [143–145].

Even though HNSCC-specific data on optimal timing of RT and anti-PD-1 are lacking,
some conclusions can be made from experiences in preclinical setting and in other cancers. RT should
precede anti-PD-1 or be applied concomitantly, while prolongation of the inter-fractional time interval
could be beneficial in bulky/hypoxic tumors. In addition, further fine-tuning of the timing in relation to
immune circadian rhythms and daily oscillations is warranted.

3.5. Field Selection and Dose Heterogeneity

Elective nodal irradiation targets possible subclinical microscopic disease in draining lymph nodes
(DLN). Risk-adapted electively irradiated volume and reduction of dose are areas of active research
for reasons including the role of DLN in generating tumor-specific effector CD8+ lymphocytes which
may be hindered by RT [146]. For example, surgically DLN-ablated or genetically DLN-deficient mice
are found to exhibit a marked decrease in local tumor RT efficiency due to a significant reduction of
tumor-specific CD8+ TILs [147]. In immunoradiotherapy, combination care should be taken to spare
DLN of, ideally, any irradiation.

To avoid marginal misses, careful tumor delineation with an additional margin to ensure an
adequate dose coverage of the target with a predefined probability is a standard in modern RT.
However, results from preclinical studies show that partial tumor irradiation of 50% of tumor volume
is non-inferior to that of full-volume irradiation with the same dose. In the non-irradiated half an
increase in endothelial cells’ adhesion molecules expression as well as three-fold increase in CD8+ T cell
concentration, originating from the irradiated half or tumor periphery, were observed. Hemi-irradiation
also elicited abscopal effect which was of comparable magnitude to that after whole tumor irradiation.
Notably, using a higher dose of 20 Gy had no hemi-irradiation effect. Authors speculated that vascular
damage by 1 × 20 Gy prevented immune cell infiltration [148]. In fact, this higher dose could result in
detrimental induction of exonuclease Trex1 [76]. The clinical experience seems to concur with these
results. Seventy-nine patients with metastatic cancers, of which four had HNSCC, received SBRT in
various fractionations to 2–4 metastases which was followed by pembrolizumab within 7 days after
SBRT. Metastases larger than 65 cm3 were irradiated only partially. Nevertheless, at 6 months there was
no difference in local control between fully and partially irradiated lesions [149,150]. Altogether this
is a strong argument in favor of partial tumor irradiation when full-lesion coverage would lead to
unnecessary DLN or normal peripheral tissue irradiation.

Although a less potent inductor of immunogenic cell death, low-dose RT (0.5–2 Gy) has the
advantage of activating antitumoral activity of the TME by increasing the ratio between classically
activated type 1 antitumoral macrophages versus alternatively-activated type 2 tumor promoting
macrophages in TME, and inducing the expression of cell adhesion molecules such as ICAM-1 or
E-selectin [151,152]. It was shown in a murine model that ablative irradiation with 22 Gy in a single
fraction followed by primary tumor low-dose RT of 4 × 0.5 Gy results in improved survival [153].
Interestingly, whole-lung low-dose RT that followed ablative RT to the primary tumor also prolonged
survival by decreasing immunosuppressive cell concentrations in this metastasis-prone organ. The same
effect with increased effector CD8+ T cells and decreased Tregs was observed after delivering low-dose
RT to metastatic sites that followed ablative RT of the primary tumor [153]. This are all points in favor
of (multisite) SBRT where extensive volume of normal tissue receives low doses of RT. Furthermore,
if above described high-dose partial tumor irradiation is used, tumor periphery receives low doses
which could be beneficial to lymphocytes adhesion and extravasation.
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When re-irradiation is indicated in HNSCC patients, careful consideration of radiation tolerance
of surrounding normal tissue is mandatory. For example, one of the most dreadful complications is
carotid blowout syndrome which occurs in up to 16% of reirradiated patients if every day SBRT is
used [154]. Besides patient selection, careful sparing of peritumoral tissue by only partially irradiating
these recurrences could provide above described benefits to concurrent immunotherapy without
causing severe toxicity. Researchers from Klagenfurt reported on 23 patients with different bulky
tumors that received SBRT (1–3 fractions of 10–12 Gy to 70% isodose line; 65% received 1 × 10 Gy)
only to the hypoxic segment inside the tumor volume (defined by positron emission tomography
and contrast-enhanced computed tomography as the hypovascularized and hypometabolic segment).
Peritumoral tissue and DLNs were defined as the organ at risk and received as low a dose as possible.
In this retrospective study they observed response rates (30% or greater regression) in 96% of irradiated
lesions and abscopal responses in 52% of patients [90]. Contrary to all the mechanisms of radiation
induced antitumor immune response described above, a surprising response was observed in a
patient with synchronous squamous cell carcinoma and adenocarcinoma of the lung. This patient
neoadjuvantly received 3 × 10 Gy to a hypoxic subvolume of initially unresectable lung squamous
cell carcinoma (with metastatic mediastinal lymph nodes and a separate lung adenocarcinoma both
outside of the treatment field). Both primaries and DLN were then surgically removed and histological
evaluation showed a complete response in DLN and 80% necrosis in nonirradiated separate lung
adenocarcinoma, which was not accompanied by substantial TILs. However, apoptosis-inducing factor
was highly upregulated [90]. Overall, such a high rate of abscopal responses (i.e., 52%) has not been
reported to date in irradiated-only patients and an abscopal response has never been described in a
metastatic lesion with a histology differing from that of the irradiated one. Hopefully, these results will
be confirmed in a prospective trial. This study poses many questions and results are not in line with
our current understanding of the RT induced abscopal response.

Importantly, this peritumoral tissue-sparing technique also delivers a lower dose to the invasive
tumor border, where tertiary lymphoid structures (TLS) are often found [155]. TLS are important
for initiating and maintaining antitumor immune response and were also shown to be a favorable
prognostic factor in HNSCC [155]. The presence of TLS was found to be associated with increased
tumor apoptosis and increased radiosensitivity of CD3 cells in TLS compared to other intratumoral CD3
cells has been observed [156]. Mature DC cells defined by expression of LAMP (lysosomal associated
membrane glycoprotein) are also detected almost exclusively in the peritumoral areas [157]. Therefore,
relative sparing of the invasive tumor border from a high RT dose could also preserve their function.

3.6. Other Outcome Defining Factors and Evaluation of Immunoradiotherapy Efficacy

There are some other factors that need to be considered when evaluating the responses to
immunoradiotherapy. For example, previous (chemo)radiotherapy for primary HNSCC was shown
to confer a better prognosis in patients receiving ICI in R/M setting [158,159]. Reasons for this are
unknown and can only be speculated on in view of the findings from preclinical studies, including
upregulation of PD-L1 by previous RT. The predictive role of combined positive score (CPS, the number
of PD-L1 positive cancer cells, lymphocytes, and macrophages, divided by the number of viable cancer
cells and multiplied by 100) was supported by the results from the KEYNOTE-048 trial. In patients with
CPS ≥ 1 pembrolizumab monotherapy resulted in significantly superior overall survival compared to
standard of care systemic treatment [10]. In single arm trials of immunoradiotherapy combination in
HNSCC this factor should therefore be included in the analyses.

Another factor that needs to be considered when seeking to explain the differences in outcomes of
immunoradiotherapy in HNSCC patients is microbiome. After establishing a connection between gut
microbiome and immune checkpoint inhibitor efficacy in preclinical murine models in 2015, the essential
role of microbiome was later confirmed in epithelial cancer patients [160]. Specifically, an abundance
of Akkermansia muciniphila in feces was associated with better responses and prognosis in these patients
treated with anti-PD-1, whereas antibiotic use was an independent negative predictive factor for its
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efficacy [160,161]. This is rather unfortunate as patients with HNSCC are at an increased risk of soft
tissue and respiratory tract infections that often need to be treated with broad-spectrum antimicrobial
agents. Indeed, a recent series of 272 patients with locally advanced HNSCC reported that nearly half
(45.6%) received antibiotic treatment and these patients had significantly shorter progression-free and
disease-specific survival [162]. However, all antibiotics are probably not equally detrimental to the
effect of immunotherapy. Recently a positive effect of peroral vancomycin, a Gram-positive-bacteria
targeting antibiotic which is retained within the gut, on antitumor immune response and tumor growth
was reported in irradiated melanoma and HPV E6/7 expressing lung and cervical cancer murine model.
Vancomycin depleted butyrate producing gut bacteria which resulted in reduced concentration of
butyrate in fecal and tissue samples. As butyrate otherwise impairs DC antigen presentation to CD8+

T cells, vancomycin enhanced direct and abscopal antitumor activity of hypofractionated RT [163].
Regarding the strong influence of intestinal microbiota on the effect of anti-PD-1 treatment, little is

known about the influence of irradiation of intestines to gut microbiome disturbance and, consequently,
on antitumor immunity [164,165]. For example, 4–5 Gy of gut irradiation results in a marked increase
of commensal Bifidobacterium in intestinal flora and compromises the integrity of the gut leading to
translocation of Enterobacter cloacae, Escherichia coli, and Bifidobacterium into mesenteric lymph nodes
and of lipopolysaccharide into serum. This results in an increased DCs and enhanced CD8+ T cell
priming by DCs as well as in increased concentrations of systemic inflammatory cytokines resulting in
enhanced effect of immunotherapy [166–168]. This could potentially even have a role in differences in
T cell activation between liver and lung directed SBRT described by Tang et al. (see above), because in
liver RT at least part of the gut is irradiated [128]. As seen here, gut irradiation can have a profound
impact on the gut microbiome and its effect on immune response. Therefore, irradiation of intestines
should also be considered as an outcome-influencing factor in future trials.

While we await further clinical data on the interplay between gut microbiome, ICI, and RT,
antibiotics should be used prudently and as targeted as possible.

Some possible pitfalls in ascribing synergistic interaction between RT and ICI are apparent from
a case report of a patient with metastatic HPV+ HNSCC who progressed during treatment with a
combination of nivolumab and ipilimumab. At this point palliative RT was delivered to the neck
while the patient continued with immunotherapy. After two weeks the lung metastasis decreased
by 50% despite not being irradiated. Even though pseudoprogression was observed in only 2–4%
of HNSCC cases treated with ICI, this possibility should be kept in mind when progression to ICI is
suspected [169,170]. The same goes for late response to anti-PD-1 treatment, as the median time to
response is around 1.5–9.1 months [9,10,97]. It is therefore uncertain if this was indeed an abscopal
response of RT.

Numerous trials testing various combinations of RT and immune checkpoint inhibitors with or
without additional agents are still underway [17,85,171]. Interestingly, the addition of one or two
applications of low-dose cisplatin, a backbone of the standard HNSCC chemoradiation regimen,
was also shown to strongly enhance the abscopal effect when used in combination with RT and
anti-PD-1 in murine melanoma, adenocarcinoma, breast cancer, and colon cancer models [172,173].
Major parameters to be considered in planning immunoradiotherapy trials in R/M HNSCC are
summarized in Table 2.
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Table 2. Radiotherapy-related parameters to be considered in future clinical trials on combination of
radiotherapy and immune checkpoint inhibitors in patients with recurrent or metastatic squamous cell
carcinoma of the head and neck.

Parameter Recommendation Explanation

RT regimen SBRT (multiple fractions of 6–15 Gy)

- Suppressing MDSC recruitment [62]
- Increasing TILs [61]
- Favorable tumor-reactive T cells/Treg

ratio [113]
- Minimizing RT-induced systemic

lymphopenia [112,174]

Number of lesions Majority of lesions

- Targeting genetically heterogeneous
metastatic lesions [116]

- Reducing overall tumor burden [123]
- Rendering TME more favorable to

TILs infiltration [123]

Timing of RT Concurrent or close to ICI

- Concurrently or right before
anti-PD-1 [22]

- Could prevent detrimental
hyperprogression in anti-PD-1/L1
treated R/M HNSCC patients [134]

Selection of RT field Tumor-only
- Omitting DLN irradiation is

beneficial [175]

Dose heterogeneity Consider delivering high dose to
partial tumor volume

- Could lead to similar results as
full-tumor-volume-RT [148–150]

- Beneficial effects of low-dose RT [153]
- Endothelial cell adhesion molecules

induced by 1–5 Gy [152]
- Relative sparing of tumor invasive

border and peritumoral tissue could
be beneficial [90,155,157]

RT—radiotherapy, SBRT—stereotactic body RT, MDSC—myeloid-derived suppressive cells, TILs—tumor
infiltrating T lymphocytes, Treg—regulatory T cells, TME—tumor microenvironment, ICI—immune checkpoint
inhibitors, PD-1—programmed cell death protein-1, CTLA-4—cytotoxic T-lymphocyte-associated protein 4,
PD-L1—programmed cell death protein-ligand 1, R/M HNSCC—recurrent/metastatic head and neck squamous cell
carcinoma, DLN—draining lymph nodes.

4. Conclusions

A growing body of evidence has established the potential of RT to act synergistically with
immunotherapy in various cancers. In the light of disappointing response rates to anti-PD-1 alone in
R/M HNSCC, active research is being conducted on combinations with novel drugs and, in particular,
RT. To date, the results of clinical trials exploring combinations of RT with ICI in HNSCC are not
consistent. Vital questions regarding patient selection for this treatment combination, e.g., impact
of HPV status, recurrent versus metastatic disease, CPS-low versus CPS-high, are worthy of further
research. It is safe to say that targeting single lesions in metastatic HNSCC does not enhance the
anti-PD1-1 effect and therefore ideally all the metastatic lesions should be targeted, while special
attention must be paid to sparing peritumoral and nontumoral tissue even if at the expense of full lesion
volume coverage. Resulting intratumoral dose heterogeneity could be beneficial. Based on preclinical
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and clinical data from other cancers, RT should be delivered concurrently with or immediately
before anti-PD-1, employing small conformal fields of SBRT and multiple intermediate-dose fractions
(6–15 Gy).

However, the details leading to maximum synergism between RT and ICI in R/M HNSCC are far
from being well established and the present knowledge offers only a glimpse into the multitude of
factors needed to be considered in future immunoradiotherapy trial designs.

Author Contributions: Conceptualization, G.P., P.S.; Writing—Original Draft Preparation, G.P. and T.J.;
Writing—Review and Editing, G.P., T.J., M.O., P.S. All authors have revised and approved the submitted
version of the manuscript.

Funding: This research was funded by Slovenian Research Agency (ARRS), grant numbers P3-0307 and P3-0003.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Gatta, G.; Botta, L.; Sánchez, M.J.; Anderson, L.A.; Pierannunzio, D.; Licitra, L.; Hackl, M.; Zielonke, N.;
Oberaigner, W.; Van Eycken, E.; et al. Prognoses and improvement for head and neck cancers diagnosed
in Europe in early 2000s: The EUROCARE-5 population-based study. Eur. J. Cancer 2015, 51, 2130–2143.
[CrossRef] [PubMed]

2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [CrossRef]
[PubMed]

3. Klussmann, J.P. Head and Neck Cancer—New Insights into a Heterogeneous Disease. Oncol. Res. Treat.
2017, 40, 318–319. [CrossRef] [PubMed]

4. Jakobsen, K.K.; Grønhøj, C.; Jensen, D.H.; Karnov, K.K.S.; Agander, T.K.; Specht, L.; von Buchwald, C.
Increasing incidence and survival of head and neck cancers in Denmark: A nation-wide study from 1980 to
2014. Acta Oncol. 2018, 57, 1143–1151. [CrossRef] [PubMed]

5. Leoncini, E.; Vukovic, V.; Cadoni, G.; Pastorino, R.; Arzani, D.; Bosetti, C.; Canova, C.; Garavello, W.;
La Vecchia, C.; Maule, M.; et al. Clinical features and prognostic factors in patients with head and neck
cancer: Results from a multicentric study. Cancer Epidemiol. 2015, 39, 367–374. [CrossRef] [PubMed]

6. Argiris, A.; Karamouzis, M.V.; Raben, D.; Ferris, R.L. Head and neck cancer. Lancet 2008, 371, 1695–1709.
[CrossRef]

7. Duprez, F.; Berwouts, D.; De Neve, W.; Bonte, K.; Boterberg, T.; Deron, P.; Huvenne, W.; Rottey, S.; Mareel, M.
Distant metastases in head and neck cancer. Head Neck 2017, 39, 1733–1743. [CrossRef]

8. Vermorken, J.B.; Mesia, R.; Rivera, F.; Remenar, E.; Kawecki, A.; Rottey, S.; Erfan, J.; Zabolotnyy, D.;
Kienzer, H.R.; Cupissol, D.; et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer.
N. Engl. J. Med. 2008, 359, 1116–1127. [CrossRef]

9. Ferris, R.L.; Licitra, L.; Fayette, J.; Even, C.; Blumenschein, G.; Harrington, K.J.; Guigay, J.; Vokes, E.E.;
Saba, N.F.; Haddad, R.; et al. Nivolumab in Patients with Recurrent or Metastatic Squamous Cell Carcinoma
of the Head and Neck: Efficacy and Safety in CheckMate 141 by Prior Cetuximab Use. Clin. Cancer Res. 2019,
25, 5221–5230. [CrossRef]

10. Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G.; Psyrri, A.; Basté, N.;
Neupane, P.; Bratland, Å.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with
chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048):
A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [CrossRef]

11. Cohen, E.E.W.; Soulières, D.; Le Tourneau, C.; Dinis, J.J.; Licitra, L.; Ahn, M.J.; Soria, A.; Machiels, J.P.;
Mach, N.; Mehra, R.; et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or
metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): A randomised, open-label, phase 3
study. Lancet 2019, 393, 156–167. [CrossRef]

12. Nowicki, T.S.; Hu-Lieskovan, S.; Ribas, A. Mechanisms of Resistance to PD-1 and PD-L1 Blockade. Cancer J.
2018, 24, 47–53. [CrossRef]

http://dx.doi.org/10.1016/j.ejca.2015.07.043
http://www.ncbi.nlm.nih.gov/pubmed/26421817
http://dx.doi.org/10.3322/caac.21442
http://www.ncbi.nlm.nih.gov/pubmed/29313949
http://dx.doi.org/10.1159/000477255
http://www.ncbi.nlm.nih.gov/pubmed/28521323
http://dx.doi.org/10.1080/0284186X.2018.1438657
http://www.ncbi.nlm.nih.gov/pubmed/29447088
http://dx.doi.org/10.1016/j.canep.2015.02.004
http://www.ncbi.nlm.nih.gov/pubmed/25770642
http://dx.doi.org/10.1016/S0140-6736(08)60728-X
http://dx.doi.org/10.1002/hed.24687
http://dx.doi.org/10.1056/NEJMoa0802656
http://dx.doi.org/10.1158/1078-0432.CCR-18-3944
http://dx.doi.org/10.1016/S0140-6736(19)32591-7
http://dx.doi.org/10.1016/S0140-6736(18)31999-8
http://dx.doi.org/10.1097/PPO.0000000000000303


Cancers 2020, 12, 3197 16 of 25

13. Wang, H.; Mustafa, A.; Liu, S.; Liu, J.; Lv, D.; Yang, H.; Zou, J. Immune checkpoint inhibitor toxicity in head
and neck cancer: From identification to management. Front. Pharmacol. 2019, 10. [CrossRef]

14. Brown, J.M.; Carlson, D.J.; Brenner, D.J. The tumor radiobiology of SRS and SBRT: Are more than the 5 Rs
involved? Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 254–262. [CrossRef] [PubMed]

15. Harrington, K.; Jankowska, P.; Hingorani, M. Molecular Biology for the Radiation Oncologist: The 5Rs of
Radiobiology meet the Hallmarks of Cancer. Clin. Oncol. 2007, 19, 561–571. [CrossRef]

16. Wara, W.M. Immunosuppression associated with radiation therapy. Int. J. Radiat. Oncol. 1977, 2, 593–596.
[CrossRef]

17. Kabiljo, J.; Harpain, F.; Carotta, S.; Bergmann, M. Radiotherapy as a backbone for novel concepts in cancer
immunotherapy. Cancers 2020, 12, 79. [CrossRef]

18. Lee, Y.; Auh, S.L.; Wang, Y.; Burnette, B.; Wang, Y.; Meng, Y.; Beckett, M.; Sharma, R.; Chin, R.; Tu, T.; et al.
Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: Changing strategies for cancer
treatment. Blood 2009, 114, 589–595. [CrossRef] [PubMed]

19. Demaria, S.; Ng, B.; Devitt, M.L.; Babb, J.S.; Kawashima, N.; Liebes, L.; Formenti, S.C. Ionizing radiation
inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys.
2004, 58, 862–870. [CrossRef]

20. Burnette, B.C.; Liang, H.; Lee, Y.; Chlewicki, L.; Khodarev, N.N.; Weichselbaum, R.R.; Fu, Y.X.; Auh, S.L.
The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive
immunity. Cancer Res. 2011, 71, 2488–2496. [CrossRef] [PubMed]

21. Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y. Irradiation and anti–PD-L1
treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014, 124, 687–695.
[CrossRef] [PubMed]

22. Dovedi, S.J.; Adlard, A.L.; Lipowska-Bhalla, G.; McKenna, C.; Jones, S.; Cheadle, E.J.; Stratford, I.J.; Poon, E.;
Morrow, M.; Stewart, R.; et al. Acquired resistance to fractionated radiotherapy can be overcome by
concurrent PD-L1 blockade. Cancer Res. 2014, 74, 5458–5468. [CrossRef] [PubMed]

23. McBride, S.; Sherman, E.; Tsai, C.J.; Baxi, S.; Aghalar, J.; Eng, J.; Zhi, W.I.; McFarland, D.; Michel, L.S.;
Young, R.; et al. Randomized Phase II Trial of Nivolumab With Stereotactic Body Radiotherapy Versus
Nivolumab Alone in Metastatic Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2020,
36, JCO.20.00290. [CrossRef]

24. Ishida, Y. PD-1: Its Discovery, Involvement in Cancer Immunotherapy, and Beyond. Cells 2020, 9, 1376.
[CrossRef]

25. Bardhan, K.; Anagnostou, T.; Boussiotis, V.A. The PD1:PD-L1/2 Pathway from Discovery to Clinical
Implementation. Front. Immunol. 2016, 7. [CrossRef]

26. Barbari, C.; Fontaine, T.; Parajuli, P.; Lamichhane, N.; Jakubski, S.; Lamichhane, P.; Deshmukh, R.R.
Immunotherapies and Combination Strategies for Immuno-Oncology. Int. J. Mol. Sci. 2020, 21, 5009.
[CrossRef] [PubMed]

27. Saba, N.F.; Blumenschein, G.; Guigay, J.; Licitra, L.; Fayette, J.; Harrington, K.J.; Kiyota, N.; Gillison, M.L.;
Ferris, R.L.; Jayaprakash, V.; et al. Nivolumab versus investigator’s choice in patients with recurrent or
metastatic squamous cell carcinoma of the head and neck: Efficacy and safety in CheckMate 141 by age.
Oral Oncol. 2019, 96, 7–14. [CrossRef] [PubMed]

28. Chen, Y.-P.; Wang, Y.-Q.; Lv, J.-W.; Li, Y.-Q.; Chua, M.L.K.; Le, Q.-T.; Lee, N.; Colevas, A.D.; Seiwert, T.;
Hayes, D.N.; et al. Identification and validation of novel microenvironment-based immune molecular
subgroups of head and neck squamous cell carcinoma: Implications for immunotherapy. Ann. Oncol. 2019,
30, 68–75. [CrossRef]

29. Brooks, J.M.; Menezes, A.N.; Ibrahim, M.; Archer, L.; Lal, N.; Bagnall, C.J.; von Zeidler, S.V.; Valentine, H.R.;
Spruce, R.J.; Batis, N.; et al. Development and Validation of a Combined Hypoxia and Immune Prognostic
Classifier for Head and Neck Cancer. Clin. Cancer Res. 2019, 25, 5315–5328. [CrossRef] [PubMed]

30. Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017,
541, 321–330. [CrossRef]

31. Keck, M.K.; Zuo, Z.; Khattri, A.; Stricker, T.P.; Brown, C.D.; Imanguli, M.; Rieke, D.; Endhardt, K.; Fang, P.;
Bragelmann, J.; et al. Integrative Analysis of Head and Neck Cancer Identifies Two Biologically Distinct
HPV and Three Non-HPV Subtypes. Clin. Cancer Res. 2015, 21, 870–881. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fphar.2019.01254
http://dx.doi.org/10.1016/j.ijrobp.2013.07.022
http://www.ncbi.nlm.nih.gov/pubmed/24411596
http://dx.doi.org/10.1016/j.clon.2007.04.009
http://dx.doi.org/10.1016/0360-3016(77)90174-2
http://dx.doi.org/10.3390/cancers12010079
http://dx.doi.org/10.1182/blood-2009-02-206870
http://www.ncbi.nlm.nih.gov/pubmed/19349616
http://dx.doi.org/10.1016/j.ijrobp.2003.09.012
http://dx.doi.org/10.1158/0008-5472.CAN-10-2820
http://www.ncbi.nlm.nih.gov/pubmed/21300764
http://dx.doi.org/10.1172/JCI67313
http://www.ncbi.nlm.nih.gov/pubmed/24382348
http://dx.doi.org/10.1158/0008-5472.CAN-14-1258
http://www.ncbi.nlm.nih.gov/pubmed/25274032
http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.6009
http://dx.doi.org/10.3390/cells9061376
http://dx.doi.org/10.3389/fimmu.2016.00550
http://dx.doi.org/10.3390/ijms21145009
http://www.ncbi.nlm.nih.gov/pubmed/32679922
http://dx.doi.org/10.1016/j.oraloncology.2019.06.017
http://www.ncbi.nlm.nih.gov/pubmed/31422216
http://dx.doi.org/10.1093/annonc/mdy470
http://dx.doi.org/10.1158/1078-0432.CCR-18-3314
http://www.ncbi.nlm.nih.gov/pubmed/31182433
http://dx.doi.org/10.1038/nature21349
http://dx.doi.org/10.1158/1078-0432.CCR-14-2481
http://www.ncbi.nlm.nih.gov/pubmed/25492084


Cancers 2020, 12, 3197 17 of 25
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