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Abstract

Specific features of white matter microstructure can be investigated by using biophysical 

models to interpret relaxation-diffusion MRI brain data. Although more intricate models have 

the potential to reveal more details of the tissue, they also incur time-consuming parameter 

estimation that may converge to inaccurate solutions due to a prevalence of local minima 

in a degenerate fitting landscape. Machine-learning fitting algorithms have been proposed to 

accelerate the parameter estimation and increase the robustness of the attained estimates. So 
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far, learning-based fitting approaches have been restricted to microstructural models with a 

reduced number of independent model parameters where dense sets of training data are easy 

to generate. Moreover, the degree to which machine learning can alleviate the degeneracy problem 

is poorly understood. For conventional least-squares solvers, it has been shown that degeneracy 

can be avoided by acquisition with optimized relaxation-diffusion-correlation protocols that 

include tensor-valued diffusion encoding. Whether machine-learning techniques can offset these 

acquisition requirements remains to be tested. In this work, we employ artificial neural networks 

to vastly accelerate the parameter estimation for a recently introduced relaxation-diffusion model 

of white matter microstructure. We also develop strategies for assessing the accuracy and 

sensitivity of function fitting networks and use those strategies to explore the impact of the 

acquisition protocol. The developed learning-based fitting pipelines were tested on relaxation-

diffusion data acquired with optimal and sub-optimal acquisition protocols. Networks trained 

with an optimized protocol were observed to provide accurate parameter estimates within 

short computational times. Comparing neural networks and least-squares solvers, we found the 

performance of the former to be less affected by sub-optimal protocols; however, model fitting 

networks were still susceptible to degeneracy issues and their use could not fully replace a careful 

design of the acquisition protocol.

1. Introduction

Microstructure imaging uses compartment modelling of diffusion MRI (dMRI) data with 

the aim to map specific tissue quantities (Alexander et al., 2019; Nilsson et al., 2013; 

Novikov et al., 2019). A central goal in microstructure imaging has been to estimate the 

volume fractions of different microstructural components such as axons (Lampinen et al., 

2020, 2019; Veraart et al., 2018). Estimating volume fractions rather than signal fractions 

is challenging, however, because it requires the simultaneous estimation of both diffusion 

and relaxation properties of the different model compartments. This kind of inverse problem 

is sensitive to degeneracy issues (Jelescu et al., 2016; Lampinen et al., 2019), in which 

multiple sets of model parameters can describe the acquired data equally well. Parameter 

estimation can also be computationally slow, preventing real-time mapping. A potential 

solution is to employ machine learning to accelerate the parameter estimation process 

(Golkov et al., 2016). However, the current literature lacks systematic assessments of the 

advantages and drawbacks of this approach, which is surprising considering the exponential 

increase in interest for such methods.

Artificial neural networks (ANNs) and other machine learning approaches have been 

applied previously to accelerate the estimation of microstructure parameters from dMRI 

data (Barbieri et al., 2020; Bertleff et al., 2017; Golkov et al., 2016; Grussu et al., 2020; 

Gyori et al., 2019; Hill et al., 2021; Kaandorp et al., 2021; Nedjati-Gilani et al., 2017; 

Palombo et al., 2020; Reisert et al., 2017). For example, a random forest regressor has been 

used to fit a compartment model for white matter (WM) microstructure in the presence 

of water exchange (Nedjati-Gilani et al., 2017) and to fit the SANDI model for grey 

matter properties (Palombo et al., 2020). Reisert et al. (2017) applied machine learning to 

a Bayesian estimation approach which dramatically accelerated the fitting of two-and three-

compartment models. Barbieri et al. (2020) applied ANNs to the intra-voxel incoherent 
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motion model. An important open question, however, is what impact the training strategy 

has on the fitting performance. This is particularly relevant when applied to non-linear 

multi-compartment models with many independent model parameters, which we here refer 

to loosely as ‘high-dimensional models’. The generation of training data scales poorly with 

the number of model parameters, as sampling each combination of p model parameters 

in m steps requires mp samples. As p increases, it is unavoidable that a finite set of 

samples becomes sparse in the p-dimensional model parameter space, risking selection bias. 

Here, we investigate the impact of different sampling patterns within this space on the 

performance of the neural network.

Apart from accelerating model fitting, neural networks may in principle also reduce the 

requirements on the imaging protocol by learning priors from training examples (Golkov 

et al., 2016). For example, neural networks have been used to learn a mapping between 

fully-sampled and sub-sampled datasets, which can in turn be used to stabilise model 

fitting performance against substantial degrees of data down-sampling (Alexander et al., 

2017; Tian et al., 2020). However, we do not expect machine learning approaches to 

completely alleviate degeneracy issues. Indeed, for cases where the acquisition protocol 

does not provide sufficient information to resolve between different parameter values, the 

learning-based estimates will simply equal the mean of the model parameter distribution 

used for training (Reisert et al., 2017).

The aims of this study were to compare training strategies, to pro-pose tools to evaluate the 

performance of model fitting neural networks, and to test to what degree neural networks 

can solve problems with degeneracy. As a testbed, we use a high-dimensional relaxation-

diffusion microstructure model of WM (Lampinen et al., 2020, 2019; Veraart et al., 2018). 

For this model, parameter estimation is enabled by state-of-the-art imaging protocols 

featuring so-called b-tensor encoding (Topgaard, 2017; Westin et al., 2016) combined with 

diffusion-relaxation correlations (de Almeida Martins et al., 2020; de Almeida Martins and 

Topgaard, 2018; Lampinen et al., 2019). We investigated the ability of neural networks to 

speed up model fitting, and explored the extent to which they can offset the requirements on 

the acquisition protocol.

2. Theory

White matter microstructure can be modelled by multiple compartments with different 

microstructural properties but a common orientation distribution (Alexander et al., 2019; 

Novikov et al., 2019). In this description, the measured signal is the convolution between an 

orientation distribution function (ODF) P (n) and a microstructural kernel K(u ⋅ n)

S(u) = ∫
n = 1

P (n)K(u ⋅ n)dn,
(1)

where n and u are unit vectors defining the symmetry axes of the ODF and of the 

diffusion encoding process, respectively. Note that the microstructural kernel depends on the 

relative angle between n and u, cos β = u ⋅ n. In this work, we assign an effective transverse 

relaxation time T2 and an apparent microscopic diffusion tensor D to each component, and 
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use exponentially decaying functions to model the effect of these microstructural properties 

on the relaxation-diffusion-weighted signal (Veraart et al., 2018). Under these assumptions, 

the microstructure kernel is written as a weighted sum of exponentials

K(u ⋅ n) = S0 ∑
j = 1

J
fjexp −B(u):Dj(n) exp − τE

T2; j
, (2)

corresponding to a mixture of J components with signal fraction fj, transverse relaxation 

time T2; j, and diffusion tensor Dj. The colon “:” denotes the Frobenius inner product, 

B:D = ∑i ∑jBijDij. Information about T2; j and Dj is encoded into the signal by the echo 

time τE and diffusion encoding tensor B(u), respectively, both of which are experimental 

variables. To simplify the model, we only consider axisymmetric B(u) and additionally 

assume that the component-wise Dj are axisymmetric.

The convolution expressed in Eq. (1) can be simplified by factorizing both P (n) and K(u ⋅ n)
in their spherical harmonic coefficients plm and klm, respectively:

P (n) = ∑
l

∑
m

plmY lm(n), (3)

and

K(u ⋅ n) = ∑
l′

kl′0Y l′0(u ⋅ n), (4)

where Ylm are the spherical harmonics basis functions

Y lm(Θ, Φ) = 2l + 1
4π

(l − m)!
(l + m)!Ll

m(cosΘ)exp(imΦ), (5)

with the Ll
m(x) term denoting the associated Legendre polynomials. The summations in 

Eqs. (3) are carried out for order l = 0, 1, 2, …, and degree m = − l, − l + 1, …, l. In Eq. 

(4), we have taken the axial symmetry of the microstructural kernel K(u ⋅ n) into account 

(Lampinen et al., 2020; Novikov et al., 2018). Symmetry around the polar axis implies 

kl’m’ = 0 for either m’ ≠ 0 or odd l’. Taken together, this means that the kl’m‘ coefficients 

are reduced to their 0th degree terms kl’0 (typically written as kl’) and only even-ordered 

spherical harmonic terms (l’ = 0, 2, …) provide non-trivial contributions. Using the spherical 

harmonics addition theorem, Eq. (4) can be rewritten as

K(u ⋅ n) = ∑
l′

kl′0 ∑
m′ = − l′

l′
Y l′m′(u)Y l′m′(n) 4π

2l′ + 1 . (6)

Inserting Eqs. (3) and (6) into Eq. (1) and making use of the orthonormality of the spherical 

harmonics basis finally yields (Driscoll and Healy, 1994; Healy et al., 1998)
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S(u) = ∑
l

∑
m

kl0plmY lm(u) 4π
2l + 1, (7)

where u can be parameterized by the polar and azimuthal angles, θ and ϕ, describing the 

orientation of B, u ≡ (sinθ cosϕ, sinθ sinϕ, cosθ).

The spherical harmonic coefficients of the microstructure kernel (kl0) and the ODF (plm) 

are estimated as the inner products between a given spherical harmonics basis function Ylm 

and either K(u ⋅ n) or P (n). Due to the orthonormality of the spherical harmonics basis, the 

inner products are given by multiplication with the complex conjugates of the Ylm, followed 

by integrations over the unit sphere. For the microstructural kernel, this procedure results in 

(Lampinen et al., 2020)

kl0 ≡ kl = S0 ∑
j = 1

J
fj 4π(2l + 1)Iljexp −bDI; j 1 − bΔDΔ; j exp − τE

T2; j
, (8)

where b is the conventional b-value and bΔ denotes the normalized anisotropy of the 

diffusion encoding tensor B (Eriksson et al., 2015). The isotropic diffusivity and the 

normalized diffusion anisotropy (D I and DΔ) are related to the axial and radial diffusivities 

(D∥ and D⊥) of the diffusion tensor according to DI = D∥ + 2D⊥ /3 and DΔ = D∥ − D⊥ /3DI
(Conturo et al., 1996); in its principal axis, a given D can thus be represented by a diagonal 

matrix parametrized as diag diag DI 1 − DΔ , DI 1 − DΔ , DI 1 + 2DΔ . The Ilj factors are a 

function of the regular Legendre polynomials, Ll, and defined as

Ilj = ∫
0

1
exp −αjx2 ⋅ Ll(x)dx, (9)

with αj = 3bDI; jbΔDΔ; j.

Different diffusion MRI models feature different numbers of components and impose 

different constraints on the component properties. Here we consider a two-compartment 

model (J = 2) comprising a “stick ” component (S) with DΔ;S = 1 and a “zeppelin ” (Z) 

component with DΔ;Z ≠ 1. Truncating the spherical harmonic summation at the second order 

(lmax = 2) then yields the signal according to

S(e, m) = S0 fSexp −bDI;S 1 − bΔ

× I0; S + 4πI2; S∑
m

p2mY 2m(θ, ϕ) exp − τE
T2; S

+ 1 − fS exp −bDI;Z 1 − bΔDΔ;Z

× I0; Z + 4πI2; Z∑
m

p2mY 2m(θ, ϕ) exp − τE
T2; Z

,

(10)
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where m ∈ − 2, − 1, 0, 1, 2 . The derivation of Eq. (10) uses the p00 = Y 00 = 1/ 4π
ODF normalization (Lampinen et al., 2020; Novikov et al., 2018). The vectors e 
and m capture the experiment-related parameters, e = τE, b, bΔ, θ, ϕ , and scalar model 

parameters, m = fS, DI;S, DI;z, DΔ;z, T2; s, T2; z, p20, Re p21 , Im p21 , Re p22 , Im p22 , where 

Re plm = plm + ( − 1)mpl − m /2 and Im plm = plm − ( − 1)mpl − m /2i denote the real and 

imaginary parts of the plm coefficients, respectively. We refer to the model expressed by 

Eq. (10) as the Standard Model with Relaxation (SMR). This name is chosen to mark its 

descendance from the “standard model” of WM microstructure (Novikov et al., 2019) and to 

emphasize the fact that it accounts for compartment-specific T2 times.

The SMR model parameters can be determined by fitting Eq. (10) directly to the acquired 

signals (Lampinen et al., 2020). An alternative strategy is to fit to some representation of the 

signal, such as the spherical harmonics coefficients. Veraart et al. (2018) used a model fitting 

framework that effectively reduces the dimensionality of the parameter space by means of 

performing a rotationally invariant factorization of the voxel-wise ODFs (Novikov et al., 

2018; Reisert et al., 2017). The initial step of such framework consists in projecting the 

measured signal onto a spherical harmonic basis

S(u) = ∑
l

∑
m

SlmY lm(u) . (11)

The Slm coefficients are subsequently converted to rotational invariants Sl, and fitted to the 

corresponding rotationally invariant terms of the P (u) ⊗ K(g ⋅ u) convolution

Sl = plkl, (12)

where kl is the 0th degree term of the microstructural kernel as defined by Eq. (8). The 

rotationally invariant coefficients, Sl and pl, are computed from (Novikov et al., 2018)

xl =
4π∑m xlm

2

(2l + 1) , (13)

where xlm are the spherical harmonics coefficients, and xl ≡ Sl or xl ≡ pl. At sufficiently 

low b-values, signal projections with l > 2 have small contributions to the measured signal 

Jespersen et al., 2007) and the sum in Eq. (11) is typically truncated at the second order 

term (l = 2). The fitting framework summarized by Eqs. (11)–((13) is commonly referred to 

as the “RotInv ” approach due to its use of rotational invariants. The l = 2 RotInv approach 

condenses the five p2m, m ∈ − 2, − 1, 0, 1, 2  parameters of the SMR model onto a single 

p2 invariant capturing the orientation coherence of the sub-voxel diffusion domains, thus 

reducing the dimensionality of the fitting problem by four parameters.

3. Methods

3.1. Neural network architecture and training

In this work, we constructed feedforward neural networks in MATLAB 

R2020b (The MathWorks, Inc.), and used them to fit vectors of scalar 
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parameters, m = fS, DI;S, DI;Z, DΔ;Z, T2; S, T2; Z, p20, Re p21 , Im p21 , Re p22 , Im p22  to sets 

of measurements S τE, B . We explored various network designs with different numbers of 

hidden nodes and/or layers before deciding on two final network architectures: an artificial 

neural network featuring 3 fully connected hidden layers with a decreasing number of nodes 

(180, 80, and 55) and a deeper/wider neural network featuring 4 fully connected hidden 

layers with 250 nodes each. All hidden layers were activated by hyperbolic tangent (tanh) 

functions and the deeper/wider network also featured batch normalization layers between 

the fully connected inner layers and their respective tanh activations. To distinguish the 

networks, we refer to them as the shallower neural network (SNN) and deeper neural 

network (DNN), respectively. Both SNN and DNN comprise an output layer with 11 nodes 

corresponding to the parameters in m. The input comprised a given number (E) of signal 

samples acquired with a pre-defined relaxation-diffusion encoding protocol. We considered 

three different acquisition protocols; with E = 164, E = 242, and E = 270 samples τE, B . 

Independent networks were trained for each protocol, meaning that 3 SNNs and 3 DNNs 

were evaluated. To remove the influence of S0 from the fitting problem, we normalized the 

input vector to the median signal acquired at the lowest b-value and shortest echo-time.

Supervised network training was performed using a mean squared error loss

MSE = mtarg − mnet 2
2, (14)

where mtarg is the ground-truth target vector, mnet is the corresponding network output 

vector, and ∥ ⋅ ∥2 denotes the Euclidean norm. The mtarg parameters were rescaled between 

0 and 1 using a min-max normalization strategy before being supplied to the networks. The 

networks were trained with sets of voxels with randomly generated model parameters and 

noisy signal samples S τE, B , as detailed in Section 3.2. The SNNs were trained with a 

batch size of 0.5∙106 and a scaled conjugate gradient optimiser. The DNNs were trained in 

a mini-batch fashion using a total of 5∙106 training sets, a mini-batch size of 50∙103, and 

an Adam optimiser. Throughout, training data was divided such that 75% of the original 

data was used to update the weights and biases and 25% was used for cross-validation. 

Overfitting was addressed by an early stopping method that terminated training following an 

increase of the MSE of the validation data for 5 (SNN) or 20 (DNN) consecutive epochs.

Network GPU training took approximately 83 min for the SNNs and 74 min for the DNNs 

on two parallel NVIDIA GeForce RTX 2080 SUPER, each with 8 GB of memory. Both 

graphic cards were installed on a high-end consumer-grade desktop computer with 32 GB 

memory and an 8-core Intel i9–9900k 3.6 GHz CPU with 2 threads per core.

3.2. Generating training data

We studied the impact of training data generation strategies on the network performance, 

including training based on uniformly sampled and real brain data. Training parameter 

vectors were created by two strategies:

• munif was synthetically constructed by random sampling of uncorrelated uniform 

distributions within the bounds described in Table 1;
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• mbrain was constructed from in vivo brain data by randomly sampling parameter 

vectors estimated from a NLLS fit of Eq. (10). This dataset contains parameter 

correlations found in a typical brain dataset from a healthy adult.

The mbrain vectors comprise the solutions of a nonlinear least-squares (NLLS) fit of Eq. (10) 

to in vivo signal data, referred to as mfit, together with an additional parameter set mmut, 

consisting of random mutations of the fitted solutions, given by

mmut = X ∘ mfit, (15)

where ‘∘’ denotes the element-wise (Hadamard) product, and X is an 11-dimensional 

vector of normally distributed numbers. Each element of X is an independent and 

identically distributed random variable sampled from a normal distribution with mean 1 

and standard deviation 0.3. The standard deviation of X was chosen following brief in 
silico experiments which revealed that virtually indistinguishable training/test results are 

obtained for standard deviations within the [0.2, 0.5] interval, provided all other training/

network parameters are kept constant. The number of mfit vectors was kept constant 

nfit ≈ 1.5 ⋅ 105 , and the total number of mutated vectors was defined as nmut  = nbrain  − nfit. 

The introduction of mutated parameters is a data augmentation technique, designed to 

simultaneously compensate for the relative low number of mfit vectors and expand 

the fS, DI;S, DI;Z, DΔ;Z, T2; S, T2; Z, p20, Re p21 , Im p21 , Re p22 , Im p22  domain of the mbrain 

parameter targets.

The training vectors, mtrain, were combinations of mbrain and munif parameter vectors. Using 

a given total number of vectors ntot  and varying number of mbrain parameters (nbrain), we 

modulated the fraction of in vivo brain data, fbrain  = nbrain /ntot , between 0 and 1 in steps 

of 0.05. The SNN training sets contained a total of ntot = 5 ⋅ 105 parameter vectors, while 

the DNN training sets contained ntot = 5 ⋅ 106. Fig. S1 in the Supporting Information shows 

the distribution of mfit, mmut, and munif parameters that compose a typical ntot = 5 ⋅ 105 SNN 

training dataset.

Signal data were generated from mtrain using Eq. (10) and one of three different τE, B
acquisition protocols:

• The optimized protocol comprises tensor-valued encoding with full relaxation-

diffusion-correlation optimized for minimal SMR parameter variance (Lampinen 

et al., 2020)

• The unoptimized protocol comprises tensor-valued encoding with relaxation-

diffusion-correlations restricted to low b-values (Lampinen et al., 2019). This 

protocol was an early attempt to design a diffusion-relaxation protocol with 

b-tensor encoding. It preceded the optimized protocol and was configured to fit 

into an available timeslot by following heuristics without a formal performance 

optimization, and was later found to yield degenerate results in white matter 

(Lampinen et al., 2020).
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• The LTE-only protocol comprises diffusion-relaxation optimized for minimal 

SMR parameter variance but includes only linear b-tensor encoding (bΔ = 1) 

(Lampinen et al., 2020). Just as the unoptimized protocol it has been found to 

yield degenerate solutions in white matter.

Additional details on the various protocols can be found in their respective references and 

in Table S1 of the Supporting Information. We emphasize that all training data used in this 

study was generated using the SMR forward model, Eq. (10), rather than using raw in vivo 
brain data.

Noise was sampled from the Rice distribution and added to the ground-truth synthetic 

signals. Because relaxation-diffusion MRI data comprises voxels with different signal-to-

noise ratio (SNR), the amplitude of the SNR at S0 = S τE = 0, B = 0  was uniformly 

varied in the interval SNR ∈ [80, 160]. Considering the relaxation-diffusion properties of 

typical healthy WM T2 ≈ 70 ms, DI ≈ 0.9 μm2/ms , this choice results in SNR ∈ [30, 60] 

at the point of maximal signal of the optimized protocol τE = 63 ms, b = 0.1 ms/μm2 , SNR 

amplitudes that are consistent with tensor-valued dMRI measurements of the in vivo brain 

(Szczepankiewicz et al., 2019a). Finally, networks were trained using mtrain vectors as 

targets and their corresponding in silico noisy signals as inputs.

3.3. Network evaluation

To find the optimal fraction of munif and mbrain parameters (adjusted by the fbrain parameter), 

we trained SNNs with varying values of fbrain, deployed them on in silico data generated 

from an unseen subject, and compared the various networks in terms of accuracy of the 

resulting parameter estimates. Network accuracy was assessed via normalized root-mean-

squared errors (NRMSE) and linear correlations with ground-truth values in terms of the 

Pearson correlation coefficient (ρ). The NRMSE captures the absolute agreement between 

the target ground-truth parameters and their corresponding network estimates, whereas ρ 
captures the linear target-to-estimate correlation strength. The fbrain optimization process 

is discussed in more detail in section S3 of the Supporting Information. Briefly, the fbrain 

hyper-parameter controls a trade-off between accuracy to WM-relevant parameters and 

network generalizability, and we found fbrain = 0.5 to provide an optimal balance between 

accuracy and generalizability. From this point onward, we concentrate on networks trained 

with fbrain = 0.5 datasets and evaluate them in further detail using correlation plots.

The accuracy performance of an fbrain = 0.5 SNN, an fbrain = 0.5 DNN, and a standard NLLS 

solver were compared on the basis of NRMSEs and Pearson correlation coefficients. The 

comparison was performed using two distinct in silico datasets: one based on mfit vectors 

from WM and deep GM data (m fit;WM-like), and another based on munif vectors. Each 

dataset comprised a total of 10∙103 parameter vectors and their respective in silico signals. 

The ground-truth synthetic signals were corrupted with Rician distributed noise and the SNR 

at the S0 point was sampled uniformly from the [80, 160] range.

The effects of different acquisition protocols on network performance were evaluated in 

terms of NRMSE and sensitivity to parameter changes. The latter was gauged by modulating 
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the non-orientational parameters of an SMR solution fS, DI;S, DI;Z, DΔ;Z, T2; S, T2; Z  one at 

a time by 10% and measuring the response in all parameters. The original parameter set 

was based on in vivo data from the corona radiata where fS = 0.45, DI;S = 0.58 μm2/ms, 

DI;Z = 1.36 μm2/ms, DΔ;Z = 0.44, T2;S = 69 ms, T2;Z = 60 ms (Lampinen et al., 2020). 

Subsequently, in silico datasets were generated for each of the 6 modulated datasets, Rice 

noise was added with SNR = 160 at S0, and parameter estimation was performed with 

protocol-specific networks.

To investigate if the reduced parameter space of RotInv fitting impacts the performance 

of ANN-based fitting, we trained an SNN using rotationally invariant in silico datasets 

and the same optimal fbrain value found for the SMR networks. RotInv training vectors, 

mtrain;RI, were generated from the mtrain vectors (Section 3.2), using Eq. (13) to convert the 

full SMR parameters to RotInv parameters fS, DI;S, DI;Z, DΔ;Z, T2; S, T2; Z, p2 . The RotInv 

in silico signal data was generated in four steps: (1) signals were calculated using m train 

and Eq. (10); (2) noise was added to the in silico signal data with a SNR ∈ [80, 160] 

at S0; (3) Slm components were estimated by projecting the noisy S (τE, B) signals to a 

spherical harmonics basis; and (4) Sl, l = {0,2} signals were calculated from Slm using Eq. 

(13). As with the full SMR model, training was performed using mtrain;RI as targets and their 

corresponding synthetic noisy signals as ANN inputs.

Trained SMR (RotInv) networks were tested on previously unseen munif (m unif;RI) and 

mbrain (mbrain;RI) synthetic datasets at an SNR ∈ [80, 160] at S 0. Performance was 

compared in terms of their respective target-estimate correlations. All networks were trained/

tested in a leave-one-out fashion where the training and testing mbrain (mbrain;RI) datasets 

were generated using in vivo data from different subjects (Section 3.5).

3.4. In vivo data acquisition

We analysed data from three adult volunteers previously reported in (Lampinen et al., 2020). 

The study was approved by the regional ethical review board in Lund and written informed 

consent was obtained from all volunteers prior to scanning. Measurements were performed 

on a MAGNETOM Prisma 3T system (Siemens Health-care, Erlangen, Germany) using 

a prototype spin-echo EPI sequence that facilitates user-defined gradient waveforms for 

diffusion encoding (Szczepankiewicz et al., 2019a). Data were collected using echo times 

between 63 and 130 ms, repetition time of 3.4 s, voxel size of 2.5 mm3, 40 slices, matrix-

size of 88 × 88, in-plane and through plane acceleration factor of 2 × 2 (GRAPPA), partial-

Fourier of 3/4, band-width = 1775 Hz/pixel, and “strong ” fat saturation. Diffusion encoding 

was performed with gradient waveforms optimized to maximize the encoding strength per 

unit time and to suppress concomitant field effects (Sjölund et al., 2015; Szczepankiewicz et 

al., 2019b). A total of 270 combinations of τE and B were used, according to the optimized 

protocol in Table S1 of the Supporting Information. Total acquisition time was 15 min.

3.5. In vivo data processing and parameter estimation

Prior to analysis, all in vivo data were corrected for eddy-currents and subject motion 

using ElastiX (Klein et al., 2009) with extrapolated target volumes (Nilsson et al., 2015). 
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Susceptibility-induced geometric distortions were corrected using the TOPUP tool in 

FMRIB software library (FSL) (Smith et al., 2004). Gibbs ringing artefact correction was 

performed according to the method described in (Kellner et al., 2016). To suppress the 

influence of noise, we filtered data with a 3D Gaussian kernel with a standard deviation of 

0.45 times the voxel dimensions (Lampinen et al., 2020).

The SMR model parameters were estimated from a voxel-by-voxel NLLS fit of Eq. (10) 

to the post-processed data. The fitting process was performed with the multidimensional 

dMRI toolbox (https://github.com/markus-nilsson/md-dmri) (Nilsson et al., 2018), with 

MATLAB’s built-in lsqcurvefit function. To remove outliers, model fitting was performed 

twice in each voxel and the result with lowest residual was retained (Lampinen et al., 

2020). The initial guesses were sampled uniformly from the parameter bounds in Table 1. 

The resulting estimates were stored and used to compute in silico signal data following 

the procedure detailed in Section 3.2. NLLS fitting of a single in vivo brain dataset took 

approximately 8 h (approximately 5.5 s per voxel) on the CPU described in Section 3.1. The 

computations were carried out using parallel computing and multi-threading.

Finally, previously trained networks were used to estimate the parameters from Eq. (10) 

from in vivo data, which took approximately 2 and 20 s for the whole brain using the SNN 

and DNN, respectively. Training was performed on in silico mtrain data with an optimal 

fbrain fraction. The training process followed a leave-one-out scheme, where the networks 

were trained on synthetic data generated from two subjects before being deployed/tested on 

a third, previously unseen, subject. Neural network fitting provided voxel-wise parameter 

maps that were compared to the ones obtained from a conventional NLLS fitting approach.

4. Results

4.1. Neural network parameter estimates

SNN-based parameter estimation was approximately 104 times faster than NLLS fitting on 

the same computer, and yielded parameters in good agreement with the ground-truth targets 

and preserved contrast between regions characterized by distinct (T2, D) properties (Fig. 

1). For example, the estimated fS and p2 are high in WM regions generally and highest in 

orientationally coherent WM regions such as the corpus callosum, similar to the in-silico 
ground-truth. However, a reduced contrast was observed in the T2;Z maps, where the 

distinction between WM (darker) and cortical GM (brighter) regions is more prominent in 

the ground-truth map. The T2;Z estimates are also characterized by considerable differences 

between ground-truth and estimated parameters in the long T2 regions such as the lateral 

ventricles. The largest overall discrepancy between estimated and ground-truth parameters 

was found for DΔ;Z, likely because the signal is insensitive to it when |DΔ;Z| < 0.5 (Eriksson 

et al., 2015). Using an ANN trained on synthetic data to directly fit in vivo experimental 

data resulted in noisier maps. Nevertheless, it preserved an anatomically plausible contrast. 

Given the strong correlations between in silico ground-truth maps and network estimates, the 

noisier appearance of the in vivo parameter maps is likely because the SMR model cannot 

accurately represent the underlying in vivo data. In vivo SNN parameter estimates from WM 
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regions of interests are displayed in Table S2 of the Supporting Information, where they are 

additionally compared to NLLS estimates.

Fig. 2 shows that SNN-based estimates correlated well with the ground-truth parameter 

targets, with most parameters yielding linear correlation coefficients close to or above 0.9. 

The referenced figure focuses on the performance of a network trained with in silico 
S τE, B  data generated with the optimized protocol and an even mix of random and 

WM-like samples (fbrain = 0.5), and distinguishes between performance on parameters 

obtained by uniform random sampling (light blue points) and parameters derived from in 
vivo non-cortical brain data (dark blue points). Red points correspond to parameter vectors 

derived from low component-specific signal fractions, as described in the figure caption. 

Poor performance is observed for low DΔ;Z values, where the network yields DΔ;Z ≈ 0.3
regardless of the underlying ground-truth. This can be attributed to an intrinsic difficulty 

in distinguishing between the diffusion-weighted signals of components with DΔ;Z < 0.5
components (Eriksson et al., 2015). Moreover, a poor target-to-estimate correspondence was 

seen for T2;Z -times where these were longer than the maximal echo time.

The parameter maps estimated from the deeper network are in good agreement with their 

respective ground-truth targets (Figs. S3 and S4 of the Supporting Information correspond to 

Figs. 1 and 2). In Fig. S4, we observed that DNN-based fitting resulted in slightly stronger 

correlations between network estimates and ground-truth parameter targets. Although in 
vivo maps from DNN and SNN are similar, differences can be found in DΔ;Z and T2;Z; the 

DNN produces a noisier DΔ;Z and the T2;Z map has a higher contrast between WM and 

cortical GM. Both of these features are likely artefactual, and suggest that the DNN is more 

susceptible to differences between the SMR signal predictions and the measured in vivo 
data.

The errors and prediction-target correlations of the ANN-based estimates are compiled in 

Table 2, where they are also compared to a conventional NLLS solver. The NLLS, SNN, and 

DNN approaches all have a comparable accuracy for in silico datasets designed to capture 

WM (T2, D) properties. By contrast, the function-fitting networks are observed to be more 

accurate than the NLLS approach for synthetic munif parameter vectors.

4.2. Effect of acquisition protocol on network accuracy and sensitivity

In this section, we focus on the relationship between acquisition protocol design and 

network performance. Fig. 3 shows that ANN-based fitting could partly but not completely 

eliminate the known fit degeneracy in the unoptimized and LTE-only protocols: ANNs based 

on the optimized protocol provide lower estimation errors (NRMSE) than the ANNs based 

on the other two protocols. Comparing these two protocols, we note that the unoptimized 
protocol yields relatively more accurate estimates of DI;S, and T2;Z, while the LTE-only 
protocol yields more accurate estimates of fS, DI;Z, DΔ;Z, T2;S, and p2. Fig. 3 also shows 

that the performance of both SNN and DNN is less affected by sub-optimal acquisition 

protocols than the traditional NLLS approach (Fig. 3). For the NLLS approach, the use of 

the unoptimized or LTE-only protocols leads to a considerable increase of the estimation 

errors, while only a slight increase of NRMSE is observed for the DNN or SNN approaches. 
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This suggests that ANNs may partly alleviate parameter estimation difficulties caused by a 

protocol that is inadequate in relation to the microstructure model.

Fig. 4 shows the sensitivity of the various protocols to parameter changes. Networks trained 

on data generated with the optimized protocol are sensitive to all parameters, but slightly 

underestimate the magnitude of the change, particularly in DΔ;Z. The parameter-specific 

modulations did not have a major effect on the estimation of the remaining unmodulated 

parameters. An exception was found when the underlying T2;Z is increased by 10%, which 

results in a 3% overestimation of the unchanged DI;S. Compared to the optimized protocol, 

the unoptimized and LTE-only protocols exhibit a lower sensitivity to the small parameter 

modulations and appear to be unresponsive to changes in DΔ;Z (both protocols) and D I;S 

(LTE-only). In addition to lower sensitivity, the unoptimized protocol also resulted in less 

accurate estimations of the unmodulated parameters, with a 10% modulation of fS leading to 

an erroneous 7% increase in T2;S.

4.3. Neural network fitting of rotationally invariant microstructural features

Fig. 5 A shows that training a SNN with rotational invariants results in slightly stronger 

correlation between target and estimated parameters (compare with the scatter plots of Fig. 

2). We note a considerable improvement in accuracy at low DΔ;Z values, where the constant 

DΔ;Z ≈ 0.3 behaviour observed for the full SMR model (see Fig. 2) is no longer present. 

Applying the RotInv network to an unseen in vivo Sl = {0,2} dataset results in parameter 

maps with anatomically plausible contrast (see Fig. 5 B). Consistent with the better DΔ;Z
accuracy performance of the RotInv approach, we note that the RotInv DΔ;Z in vivo map 

has a smoother appearance and better demarcates cortical/non-cortical parenchyma than its 

non-rotationally invariant SMR counterpart (compare the fourth column of Figs. 1 with 5 B).

Interestingly, in vivo maps smoother than the ones displayed in Fig. 5 B can be attained 

from an ANN that was trained on unreasonably noisy in silico data. Fig. 6 displays the 

in vivo parameter maps obtained from a RotInv network trained with SNR ∈ [20, 40] at 

S0, which is 4 times lower than that used in Fig. 5. The resulting maps have a smooth 

appearance and exhibit anatomically plausible contrast. For example, regions with high fS 

correspond to WM regions, the lateral ventricles are characterized by low fS and high DI;Z 

values, and darker/brighter DΔ;Z regions demarcate cortical/non-cortical parenchyma. While 

it is tempting to favour the seductively ‘robust’ maps of Fig. 6 over the noisier maps of Fig. 

5 B, we note that the low-SNR RotInv network results in weak correlations between target 

and estimated parameters (compare the scatter plots of Fig. 6 with those of Fig. 5 B). For 

example, SNN-based estimates of DΔ;Z may yield a smooth map that appears robust, but a 

closer inspection reveals that the DΔ;Z estimates in WM and deep GM regions are equal to 

the mean of the target DΔ;Z distribution and constitute an exceedingly inaccurate estimate of 

the underlying ground-truth. The tendency for networks to return the mean of the training 

parameter distribution has been reported in studies of the RotInv model (Reisert et al., 2017) 

and the behaviour was explained in detail by Coelho et al. (2021).
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5. Discussion and conclusions

Replacing traditional NLLS solvers with function-fitting neural networks enables vastly 

faster parameter estimation when using high-dimensional microstructural models. On a 

consumer-grade desktop computer, the fitting time was reduced from hours (NNLS) to 

seconds (ANN). Naturally, the NNLS fitting times, based on the relatively slow trust-region-

reflective algorithm, can be improved by linearizing the fitting problem (Daducci et al., 

2015) or by using GPU-based solvers (Harms et al., 2017). However, while such procedures 

have enabled whole brain fitting of non-linear models within minutes (Daducci et al., 2015; 

Harms et al., 2017), we still expect the seconds-long forward pass of an ANN to provide a 

competitive choice in terms of computation time.

The ANN-based estimates were observed to be in good agreement with synthetic data that 

mimicked healthy WM as well as data that spanned the entire space of allowed model 

parameters. When deployed on unseen in vivo brain data, neural networks provide maps 

that are consistent with known brain anatomy and preserve contrast be-tween regions with 

different relaxation-diffusion properties. Our findings are encouraging and in line with 

recent advanced dMRI modelling studies that use machine learning techniques for parameter 

estimation (Barbieri et al., 2020; Bertleff et al., 2017; Golkov et al., 2016; Grussu et 

al., 2020; Gyori et al., 2019; Hill et al., 2021; Kaandorp et al., 2021; Nedjati-Gilani et 

al., 2017; Palombo et al., 2020; Reisert et al., 2017). A combination of error metrics, 

correlation analysis, and sensitivity matrices was found to provide a useful set of tools 

for quantitatively assessing parameter-specific accuracy/sensitivity and for identifying the 

limitations of learning-based approaches. These tools facilitate a survey of the performance 

across all dimensions of the SMR model, for example, revealing that DΔ;Z was consistently 

less accurate than other parameters, as expected from previous studies that have emphasized 

that it is difficult to estimate (Eriksson et al., 2015; Lampinen et al., 2020, 2019). By 

contrast, visual inspection of ANN-based parameter maps was found to provide limited 

insight on the general performance of the networks. Indeed, smooth and anatomically 

plausible maps can be achieved even with poor network performance and data with low 

SNR. This is a common and deceptive pitfall that has strong implications for the evaluation 

of performance in machine learning approaches (Reisert et al., 2017).

We found no evidence that voxel-wise ANN-based parameter estimation can fully alleviate 

the degenerate fitting landscape typically present when working with biophysical models in 

dMRI (Jelescu et al., 2016) or replace an exhaustive sampling of all relevant experimental 

dimensions (Coelho et al., 2019; Lampinen et al., 2020). Fig. 3 shows worse performance 

in terms of parameter estimation errors (NRMSE) for the two protocols with known 

degeneracy problems (Lampinen et al., 2020). Similarly, Fig. 4 shows that only the 

optimized protocol can faithfully recover parameter-specific changes while the other two 

cannot. These are both signs of unresolved degeneracies. Indeed, we cannot expect good 

performance for LTE-only and unoptimized protocols because these protocols can yield 

virtually identical signal vectors for different model parameters; the inverse problem 

has many solutions (Lampinen et al., 2020, 2019). Nevertheless, ANN-based fitting 

showed an advantage compared with the traditional NLLS approach, as it yielded lower 

estimation errors in the degenerate cases (unoptimized and LTE-only protocols; Fig. 3). Our 
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interpretation is that the NLLS approach returns one out of the many solutions, whereas the 

ANN-based estimate tends to an average across the many solutions.

The 11-dimensional parameter space of the SMR model is difficult to sample densely and 

thus presents a challenge when designing training datasets that are representative of the vast 

fitting landscape. In this work, we addressed this challenge by constructing training data 

based on in vivo healthy brain data (mbrain) and more naïve parameter vectors randomly 

sampled from the entire model parameter space (munif). Networks trained exclusively with 

mbrain vectors displayed the best accuracy in terms of expected WM properties, but their 

domain of validity is restricted to the relatively small space spanned by mbrain solutions. 

This raises questions about their generalizability, i.e., their performance in cases where 

atypical microscopic tissue structures are present (Alexander et al., 2019). To find a good 

trade-off between accuracy and generalizability we optimized the fraction of in vivo-based 

training data (fbrain). However, we expect that more work is needed to define a truly optimal 

strategy for network training.

In this study, we focused on fully connected networks that follow the design of multilayer 

perceptrons (MLPs), a traditional ANN class that is well-suited for regression problems 

(Cybenko, 1989; Hornik et al., 1989). Alternatives or complements to the fully connected 

ANN architecture should also be explored in future works. Promising avenues include the 

use of dropout (Gal and Ghahramani, 2016; Tanno et al., 2021) or deep ensemble strategies 

(Lakshminarayanan et al., 2016; Qin et al., 2021) as a means to derive uncertainty metrics, 

the use of rolled-out network structures inspired by non-learning-based iterative fitting 

frame-works (Ye, 2017), the use of auto-encoders (Zucchelli et al., 2021), or the use of 

denoising networks (Fadnavis et al., 2020; Wang et al., 2019) to minimize the amount of 

noise present in the data that is supplied to the function-fitting ANN. While fundamentally 

different network architectures may considerably boost the performance of the ANN-based 

fitting approach, the modest differences found between the SNN and DNN designs suggests 

that simply increasing the width and/or depth of the fully connected ANN architecture is not 

a promising avenue. Despite the potential for improvement, we note that the plots in Fig. 2 

constitute an improvement over similar target-estimate correlation plots reported in (Reisert 

et al., 2017), where supervised learning based on polynomial regressors was used to fit a 

three-compartment diffusion model, and are equivalent to the correlation plots reported in 

more recent works on learning-based fitting of diffusion (Gyori et al., 2019; Palombo et al., 

2020) and diffusion-relaxation MRI models (Grussu et al., 2020).

The fully connected ANNs we considered here are not invariant to sample rotations. 

The input to the ANNs is a vector of E signal samples measured at a pre-defined set 

of both directional (θ, ϕ) and rotationally invariant τE, b, bΔ  experimental points. The 

ordering in which the E measurements are provided is kept fixed and samples with similar 

microstructural kernels K(u ⋅ n) but different orientations will result in distinctive network 

input vectors. This places a burden on the training data generation, which has to span 

a sufficient set of possible tissue orientations. Using the RotInv formulation renders the 

network invariant to sample rotations, which considerably reduces the dimensionality of the 

parameter space that has to be represented in training data. The higher training efficiency 

likely explains its slightly higher accuracy performance relative to the full SMR networks. 
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Alternatives to the RotInv formulation presented in this study include a framework based on 

a different set of rotationally invariant features of the dMRI signal (Zucchelli et al., 2021) 

or fitting the full SMR model with equivariant network architectures (Cohen et al., 2018; 

Thomas et al., 2018).

A potential limitation of the present study is the focus on a single multi-compartment 

model of tissue microstructure whose range of application is mostly limited to WM and 

deep GM tissues. Applications for cortical GM should therefore consider models tailored 

to the appropriate microstructure (Palombo et al., 2020). Our decision to focus on a single 

model follows from previous dMRI literature which has presented the “Standard Model ” 

of tissue microstructure – from which our SMR model descends – as an overarching signal 

model that encompasses several other WM models as particular cases (Novikov et al., 

2019). Fur-thermore, the “Standard Model” has been used to reveal general degeneracy 

problems in microstructure parameter estimation (Novikov et al., 2018). Given the generality 

of our model and the prevalence of degeneracies in advanced dMRI modelling, we expect 

the degradation of performance with less optimal protocols to also be found in alternative 

multi-compartment models or when using different learning-based fitting algorithms (e.g. : 
polynomial Reisert et al. 2017 or random forest Nedjati-Gilani et al. 2017, Palombo et 

al. 2020 regressors). However, future work is needed to fully characterize the general 

relationship be-tween machine learning approaches and degenerate fitting landscapes.

In conclusion, function fitting neural networks can be used to vastly accelerate parameter 

estimation with high-dimensional microstructural MRI models. The accuracy of ANN-based 

estimates was observed to degrade less with sub-optimal protocols than traditional NLLS 

fitting. However, the performance of function fitting networks was still observed to primarily 

depend on the amount of information sampled by the underlying measurements, and we 

found no evidence that ANN-based approaches can offset the need for a rich set of data. 

Therefore, machine learning methodology in MRI microstructure modelling should be 

matched with comprehensive data acquisition. This work presents a learning-based fitting 

framework, as well as tools for evaluating combinations of networks and measurement 

protocols in terms of error metrics, estimate-target correlation plots, and sensitivity matrices.
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Fig. 1. 
Deploying trained networks on previously unseen in silico and in vivo data provides 

anatomically plausible parameter maps in under 10 s (including data management times). 

The first and second columns compare the ground-truth targets and network predictions, 

respectively, of the in silico dataset. Difference maps are shown in the third column. 

Parameter maps obtained from applying a trained network on in vivo brain data are 

displayed in the fourth column.

de Almeida Martins et al. Page 20

Neuroimage. Author manuscript; available in PMC 2022 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Scatter plots of ground-truth parameters vs. neural network predictions. Light blue points 

show results when the network is deployed on uniformly distributed random model 

parameters. The dark blue points correspond to an in silico dataset derived from a nonlinear 

least-squared fit to measured brain data where voxels within CSF and cortical GM were 

excluded by masking out regions where microscopic anisotropy (Lasič et al., 2014), μFA, is 

lower than 0.6. The red points correspond to regions where poor accuracy is expected, i.e., 
where the signal fraction of the relevant component (“stick ” or “zeppelin ” depending on 

the parameter) accounts for less than 15% of the total signal or, for the p2 map, parameter 

vectors where the “zeppelin ” component accounts for more than 85% of the total signal 

fraction and | DΔ;Z| < 0.4. The inner legends show the Pearson correlation coefficients (ρ) of 

the blue points. For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.
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Fig. 3. 
Optimized acquisition protocols result in ANN- and NLLS-based parameter estimates with 

smaller errors. The bar plots indicate the normalized root-mean-squared errors (NRMSE) 

between ground-truth and predicted parameters, for learning-based (DNN and SNN) and 

NLLS fitting approaches, and for in silico datasets generated with different acquisition 

protocols. The leftmost plots correspond to a tensor-valued τE, B  protocol optimized for 

minimal parameter variance, the optimized protocol (Lampinen et al., 2020); the middle 

plots correspond to a sub-optimal tensor-valued τE, B  protocol where relaxation-diffusion 

correlations are exclusively established at low b-values, the unoptimized protocol (Lampinen 

et al., 2019); the rightmost plots show the results for a τE, B  protocol optimized for 

minimal parameter variance when limited to linear diffusion encoding bΔ = 1 , the LTE-

only protocol (Lampinen et al., 2020). Panel A shows network performance on parameters 

sampled from a uniform distribution, and panel B shows the performance on in silico data 

based on least-squares fitting results to in vivo non-cortical brain tissue data.
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Fig. 4. 
Sensitivity of acquisition protocols to 10% parameter modulations. The matrices display 

the relation between an induced parameter change and the observed response. When a 

single parameter on the y-axis is modulated by 10%, the response can be read in all other 

parameters along the x-axis. An ideal network would report a diagonal matrix with the 

value 10% on the diagonal, and zero otherwise. The optimized protocol appears sensitive in 

all parameters, whereas the unoptimized protocol lacks sensitivity DΔ;Z and the LTE-only 

protocols lacks sensitivity to both DΔ;Z and DI;S.
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Fig. 5. 
Neural network fitting of a rotationally invariant (RotInv) model results in strong 

target-estimate correlations and plausible maps. (A) Correlations between network-based 

parameter estimates and ground-truth parameter targets. The estimates were obtained from 

a RotInv network trained using a fraction of fbrain = 0.5 between rotationally invariant 

mbrain and munif training parameter vectors. The colour-coding and legends follow the same 

convention as Fig. 2. (B) Maps of microstructural diffusion parameters – fS, DI;S, DI;Z and 

DΔ;Z – obtained from fitting a RotInv network to rotationally invariant in vivo brain data.
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Fig. 6. 
Training a neural network with an insufficient dataset may result in plausible maps but 

poor target-estimate correlations. (A) Experimental parameter maps obtained from fitting 

a RotInv SNN that was trained on unreasonably noisy data (SNR at S0 in the [20, 40] 

range). The maps were obtained by deploying the network to rotationally invariant in vivo 
brain data. (B) Correlations between network-based parameter estimates and ground-truth 

parameter targets. The colour-coding and legends follow the same convention as Fig. 2.
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Table 1

SMR parameter bounds. The diffusivity bounds were enforced by limiting D ∥ ; s, D ∥ ; Z and D ⊥ ; Z to the 

[0.2, 4.0] μm2/ms interval. For T2;S and T2;Z, the lower bound removes the influence of the assumedly 

fully-attenuated myelin water, and the large upper bound of T2;Z enables it to capture effects of increased 

values in white matter lesions (Lampinen et al., 2019) as well as possible contamination with cerebrospinal 

fluid which is expected to have a larger influence on the more isotropic zeppelin compartment (Lampinen et 

al., 2020).

Bounds f S DI;S [μm2/ms] DI;Z [μm2/ms] DΔ;Z T2;S [ms] T2;Z [ms]

Minimum 0 0.07 0.2 −0.46 30 30

Maximum 1 1.33 4.0 0.86 300 1000
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